Eritrea faces significant environmental and agricultural challenges due to human activities, rugged terrain, and fluctuating climates like recurrent droughts and erratic rainfall. Desertification, deforestation, and s...Eritrea faces significant environmental and agricultural challenges due to human activities, rugged terrain, and fluctuating climates like recurrent droughts and erratic rainfall. Desertification, deforestation, and soil erosion are major concerns affecting soil quality, water resources, and vegetation, especially in areas like the Alla catchment. Recent assessments reveal declining vegetation and precipitation levels over four decades, alongside rising temperatures, linked to increased desertification and land degradation driven by climate variations and prolonged droughts. The urgent need for sustainable land management practices is explained by reduced productivity, biodiversity, and ecosystem health. This study focused on modelling land degradation in Eritrea’s Alla catchment using advanced geospatial techniques. Vegetation indices and soil erosion models were used to evaluate critical factors such as rainfall Erosivity, soil erodibility, slope characteristics, and land cover management. The resulting model highlighted varying levels of susceptibility to land degradation, highlighting widespread vulnerability characterized by high and very high susceptibility hotspots. Areas with minimal degradation were found in the northern vegetation-covered regions. Soil loss in the catchment is primarily influenced by inadequate land cover, steep slopes, soil erosion susceptibility, erosive rainfall patterns, and insufficient support practices. The study underscores the urgency of addressing deforestation and unsustainable agricultural practices to mitigate soil erosion. Recommendations include enhancing community capacity for effective land management, promoting climate adaptation strategies, and aligning national efforts with the global Sustainable Development Goals to achieve Land Degradation Neutrality.展开更多
Previous works were mainly concentrated on long-term average runoff alterations,and extreme temperatures and watershed conditions are little analyzed.In this study,we collected gauged river flow and meteorological dat...Previous works were mainly concentrated on long-term average runoff alterations,and extreme temperatures and watershed conditions are little analyzed.In this study,we collected gauged river flow and meteorological data time series from 1916 to 2015 and 1941 to 2015 across the contiguous United States(CONUS)for 188 catchments to investigate the temporal trends and spatial features of runoff changes at multi-time scales.We also analyzed the relationships between runoff changes and climatic factors.Median descriptive statistics and Budyko coupled climate elasticity methods were used to calculate runoff elasticity in each time scale.The original Mann-Kendall trend test was used to test their trend significance in four time-scale(11,20,40,and 60 a),respectively.The results show that the trend of runoff changes is more significant in high time scales;total changes are heterogeneous over CONUS.After the 1970s,increases of up to 27%decade-1 were mainly concentrated in the mid-northern regions.Maximum temperature and catchment characteristics are vital factors for runoff alteration;runoff changes are independent of rainfall,and wet regions tend to have lower changes.These findings could help develop better regional water resource planning and management.展开更多
To have effective water resource management,the distributed hydrological models are commonly applied for supporting the decision-making processes.Among different inputs,the spatial distributed rainfall plays significa...To have effective water resource management,the distributed hydrological models are commonly applied for supporting the decision-making processes.Among different inputs,the spatial distributed rainfall plays significant role in those model simulations.Many interpolation methods have been developed for generating distributed rainfall based on measurement samples.However,depending on the catchment characteristics and data availability,the suitable interpolation algorithm is case-dependent.This paper presents one operational approach for determining the resonable interpolation algorithm in a complex large catchment(Var catchment,France).Based on the daily rainfall data(2008–2014)collected from 16 stations in the Var catchment,six different interpolation approaches including:inverse distance weight(IDW),spline,kriging with linear and spherical semi-variogram models and geographically weighted regression considering elevation effects and the combined impacts of elevation and distance to the sea were tested.Integrated the results of statistical and modeling assessments,the 400m resolution distributed rainfall generated by IDW algorithm shows high preference in generating distributed rainfall in the Var catchment.Moreover,the strategy described in the article also shows promising acceptability for other catchments.展开更多
Analysis of catchment Land use/Land cover (LULC) change is a vital tool in ensuring sustainable catchment management. The study analyzed land use/land cover changes in the Rwizi catchment, south western Uganda from 19...Analysis of catchment Land use/Land cover (LULC) change is a vital tool in ensuring sustainable catchment management. The study analyzed land use/land cover changes in the Rwizi catchment, south western Uganda from 1989-2019 and projected the trend by 2040. Landsat images, field observations, key informant interviews and focus group discussions were used to collect data. Changes in cropland, forestland, built up area, grazing land, wetland and open water bodies were analyzed in ArcGIS version 10.2.2 and ERDAS IMAGINE 14 software and a Markov chain model. All the LULC classes increased in area except grazing land. Forest land and builtup area between 2009-2019 increased by 370.03% and 229.53% respectively. Projections revealed an increase in forest land and builtup area by 2030 and only built up area by 2040. LULCC in the catchment results from population pressure, reduced soil fertility and high value of agricultural products.展开更多
The hydrologic model HEC-HMS (Hydrologic Engineering Center, Hydrologic Modeling System), used in combination with the Geospatial Hydrologic Modeling Extension, HEC-GeoHMS, is not a site-specific hydrologic model. A...The hydrologic model HEC-HMS (Hydrologic Engineering Center, Hydrologic Modeling System), used in combination with the Geospatial Hydrologic Modeling Extension, HEC-GeoHMS, is not a site-specific hydrologic model. Although China has seen the applications of many hydrologic and hydraulic models, HEC-HMS is seldom applied in China, and where it is applied, it is not applied holistically. This paper presents a holistic application of HEC-HMS. Its applicability, capability and suitability for flood forecasting in catchments were examined. The DEMs (digital elevation models) of the study areas were processed using HEC-GeoHMS, an ArcView GIS extension for catchment delineation, terrain pre-processing, and basin processing. The model was calibrated and verified using historical observed data. The determination coefficients and coefficients of agreement for all the flood events were above 0.9, and the relative errors in peak discharges were all within the acceptable range.展开更多
Catchment floods are more challenging due to intensive urbanization and climate change.Enlightened by the Low Impact Development(LID),China initiated the Sponge City Program(SCP)to transform Urban Flood Management(UFM...Catchment floods are more challenging due to intensive urbanization and climate change.Enlightened by the Low Impact Development(LID),China initiated the Sponge City Program(SCP)to transform Urban Flood Management(UFM)to be more environmentally friendly in 2013.The China National Government(CNG)has subsidized municipal SCP facilities to enhance urban flood resilience while delivering multiple co‐benefits for urban ecosystems and social well‐being.Recent floods at Schleiden(Germany),Arizona State(USA),and Zhengzhou(China)in 2021 reflected the necessity of Catchment Flood Management(CFM)to cover the whole catchment scale.The SCP,designed to handle small‐scale urban pluvial floods,has brought concerns when facing larger‐scale fluvial floods after the Zhengzhou 2021 flood.Indeed,catchment‐scale Natural Flood Management(NFM)can manage fluvial floods while improving flood adaptations sustainably from upstream to downstream reaches.This research develops a new framework named the Sponge Catchment Management Plan(SCMP),including structural and Nonstructural elements.On the structural side,the SCMP framework integrates NFM with the SCP and Grey Engineering(GE)for reducing the fluvial flood discharge peaks in the whole‐catchment scale.On the nonstructural side,the SCMP encourages collaborative governance,revising technical standards,and improving“bottom‐up”participation.This research used Semi‐Structured Interviews(SSIs)and a Focus Group Approach(FGA)to explore 62 professional and Nonprofessional stakeholders’perspectives on the SCMP framework.Some professional respondents did not know much about the NFM and were worried about the effectiveness of this practice.But most interviewees supported the SCMP pilot work and shared the co‐benefits from the NFM.This case study at the SW China,Guiyang,could be a lesson to encourage other Chinese cities further implement SCP to improve catchment‐scale flood resilience.展开更多
[Objective] This study aimed to provide the basis for scientific and rea- sonable application of nitrogen fertilizer and control Of agricultural non-point source pollution in vegetable-growing area at Chaihe catchment...[Objective] This study aimed to provide the basis for scientific and rea- sonable application of nitrogen fertilizer and control Of agricultural non-point source pollution in vegetable-growing area at Chaihe catchment of Dianchi Lake. [Method] A pot experiment was carried out to compare the loss of nitrogen via ammonia volatilization and nitrogen leaching after application of biochar coated urea (BCU) and common urea (Urea) with different nitrogen rates (0 mg N/kg soil, 400 mg N/kg soil, 320 mg N/kg soil and 280 mg N/kg soil). [Result] The results indicated that the amount of nitrogen loss was proportional to nitrogen applied rate. Leaching nitrogen was higher than ammonia volatilization. Compare with Urea treatments, ammonia volatilization and nitrogen leaching losses were significantly lower in BCU treatments at the same nitrogen application rate. At the nitrogen application rate of 320 and 280 mg N/kg soil, nitrogen loss, ammonia volatilization and leaching nitrogen was 43.5%-45.5%, 3.7%-21.7% and 49.8%-52.1% lower in BCU treatments than in Ure- a treatments, respectively. [Conclusion] The application of BCU could minimize nitro- gen loss by reducing nitrate leaching loss. It can be concluded that the low nitrogen application rate combined with BCU have a practical influence on controlling the risk of nitrogen pollution in Dianchi Lake.展开更多
In arid and semi-arid regions, the availability of adequate water of appropriate quality has become a limiting factor for development. This paper aims to evaluate the potential for rainwater harvesting in the arid to ...In arid and semi-arid regions, the availability of adequate water of appropriate quality has become a limiting factor for development. This paper aims to evaluate the potential for rainwater harvesting in the arid to semi-arid Faria Catchment, in the West Bank, Palestine. Under current conditions, the supply-demand gap is increasing due to the increasing water demands of a growing population with hydrologically limited and uncertain supplies. By 2015, the gap is estimated to reach 4.5 x 106 m3. This study used the process-oriented and physically-based TRAIN-ZIN model to evaluate two different rainwater harvesting techniques during two rainfall events. The analysis shows that there is a theoretical potential for harvesting an additional 4 x 106 m3 of surface water over the entire catchment. Thus, it is essential to manage the potential available surface water supplies in the catchment to save water for dry periods when the supply-demand gap is comparatively high. Then a valuable contribution to bridging the supply-demand gap can be made.展开更多
The methodology of catchment extraction especially from regular grid digital elevation models(DEMs)is briefly reviewed.Then an efficient algorithm,which combines vector process and traditional neighbourhood raster pro...The methodology of catchment extraction especially from regular grid digital elevation models(DEMs)is briefly reviewed.Then an efficient algorithm,which combines vector process and traditional neighbourhood raster process,is designed for extracting the catchments and subcatchments from depressionless DEMs.The catchment area of each river in the grid DEM data is identified and delineated,then is divided into subcatchments as required.Compared to traditional processes,this method for identifying catchments focuses on the boundaries instead of the area inside the catchments and avoids the boundary intersection phenomena.Last,the algorithm is tested with a set of DEMs of different sizes,and the result proves that the computation efficiency and accuracy are better than existent methods.展开更多
Located in the semi-arid zone of Zambia, the Mutama-Bweengwa, Kasaka and Magoye sub-catchments have witnessed a high demand for water due to increase in population and socio-economic activities putting more pressure o...Located in the semi-arid zone of Zambia, the Mutama-Bweengwa, Kasaka and Magoye sub-catchments have witnessed a high demand for water due to increase in population and socio-economic activities putting more pressure on water resources. This study assesses the hydrological components and ascertains the available water resources and unmet demand in the sub-catchments using the Water Evaluation And Planning (WEAP) Model and hydrometeorological data collected between 1951 and 2018. The model was calibrated and validated on 1971-1981 and 2008-2018 data respectively. The results reveal that the sub-catchments have transitioned from positive to negative water balance with -164.295 Mm<sup>3</sup>/year for Mutama-Bweengwa, -19.021 Mm<sup>3</sup>/year for Kasaka and -86.368 Mm<sup>3</sup>/year for Magoye. Evaporation was 1815.259 Mm<sup>3</sup>/year for Mutama-Bweengwa, 1162.655 Mm<sup>3</sup>/year for Kasaka and 1505.664 Mm<sup>3</sup>/year for Magoye. The demand for water has been increasing over time for various purposes such as irrigation, domestic, urban/rural water supply and livestock. The overall water storage in the sub-catchments showed a negative water balance for the year 2018. The observed and simulated peak streamflow were 8.16 m<sup>3</sup>/s and 7.7 m<sup>3</sup>/s occurring during the month of January and February respectively. The WEAP model performance achieved R<sup>2</sup> of 0.98 during calibration and 0.95 for validation, and an NSE of 0.83 for calibration and 0.85 during validation. The values of objective functions show that the hydrology of the Mutama-Bweengwa, Kasaka and Magoye sub-catchments as predicted by the WEAP model provides satisfactory confidence for prediction of future streamflow and hence projection based on future scenarios.展开更多
Based upon the 1970 aero-photo topographic map, and TM/ETM satellite images taken in 1991 and 2000, the authors artificially interpreted boundaries of lake and glaciers in Nam Co Catchment, and quantified lake-glacier...Based upon the 1970 aero-photo topographic map, and TM/ETM satellite images taken in 1991 and 2000, the authors artificially interpreted boundaries of lake and glaciers in Nam Co Catchment, and quantified lake-glacier area variations in different stages by "integrated method" with the support of GIS. Results show that from 1970 to 2000, lake area increased from 1942.34 km^2 to 1979.79 km^2 at a rate of 1.27 km^2/a, while glacier area decreased from 167.62 km^2 to 141.88 km^2 at a rate of 0.86 km^2/a. The increasing rate of lake in 1991-2000 was 1.76 km^2/a that was faster than 1.03 km^2/a in 1970-1991, while in the same period of time, the shrinking rates of glaciers were 0.97 km^2/a and 0.80 km^2/a respectively. Important factors, relevant to lake and glacier response to the climate, such as air temperature, precipitation, potential evapotranspiration and their values in warm and cold seasons, were discussed. The result suggests that temperature increasing is the main reason for the accelerated melting of glaciers. Lake expansion is mainly induced by the increase of the glacier melting water, increase of precipitation and obvious decrease of potential evapotranspiration. Precipitation, evaporation and their linkages with lake enlargement on regional scale need to be thoroughly studied under the background of global warming and glacier retreating.展开更多
The runoff generated from mountainous regions is recognized as the main water source for inland river basins in arid environments. Thus, the mechanisms by which catchments retain water in soils are to be understood. T...The runoff generated from mountainous regions is recognized as the main water source for inland river basins in arid environments. Thus, the mechanisms by which catchments retain water in soils are to be understood. The water storage capacity of soil depends on its depth and capacity to retain water under gravita- tional drainage and evapotranspiration. The latter can be studied through soil water retention curve (SWRC), which is closely related to soil properties such as texture, bulk density, porosity, soil organic carbon conteMt, and so on. The present study represented SWRCs using HYDRUS-1D. In the present study, we measured pl^ysical and hydraulic properties of soil samples collected from Sabina przewalskii forest (south-facing slope with highest solar radiation), shrubs (west-facing slope with medium radiation), and Picea crassifolia forest (north-facing slope with lowest radiation), and analyzed the differences in soil water storage capacity of these soil samples. Soil water content of those three vegetation covers were also measured to validate the soil water storage capacity and to analyze the relationship between soil organic matter content and soil water content. Statistical analysis showed that different vegetation covers could lead to different soil bulk densities and differences in soil water retention on the three slope aspects. Sand content, porosity, and organic carbon content of the P. crassifolia forest were rela- tively greater compared with those of the S. przewalskii forest and shrubs. However, silt content and soil bulk density were relatively smaller than those in the S. przewalskii forest and shrubs. In addition, there was a sig- nificant linear positive relationship between averaged soil water content and soil organic matter content (P〈0.0001). However, this relationship is not significant in the P. crassifolia forest. As depicted in the SWRCs, the water storage capacity of the soil was 39.14% and 37.38% higher in the P. crassifolia forest than in the S. przewalskii forest and shrubs, respectively, at a similar soil depth.展开更多
The objective of this study is to quantitatively evaluate Tropical Rainfall Measuring Mission (TRMM) data with rain gauge data and further to use this TRMM data to drive a Dis- tributed Time-Variant Gain Model (DT...The objective of this study is to quantitatively evaluate Tropical Rainfall Measuring Mission (TRMM) data with rain gauge data and further to use this TRMM data to drive a Dis- tributed Time-Variant Gain Model (DTVGM) to perform hydrological simulations in the semi-humid Weihe River catchment in China. Before the simulations, a comparison with a 10-year (2001-2010) daily rain gauge data set reveals that, at daily time step, TRMM rainfall data are better at capturing rain occurrence and mean values than rainfall extremes. On a monthly time scale, good linear relationships between TRMM and rain gauge rainfall data are found, with determination coefficients R2 varying between 0.78 and 0.89 for the individual stations. Subsequent simulation results of seven years (2001-2007) of data on daily hydro- logical processes confirm that the DTVGM when calibrated by rain gauge data performs better than when calibrated by TRMM data, but the performance of the simulation driven by TRMM data is better than that driven by gauge data on a monthly time scale. The results thus suggest that TRMM rainfall data are more suitable for monthly streamfiow simulation in the study area, and that, when the effects of recalibration and the results for water balance components are also taken into account, the TRMM 3B42-V7 product has the potential to perform well in similar basins.展开更多
This study deals with temporal trends in the Penman-Monteith reference evapotranspiration estimated from standard meteorological observations, observed pan evaporation, and four related meteorological variables during...This study deals with temporal trends in the Penman-Monteith reference evapotranspiration estimated from standard meteorological observations, observed pan evaporation, and four related meteorological variables during 1970-2000 in the Yangtze River catchment. Relative contributions of the four meteorological variables to changes in the reference evapotranspiration are quantified. The results show that both the reference evapotranspiration and the pan evaporation have significant decreasing trends in the upper, the middle as well as in the whole Changjiang (Yangtze) River catchment at the 5% significance level, while the air temperature shows a significant increasing trend. The decreasing trend detected in the reference evapotranspiration can be attributed to the significant decreasing trends in the net radiation and the wind speed.展开更多
The monthly, seasonal, and annual precipitation trends in the Yangtze river catchment have been detected through analysis of 51 meteorological stations' data between 1950-2002 provided by National Meteorological A...The monthly, seasonal, and annual precipitation trends in the Yangtze river catchment have been detected through analysis of 51 meteorological stations' data between 1950-2002 provided by National Meteorological Administration. Results reveal that: 1) Summer precipitation in the Yangtze river catchment shows significant increasing tendency. The Poyanghu lake basin, Dongtinghu lake basin and Taihu lake basin in the middle and lower reaches are the places showing significant positive trends. Summer precipitation in the middle and lower reaches experienced an abrupt change in the year 1992; 2) The monthly precipitation in months just adjoining to summer shows decreasing tendency in the Yangtze river catchment. The upper and middle reaches in Jialingjiang river basin and Hanshui river basin are the places showing significant negative trends; 3) Extreme precipitation events show an increasing tendency in most places, especially in the middle and lower reaches of the Yangtze river catchment.展开更多
Specific Catchment Area (SCA) is defined as the upstream catchment area of a unit contour. As one of the key terrain parameters, it is widely used in the modeling of hydrology, soil erosion and ecological environmen...Specific Catchment Area (SCA) is defined as the upstream catchment area of a unit contour. As one of the key terrain parameters, it is widely used in the modeling of hydrology, soil erosion and ecological environment. However, SCA value changes significantly at different DEM resolutions, which inevitably affect terrain analysis results. SCA can be described as the ratio of Catchment Area (CA) and DEM grid length. In this paper, the scale effect of CA is firstly investigated. With Jiuyuangou Gully, a watershed about 70 km2 in northern Shaanxi Province of China, as the test area, it is found that the impacts of DEM scale on CA are different in spatial distribution. CA value in upslope location becomes bigger with the decrease of the DEM resolution. When the location is close to downstream areas the impact of DEM scale on CA is gradually weakening. The scale effect of CA can be concluded as a mathematic trend of exponential decline. Then, a downscaling model of SCA is put forward by introducing the scale factor and the location factor. The scaling model can realize the conversion of SCA value from a coarse DEM resolution to a finer one at pixel level. Experiment results show that the downscaled SCA was well revised, and consistent with SCA at the target resolution with respect to the statistical indexes, histogram and spatial distribution. With the advantages of no empirical parameters, the scaling model could be considered as a simple and objective model for SCA scaling in a rugged drainage area.展开更多
Regional land use change is the main cause of the ecosystem carbon storage changes by affecting emission and sink process.However,there has been little research on the influence of land use changes for ecosystem carbo...Regional land use change is the main cause of the ecosystem carbon storage changes by affecting emission and sink process.However,there has been little research on the influence of land use changes for ecosystem carbon storage at both temporal and spatial scales.For this study,the Qihe catchment in the southern part of the Taihang Mountains was taken as an example;its land use change from 2005 to 2015 was analyzed,the Markov-CLUE-S composite model was used to predict land use patterns in 2025 under natural growth,cultivated land protection and ecological conservation scenario,and the land use data were used to evaluate ecosystem carbon storage under different scenarios for the recent 10-year interval and the future based on the carbon storage module of the In VEST model.The results show the following:(1) the ecosystem carbon storage and average carbon density of Qihe catchment were 3.16×107 t and 141.9 t/ha,respectively,and decreased by 0.07×107 t and 2.89 t/ha in the decade evaluated.(2) During 2005–2015,carbon density mainly decreased in low altitude areas.For high altitude area,regions with increased carbon density comprised a similar percentage to regions with decreased carbon density.The significant increase of the construction areas in the middle and lower reaches of Qihe and the degradation of upper reach woodland were core reasons for carbon density decrease.(3) For 2015–2025,under natural growth scenario,carbon storage and carbon density also significantly decrease,mainly due to the decrease of carbon sequestration capacity in low altitude areas;under cultivated land protection scenario,the decrease of carbon storage and carbon density will slow down,mainly due to the increase of carbon sequestration capacity in low altitude areas;under ecological conservation scenario,carbon storage and carbon density significantly increase and reach 3.19×107 t and 143.26 t/ha,respectively,mainly in regions above 1100 m in altitude.Ecological conservation scenario can enhance carbon sequestration capacity but cannot effectively control the reduction of cultivated land areas.Thus,land use planning of research areas should consider both ecological conservation and cultivated land protection scenarios to increase carbon sink and ensure the cultivated land quality and food safety.展开更多
Among the most basic challenges of hydrology are the prediction and quantification of catchment surface runoff. The runoff curve number (CN) is a key factor in determining runoff in the SCS (Soil Conservation Serv...Among the most basic challenges of hydrology are the prediction and quantification of catchment surface runoff. The runoff curve number (CN) is a key factor in determining runoff in the SCS (Soil Conservation Service) based hydrologic modeling method. The traditional SCS-CN method for calculating the composite curve number is very tedious and consumes a major portion of the hydrologic modeling time. Therefore, geographic information systems (G/S) are now being used in combination with the SCS-CN method. This paper assesses the modeling of flow in West Bank catchments using the GIS-based SCS-CN method. The West Bank, Palestine, is characterized as an arid to semi-arid region with annual rainfall depths ranging between 100 mm in the vicinity of the Jordan River to 700 mm in the mountains extending across the central parts of the region. The estimated composite curve number for the entire West Bank is about 50 assuming dry conditions. This paper clearly demonstrates that the integration of GIS with the SCS-CN method provides a powerful tool for estimating runoff volumes in West Bank catchments, representing arid to semi-arid catchments of Palestine.展开更多
In the headwater catchments of the Hun River,Northeast China, secondary forests(SF) have been replaced by plantations since the 1960 s. Concern has been growing over this loss and the decline in water quality caused b...In the headwater catchments of the Hun River,Northeast China, secondary forests(SF) have been replaced by plantations since the 1960 s. Concern has been growing over this loss and the decline in water quality caused by the plantations. To test the effects of plantations on water quality, we selected two separate catchments covered by SF and Pinus koraiensis plantations(KP) to monitor physical and chemical properties of various hydrological variables including throughfall, stemflow,through-litterfall and runoff(flowing out of outlets of the catchments). The physical properties of water declined after water flowed through the two catchments as compared with rainwater. The pH of runoff in both catchments also dramatically decreased. The concentrations of Cl^-, NO_3^- and NH_4^+ in the runoff from the two catchments were similar(concentrations of Cl-and NH_4^+ in both catchments were similar to those in rainwater). Total P concentration in runoff of the SF catchment was higher than that of the KP catchment(P concentrations in both catchments were also higher than in rainwater) because P concentrations in litter and soil of the SF catchment were higher than those in the KP catchment. In summary, the rainwater became acidic in both catchments, but the responses of most water quality variables were similar in the two catchments, suggesting that appropriate ratios of KP in SF are feasible for secondary forest recovery and for preserving water quality(KP did not cause a decline in quality) in the headstream regions in Northeast of China.展开更多
Previous studies on environmental antibiotics resistance genes(ARGs) have focused on the pollution sources such as wastewater treatment plants, aquaculture and livestock farms,etc. Few of them had addressed this iss...Previous studies on environmental antibiotics resistance genes(ARGs) have focused on the pollution sources such as wastewater treatment plants, aquaculture and livestock farms,etc. Few of them had addressed this issue in a regional scale such as river catchment. Hence,the occurrence and abundances of 23 ARGs were investigated in surface water samples collected from 38 sites which located from the river source to estuary of the Beijiang River.Among them, 11 ARGs were frequently detected in this region and 5 ARGs(sul Ⅰ, sul Ⅱ, tet B,tet C, and tet W) were selected for their distribution pattern analysis. The abundances of the selected ARGs were higher in the upstream(8.70 × 10^6 copies/ng DNA) and downstream areas(3.17 × 10^6 copies/ng DNA) than those in the midstream areas(1.23 × 10^6 copies/ng DNA), which was positively correlated to the population density and number of pollution sources. Pollution sources of ARGs along the Beijiang River not only had a great impact on the abundances and diversity, but also on the distribution of specific ARGs in the water samples. Both sul Ⅰ and sul Ⅱ were likely originated from aquaculture farms and animal farms,tet W gene was possibly associated with the mining/metal melting industry and the electric waste disposal and tet C gene was commonly found in the area with multiple pollution sources.However, the abundance of tet B was not particularly related to anthropogenic impacts. These findings highlight the influence of pollution sources and density of population on the distribution and dissemination of ARGs at a regional scale.展开更多
文摘Eritrea faces significant environmental and agricultural challenges due to human activities, rugged terrain, and fluctuating climates like recurrent droughts and erratic rainfall. Desertification, deforestation, and soil erosion are major concerns affecting soil quality, water resources, and vegetation, especially in areas like the Alla catchment. Recent assessments reveal declining vegetation and precipitation levels over four decades, alongside rising temperatures, linked to increased desertification and land degradation driven by climate variations and prolonged droughts. The urgent need for sustainable land management practices is explained by reduced productivity, biodiversity, and ecosystem health. This study focused on modelling land degradation in Eritrea’s Alla catchment using advanced geospatial techniques. Vegetation indices and soil erosion models were used to evaluate critical factors such as rainfall Erosivity, soil erodibility, slope characteristics, and land cover management. The resulting model highlighted varying levels of susceptibility to land degradation, highlighting widespread vulnerability characterized by high and very high susceptibility hotspots. Areas with minimal degradation were found in the northern vegetation-covered regions. Soil loss in the catchment is primarily influenced by inadequate land cover, steep slopes, soil erosion susceptibility, erosive rainfall patterns, and insufficient support practices. The study underscores the urgency of addressing deforestation and unsustainable agricultural practices to mitigate soil erosion. Recommendations include enhancing community capacity for effective land management, promoting climate adaptation strategies, and aligning national efforts with the global Sustainable Development Goals to achieve Land Degradation Neutrality.
基金supported by National Key R&D Program of China(No.2018YFC0407303)“Young Talents”Project of Northeast Agricultural University(No.20QC13)the Natural Science Foundation of Heilongjiang Province of China(No.E2017009)。
文摘Previous works were mainly concentrated on long-term average runoff alterations,and extreme temperatures and watershed conditions are little analyzed.In this study,we collected gauged river flow and meteorological data time series from 1916 to 2015 and 1941 to 2015 across the contiguous United States(CONUS)for 188 catchments to investigate the temporal trends and spatial features of runoff changes at multi-time scales.We also analyzed the relationships between runoff changes and climatic factors.Median descriptive statistics and Budyko coupled climate elasticity methods were used to calculate runoff elasticity in each time scale.The original Mann-Kendall trend test was used to test their trend significance in four time-scale(11,20,40,and 60 a),respectively.The results show that the trend of runoff changes is more significant in high time scales;total changes are heterogeneous over CONUS.After the 1970s,increases of up to 27%decade-1 were mainly concentrated in the mid-northern regions.Maximum temperature and catchment characteristics are vital factors for runoff alteration;runoff changes are independent of rainfall,and wet regions tend to have lower changes.These findings could help develop better regional water resource planning and management.
基金National Key Research and Development Program of China,Grant/Award Number:2023YFC3006702。
文摘To have effective water resource management,the distributed hydrological models are commonly applied for supporting the decision-making processes.Among different inputs,the spatial distributed rainfall plays significant role in those model simulations.Many interpolation methods have been developed for generating distributed rainfall based on measurement samples.However,depending on the catchment characteristics and data availability,the suitable interpolation algorithm is case-dependent.This paper presents one operational approach for determining the resonable interpolation algorithm in a complex large catchment(Var catchment,France).Based on the daily rainfall data(2008–2014)collected from 16 stations in the Var catchment,six different interpolation approaches including:inverse distance weight(IDW),spline,kriging with linear and spherical semi-variogram models and geographically weighted regression considering elevation effects and the combined impacts of elevation and distance to the sea were tested.Integrated the results of statistical and modeling assessments,the 400m resolution distributed rainfall generated by IDW algorithm shows high preference in generating distributed rainfall in the Var catchment.Moreover,the strategy described in the article also shows promising acceptability for other catchments.
文摘Analysis of catchment Land use/Land cover (LULC) change is a vital tool in ensuring sustainable catchment management. The study analyzed land use/land cover changes in the Rwizi catchment, south western Uganda from 1989-2019 and projected the trend by 2040. Landsat images, field observations, key informant interviews and focus group discussions were used to collect data. Changes in cropland, forestland, built up area, grazing land, wetland and open water bodies were analyzed in ArcGIS version 10.2.2 and ERDAS IMAGINE 14 software and a Markov chain model. All the LULC classes increased in area except grazing land. Forest land and builtup area between 2009-2019 increased by 370.03% and 229.53% respectively. Projections revealed an increase in forest land and builtup area by 2030 and only built up area by 2040. LULCC in the catchment results from population pressure, reduced soil fertility and high value of agricultural products.
文摘The hydrologic model HEC-HMS (Hydrologic Engineering Center, Hydrologic Modeling System), used in combination with the Geospatial Hydrologic Modeling Extension, HEC-GeoHMS, is not a site-specific hydrologic model. Although China has seen the applications of many hydrologic and hydraulic models, HEC-HMS is seldom applied in China, and where it is applied, it is not applied holistically. This paper presents a holistic application of HEC-HMS. Its applicability, capability and suitability for flood forecasting in catchments were examined. The DEMs (digital elevation models) of the study areas were processed using HEC-GeoHMS, an ArcView GIS extension for catchment delineation, terrain pre-processing, and basin processing. The model was calibrated and verified using historical observed data. The determination coefficients and coefficients of agreement for all the flood events were above 0.9, and the relative errors in peak discharges were all within the acceptable range.
基金National Natural Science Foundation of China(NSFC),Grant/Award Number:41850410497National Key R&D Program of China,Grant/Award Number:2019YFC1510400+5 种基金National Natural Science Foundation of China(NSFC)Youth Project,Grant/Award Number:51909126University of Nottingham(UNUK)Project,Grant/Award Number:E01200500006Institute of Asia Pacific Studies Research Funded for the Environmental Security and SustainabilityCultural and Creative Industries Research Priority AreasFaculty of Science and Engineering(FTSE)Postgraduate Research Scholarship of University of Nottingham Ningbo ChinaGuizhou Science and Technology Planning of Project,Grant/Award Number:20192879。
文摘Catchment floods are more challenging due to intensive urbanization and climate change.Enlightened by the Low Impact Development(LID),China initiated the Sponge City Program(SCP)to transform Urban Flood Management(UFM)to be more environmentally friendly in 2013.The China National Government(CNG)has subsidized municipal SCP facilities to enhance urban flood resilience while delivering multiple co‐benefits for urban ecosystems and social well‐being.Recent floods at Schleiden(Germany),Arizona State(USA),and Zhengzhou(China)in 2021 reflected the necessity of Catchment Flood Management(CFM)to cover the whole catchment scale.The SCP,designed to handle small‐scale urban pluvial floods,has brought concerns when facing larger‐scale fluvial floods after the Zhengzhou 2021 flood.Indeed,catchment‐scale Natural Flood Management(NFM)can manage fluvial floods while improving flood adaptations sustainably from upstream to downstream reaches.This research develops a new framework named the Sponge Catchment Management Plan(SCMP),including structural and Nonstructural elements.On the structural side,the SCMP framework integrates NFM with the SCP and Grey Engineering(GE)for reducing the fluvial flood discharge peaks in the whole‐catchment scale.On the nonstructural side,the SCMP encourages collaborative governance,revising technical standards,and improving“bottom‐up”participation.This research used Semi‐Structured Interviews(SSIs)and a Focus Group Approach(FGA)to explore 62 professional and Nonprofessional stakeholders’perspectives on the SCMP framework.Some professional respondents did not know much about the NFM and were worried about the effectiveness of this practice.But most interviewees supported the SCMP pilot work and shared the co‐benefits from the NFM.This case study at the SW China,Guiyang,could be a lesson to encourage other Chinese cities further implement SCP to improve catchment‐scale flood resilience.
基金Supported by Major Science and Technology Program for Water Pollution Control and Treatment of China(2012ZX07102-003)~~
文摘[Objective] This study aimed to provide the basis for scientific and rea- sonable application of nitrogen fertilizer and control Of agricultural non-point source pollution in vegetable-growing area at Chaihe catchment of Dianchi Lake. [Method] A pot experiment was carried out to compare the loss of nitrogen via ammonia volatilization and nitrogen leaching after application of biochar coated urea (BCU) and common urea (Urea) with different nitrogen rates (0 mg N/kg soil, 400 mg N/kg soil, 320 mg N/kg soil and 280 mg N/kg soil). [Result] The results indicated that the amount of nitrogen loss was proportional to nitrogen applied rate. Leaching nitrogen was higher than ammonia volatilization. Compare with Urea treatments, ammonia volatilization and nitrogen leaching losses were significantly lower in BCU treatments at the same nitrogen application rate. At the nitrogen application rate of 320 and 280 mg N/kg soil, nitrogen loss, ammonia volatilization and leaching nitrogen was 43.5%-45.5%, 3.7%-21.7% and 49.8%-52.1% lower in BCU treatments than in Ure- a treatments, respectively. [Conclusion] The application of BCU could minimize nitro- gen loss by reducing nitrate leaching loss. It can be concluded that the low nitrogen application rate combined with BCU have a practical influence on controlling the risk of nitrogen pollution in Dianchi Lake.
基金supported by the GLOWA-JR Project of the German Federal Ministry of Education and Research (BMBF)
文摘In arid and semi-arid regions, the availability of adequate water of appropriate quality has become a limiting factor for development. This paper aims to evaluate the potential for rainwater harvesting in the arid to semi-arid Faria Catchment, in the West Bank, Palestine. Under current conditions, the supply-demand gap is increasing due to the increasing water demands of a growing population with hydrologically limited and uncertain supplies. By 2015, the gap is estimated to reach 4.5 x 106 m3. This study used the process-oriented and physically-based TRAIN-ZIN model to evaluate two different rainwater harvesting techniques during two rainfall events. The analysis shows that there is a theoretical potential for harvesting an additional 4 x 106 m3 of surface water over the entire catchment. Thus, it is essential to manage the potential available surface water supplies in the catchment to save water for dry periods when the supply-demand gap is comparatively high. Then a valuable contribution to bridging the supply-demand gap can be made.
基金the National Key Basic Research and Development Program of China(No.2002CB312101 and No.2004CB318206)the Hubei Out standing Young Researchers Foundation of P.R.China(No.2004ABBO18).
文摘The methodology of catchment extraction especially from regular grid digital elevation models(DEMs)is briefly reviewed.Then an efficient algorithm,which combines vector process and traditional neighbourhood raster process,is designed for extracting the catchments and subcatchments from depressionless DEMs.The catchment area of each river in the grid DEM data is identified and delineated,then is divided into subcatchments as required.Compared to traditional processes,this method for identifying catchments focuses on the boundaries instead of the area inside the catchments and avoids the boundary intersection phenomena.Last,the algorithm is tested with a set of DEMs of different sizes,and the result proves that the computation efficiency and accuracy are better than existent methods.
文摘Located in the semi-arid zone of Zambia, the Mutama-Bweengwa, Kasaka and Magoye sub-catchments have witnessed a high demand for water due to increase in population and socio-economic activities putting more pressure on water resources. This study assesses the hydrological components and ascertains the available water resources and unmet demand in the sub-catchments using the Water Evaluation And Planning (WEAP) Model and hydrometeorological data collected between 1951 and 2018. The model was calibrated and validated on 1971-1981 and 2008-2018 data respectively. The results reveal that the sub-catchments have transitioned from positive to negative water balance with -164.295 Mm<sup>3</sup>/year for Mutama-Bweengwa, -19.021 Mm<sup>3</sup>/year for Kasaka and -86.368 Mm<sup>3</sup>/year for Magoye. Evaporation was 1815.259 Mm<sup>3</sup>/year for Mutama-Bweengwa, 1162.655 Mm<sup>3</sup>/year for Kasaka and 1505.664 Mm<sup>3</sup>/year for Magoye. The demand for water has been increasing over time for various purposes such as irrigation, domestic, urban/rural water supply and livestock. The overall water storage in the sub-catchments showed a negative water balance for the year 2018. The observed and simulated peak streamflow were 8.16 m<sup>3</sup>/s and 7.7 m<sup>3</sup>/s occurring during the month of January and February respectively. The WEAP model performance achieved R<sup>2</sup> of 0.98 during calibration and 0.95 for validation, and an NSE of 0.83 for calibration and 0.85 during validation. The values of objective functions show that the hydrology of the Mutama-Bweengwa, Kasaka and Magoye sub-catchments as predicted by the WEAP model provides satisfactory confidence for prediction of future streamflow and hence projection based on future scenarios.
基金National Basic Research Program of China, No.2005CB422002 National Natural Science Foundation of China, No.40331006+2 种基金 No.40571172 Knowledge Innovation Project of the CAS, No.KZCX3-SW-339 The authors would like to thank the National Climatic Data Center of China Meteorological Administration (CMA) for providing climatic data for this study.
文摘Based upon the 1970 aero-photo topographic map, and TM/ETM satellite images taken in 1991 and 2000, the authors artificially interpreted boundaries of lake and glaciers in Nam Co Catchment, and quantified lake-glacier area variations in different stages by "integrated method" with the support of GIS. Results show that from 1970 to 2000, lake area increased from 1942.34 km^2 to 1979.79 km^2 at a rate of 1.27 km^2/a, while glacier area decreased from 167.62 km^2 to 141.88 km^2 at a rate of 0.86 km^2/a. The increasing rate of lake in 1991-2000 was 1.76 km^2/a that was faster than 1.03 km^2/a in 1970-1991, while in the same period of time, the shrinking rates of glaciers were 0.97 km^2/a and 0.80 km^2/a respectively. Important factors, relevant to lake and glacier response to the climate, such as air temperature, precipitation, potential evapotranspiration and their values in warm and cold seasons, were discussed. The result suggests that temperature increasing is the main reason for the accelerated melting of glaciers. Lake expansion is mainly induced by the increase of the glacier melting water, increase of precipitation and obvious decrease of potential evapotranspiration. Precipitation, evaporation and their linkages with lake enlargement on regional scale need to be thoroughly studied under the background of global warming and glacier retreating.
基金sponsored by the National Natural Science Foundation of China (91025015)
文摘The runoff generated from mountainous regions is recognized as the main water source for inland river basins in arid environments. Thus, the mechanisms by which catchments retain water in soils are to be understood. The water storage capacity of soil depends on its depth and capacity to retain water under gravita- tional drainage and evapotranspiration. The latter can be studied through soil water retention curve (SWRC), which is closely related to soil properties such as texture, bulk density, porosity, soil organic carbon conteMt, and so on. The present study represented SWRCs using HYDRUS-1D. In the present study, we measured pl^ysical and hydraulic properties of soil samples collected from Sabina przewalskii forest (south-facing slope with highest solar radiation), shrubs (west-facing slope with medium radiation), and Picea crassifolia forest (north-facing slope with lowest radiation), and analyzed the differences in soil water storage capacity of these soil samples. Soil water content of those three vegetation covers were also measured to validate the soil water storage capacity and to analyze the relationship between soil organic matter content and soil water content. Statistical analysis showed that different vegetation covers could lead to different soil bulk densities and differences in soil water retention on the three slope aspects. Sand content, porosity, and organic carbon content of the P. crassifolia forest were rela- tively greater compared with those of the S. przewalskii forest and shrubs. However, silt content and soil bulk density were relatively smaller than those in the S. przewalskii forest and shrubs. In addition, there was a sig- nificant linear positive relationship between averaged soil water content and soil organic matter content (P〈0.0001). However, this relationship is not significant in the P. crassifolia forest. As depicted in the SWRCs, the water storage capacity of the soil was 39.14% and 37.38% higher in the P. crassifolia forest than in the S. przewalskii forest and shrubs, respectively, at a similar soil depth.
基金National Key Technology P&D Program,No.2012BAB02B00The Fundamental Research Funds for the Central Universities
文摘The objective of this study is to quantitatively evaluate Tropical Rainfall Measuring Mission (TRMM) data with rain gauge data and further to use this TRMM data to drive a Dis- tributed Time-Variant Gain Model (DTVGM) to perform hydrological simulations in the semi-humid Weihe River catchment in China. Before the simulations, a comparison with a 10-year (2001-2010) daily rain gauge data set reveals that, at daily time step, TRMM rainfall data are better at capturing rain occurrence and mean values than rainfall extremes. On a monthly time scale, good linear relationships between TRMM and rain gauge rainfall data are found, with determination coefficients R2 varying between 0.78 and 0.89 for the individual stations. Subsequent simulation results of seven years (2001-2007) of data on daily hydro- logical processes confirm that the DTVGM when calibrated by rain gauge data performs better than when calibrated by TRMM data, but the performance of the simulation driven by TRMM data is better than that driven by gauge data on a monthly time scale. The results thus suggest that TRMM rainfall data are more suitable for monthly streamfiow simulation in the study area, and that, when the effects of recalibration and the results for water balance components are also taken into account, the TRMM 3B42-V7 product has the potential to perform well in similar basins.
文摘This study deals with temporal trends in the Penman-Monteith reference evapotranspiration estimated from standard meteorological observations, observed pan evaporation, and four related meteorological variables during 1970-2000 in the Yangtze River catchment. Relative contributions of the four meteorological variables to changes in the reference evapotranspiration are quantified. The results show that both the reference evapotranspiration and the pan evaporation have significant decreasing trends in the upper, the middle as well as in the whole Changjiang (Yangtze) River catchment at the 5% significance level, while the air temperature shows a significant increasing trend. The decreasing trend detected in the reference evapotranspiration can be attributed to the significant decreasing trends in the net radiation and the wind speed.
文摘The monthly, seasonal, and annual precipitation trends in the Yangtze river catchment have been detected through analysis of 51 meteorological stations' data between 1950-2002 provided by National Meteorological Administration. Results reveal that: 1) Summer precipitation in the Yangtze river catchment shows significant increasing tendency. The Poyanghu lake basin, Dongtinghu lake basin and Taihu lake basin in the middle and lower reaches are the places showing significant positive trends. Summer precipitation in the middle and lower reaches experienced an abrupt change in the year 1992; 2) The monthly precipitation in months just adjoining to summer shows decreasing tendency in the Yangtze river catchment. The upper and middle reaches in Jialingjiang river basin and Hanshui river basin are the places showing significant negative trends; 3) Extreme precipitation events show an increasing tendency in most places, especially in the middle and lower reaches of the Yangtze river catchment.
基金Key Project of National Natural Science Foundation of China No.40930531 National Youth Science Foun-dation of China No.40901185 Specialized Research Fund for the Doctoral Program of Higher Education No.20093207120008
文摘Specific Catchment Area (SCA) is defined as the upstream catchment area of a unit contour. As one of the key terrain parameters, it is widely used in the modeling of hydrology, soil erosion and ecological environment. However, SCA value changes significantly at different DEM resolutions, which inevitably affect terrain analysis results. SCA can be described as the ratio of Catchment Area (CA) and DEM grid length. In this paper, the scale effect of CA is firstly investigated. With Jiuyuangou Gully, a watershed about 70 km2 in northern Shaanxi Province of China, as the test area, it is found that the impacts of DEM scale on CA are different in spatial distribution. CA value in upslope location becomes bigger with the decrease of the DEM resolution. When the location is close to downstream areas the impact of DEM scale on CA is gradually weakening. The scale effect of CA can be concluded as a mathematic trend of exponential decline. Then, a downscaling model of SCA is put forward by introducing the scale factor and the location factor. The scaling model can realize the conversion of SCA value from a coarse DEM resolution to a finer one at pixel level. Experiment results show that the downscaled SCA was well revised, and consistent with SCA at the target resolution with respect to the statistical indexes, histogram and spatial distribution. With the advantages of no empirical parameters, the scaling model could be considered as a simple and objective model for SCA scaling in a rugged drainage area.
基金National Natural Science Foundation of China,No.41671090National Basic Research Program(973 Program),No.2015CB452702。
文摘Regional land use change is the main cause of the ecosystem carbon storage changes by affecting emission and sink process.However,there has been little research on the influence of land use changes for ecosystem carbon storage at both temporal and spatial scales.For this study,the Qihe catchment in the southern part of the Taihang Mountains was taken as an example;its land use change from 2005 to 2015 was analyzed,the Markov-CLUE-S composite model was used to predict land use patterns in 2025 under natural growth,cultivated land protection and ecological conservation scenario,and the land use data were used to evaluate ecosystem carbon storage under different scenarios for the recent 10-year interval and the future based on the carbon storage module of the In VEST model.The results show the following:(1) the ecosystem carbon storage and average carbon density of Qihe catchment were 3.16×107 t and 141.9 t/ha,respectively,and decreased by 0.07×107 t and 2.89 t/ha in the decade evaluated.(2) During 2005–2015,carbon density mainly decreased in low altitude areas.For high altitude area,regions with increased carbon density comprised a similar percentage to regions with decreased carbon density.The significant increase of the construction areas in the middle and lower reaches of Qihe and the degradation of upper reach woodland were core reasons for carbon density decrease.(3) For 2015–2025,under natural growth scenario,carbon storage and carbon density also significantly decrease,mainly due to the decrease of carbon sequestration capacity in low altitude areas;under cultivated land protection scenario,the decrease of carbon storage and carbon density will slow down,mainly due to the increase of carbon sequestration capacity in low altitude areas;under ecological conservation scenario,carbon storage and carbon density significantly increase and reach 3.19×107 t and 143.26 t/ha,respectively,mainly in regions above 1100 m in altitude.Ecological conservation scenario can enhance carbon sequestration capacity but cannot effectively control the reduction of cultivated land areas.Thus,land use planning of research areas should consider both ecological conservation and cultivated land protection scenarios to increase carbon sink and ensure the cultivated land quality and food safety.
基金supported by the GLOWA-JR Project of the German Federal Ministry of Education and Research (BMBF)
文摘Among the most basic challenges of hydrology are the prediction and quantification of catchment surface runoff. The runoff curve number (CN) is a key factor in determining runoff in the SCS (Soil Conservation Service) based hydrologic modeling method. The traditional SCS-CN method for calculating the composite curve number is very tedious and consumes a major portion of the hydrologic modeling time. Therefore, geographic information systems (G/S) are now being used in combination with the SCS-CN method. This paper assesses the modeling of flow in West Bank catchments using the GIS-based SCS-CN method. The West Bank, Palestine, is characterized as an arid to semi-arid region with annual rainfall depths ranging between 100 mm in the vicinity of the Jordan River to 700 mm in the mountains extending across the central parts of the region. The estimated composite curve number for the entire West Bank is about 50 assuming dry conditions. This paper clearly demonstrates that the integration of GIS with the SCS-CN method provides a powerful tool for estimating runoff volumes in West Bank catchments, representing arid to semi-arid catchments of Palestine.
基金supported by Grants from the Major Science and Technology Program for Water Pollution Control and Treatment(2012ZX07202-008)Key Research Program of Frontier Sciences,Chinese Academy of Sciences(QYZDJ-SSWDQC027)
文摘In the headwater catchments of the Hun River,Northeast China, secondary forests(SF) have been replaced by plantations since the 1960 s. Concern has been growing over this loss and the decline in water quality caused by the plantations. To test the effects of plantations on water quality, we selected two separate catchments covered by SF and Pinus koraiensis plantations(KP) to monitor physical and chemical properties of various hydrological variables including throughfall, stemflow,through-litterfall and runoff(flowing out of outlets of the catchments). The physical properties of water declined after water flowed through the two catchments as compared with rainwater. The pH of runoff in both catchments also dramatically decreased. The concentrations of Cl^-, NO_3^- and NH_4^+ in the runoff from the two catchments were similar(concentrations of Cl-and NH_4^+ in both catchments were similar to those in rainwater). Total P concentration in runoff of the SF catchment was higher than that of the KP catchment(P concentrations in both catchments were also higher than in rainwater) because P concentrations in litter and soil of the SF catchment were higher than those in the KP catchment. In summary, the rainwater became acidic in both catchments, but the responses of most water quality variables were similar in the two catchments, suggesting that appropriate ratios of KP in SF are feasible for secondary forest recovery and for preserving water quality(KP did not cause a decline in quality) in the headstream regions in Northeast of China.
基金supported by the National Natural Science Foundation of China(Nos.21177162 and 51579253)the Commodity Inspection and Quarantine in Nanhai,Foshan,for their assistance in the determinations of antibiotics in this project
文摘Previous studies on environmental antibiotics resistance genes(ARGs) have focused on the pollution sources such as wastewater treatment plants, aquaculture and livestock farms,etc. Few of them had addressed this issue in a regional scale such as river catchment. Hence,the occurrence and abundances of 23 ARGs were investigated in surface water samples collected from 38 sites which located from the river source to estuary of the Beijiang River.Among them, 11 ARGs were frequently detected in this region and 5 ARGs(sul Ⅰ, sul Ⅱ, tet B,tet C, and tet W) were selected for their distribution pattern analysis. The abundances of the selected ARGs were higher in the upstream(8.70 × 10^6 copies/ng DNA) and downstream areas(3.17 × 10^6 copies/ng DNA) than those in the midstream areas(1.23 × 10^6 copies/ng DNA), which was positively correlated to the population density and number of pollution sources. Pollution sources of ARGs along the Beijiang River not only had a great impact on the abundances and diversity, but also on the distribution of specific ARGs in the water samples. Both sul Ⅰ and sul Ⅱ were likely originated from aquaculture farms and animal farms,tet W gene was possibly associated with the mining/metal melting industry and the electric waste disposal and tet C gene was commonly found in the area with multiple pollution sources.However, the abundance of tet B was not particularly related to anthropogenic impacts. These findings highlight the influence of pollution sources and density of population on the distribution and dissemination of ARGs at a regional scale.