The datasets of the five Land-offline Model Intercomparison Project(LMIP)experiments using the Chinese Academy of Sciences Land Surface Model(CAS-LSM)of CAS Flexible Global-Ocean-Atmosphere-Land System Model Grid-poin...The datasets of the five Land-offline Model Intercomparison Project(LMIP)experiments using the Chinese Academy of Sciences Land Surface Model(CAS-LSM)of CAS Flexible Global-Ocean-Atmosphere-Land System Model Grid-point version 3(CAS FGOALS-g3)are presented in this study.These experiments were forced by five global meteorological forcing datasets,which contributed to the framework of the Land Surface Snow and Soil Moisture Model Intercomparison Project(LS3MIP)of CMIP6.These datasets have been released on the Earth System Grid Federation node.In this paper,the basic descriptions of the CAS-LSM and the five LMIP experiments are shown.The performance of the soil moisture,snow,and land-atmosphere energy fluxes was preliminarily validated using satellite-based observations.Results show that their mean states,spatial patterns,and seasonal variations can be reproduced well by the five LMIP simulations.It suggests that these datasets can be used to investigate the evolutionary mechanisms of the global water and energy cycles during the past century.展开更多
The active layer thickness(ALT)in permafrost regions,which affects water and energy exchange,is a key variable for assessing hydrological processes,cold-region engineering,and climate change.In this study,the authors ...The active layer thickness(ALT)in permafrost regions,which affects water and energy exchange,is a key variable for assessing hydrological processes,cold-region engineering,and climate change.In this study,the authors analyzed the variation trends and relative changes of simulated ALTs using the Chinese Academy of Sciences Land Surface Model(CAS-LSM)and the Chinese Academy of Sciences Flexible Global Ocean-Atmosphere-Land System Model,gridpoint version 3(CAS-FGOALS-g3).Firstly,the simulated ALTs produced by CAS-LSM were shown to be reasonable by comparing them with Circumpolar Active Layer Monitoring observations.Then,the authors simulated the ALTs from 1979 to 2014,and their relative changes across the entire Northern Hemisphere from 2015 to 2100.It is shown that the ALTs have an increasing trend.From 1979 to 2014,the average ALTs and their variation trends over all permafrost regions were 1.08 m and 0.33 cm yr-1,respectively.The relative changes of the ALTs ranged from 1%to 58%,and the average relative change was 10.9%.The variation trends of the ALTs were basically consistent with the variation trends of the 2-m air temperature.By 2100,the relative changes of ALTs are predicted to be 10.3%,14.6%,30.1%,and 51%,respectively,under the four considered hypothetical climate scenarios(SSP-2.6,SSP2-4.5,SSP3-7.0,and SSP5-8.5).This study indicates that climate change has a substantial impact on ALTs,and our results can help in understanding the responses of the ALTs of permafrost due to climate change.展开更多
文摘The datasets of the five Land-offline Model Intercomparison Project(LMIP)experiments using the Chinese Academy of Sciences Land Surface Model(CAS-LSM)of CAS Flexible Global-Ocean-Atmosphere-Land System Model Grid-point version 3(CAS FGOALS-g3)are presented in this study.These experiments were forced by five global meteorological forcing datasets,which contributed to the framework of the Land Surface Snow and Soil Moisture Model Intercomparison Project(LS3MIP)of CMIP6.These datasets have been released on the Earth System Grid Federation node.In this paper,the basic descriptions of the CAS-LSM and the five LMIP experiments are shown.The performance of the soil moisture,snow,and land-atmosphere energy fluxes was preliminarily validated using satellite-based observations.Results show that their mean states,spatial patterns,and seasonal variations can be reproduced well by the five LMIP simulations.It suggests that these datasets can be used to investigate the evolutionary mechanisms of the global water and energy cycles during the past century.
基金supported by the National Key R&D Program of China[grant number 2018YFC1506602]the Key Research Program of Frontier Sciences,CAS[grant number QYZDY-SSW-DQC012]the National Natural Science Foundation of China[grant number 41830967]。
文摘The active layer thickness(ALT)in permafrost regions,which affects water and energy exchange,is a key variable for assessing hydrological processes,cold-region engineering,and climate change.In this study,the authors analyzed the variation trends and relative changes of simulated ALTs using the Chinese Academy of Sciences Land Surface Model(CAS-LSM)and the Chinese Academy of Sciences Flexible Global Ocean-Atmosphere-Land System Model,gridpoint version 3(CAS-FGOALS-g3).Firstly,the simulated ALTs produced by CAS-LSM were shown to be reasonable by comparing them with Circumpolar Active Layer Monitoring observations.Then,the authors simulated the ALTs from 1979 to 2014,and their relative changes across the entire Northern Hemisphere from 2015 to 2100.It is shown that the ALTs have an increasing trend.From 1979 to 2014,the average ALTs and their variation trends over all permafrost regions were 1.08 m and 0.33 cm yr-1,respectively.The relative changes of the ALTs ranged from 1%to 58%,and the average relative change was 10.9%.The variation trends of the ALTs were basically consistent with the variation trends of the 2-m air temperature.By 2100,the relative changes of ALTs are predicted to be 10.3%,14.6%,30.1%,and 51%,respectively,under the four considered hypothetical climate scenarios(SSP-2.6,SSP2-4.5,SSP3-7.0,and SSP5-8.5).This study indicates that climate change has a substantial impact on ALTs,and our results can help in understanding the responses of the ALTs of permafrost due to climate change.