Determining the pattern and mechanisms of species richness distribution at large spatial scales has been one of the core objectives in the field of ecology and biogeography.Although climate and soil effects on terrest...Determining the pattern and mechanisms of species richness distribution at large spatial scales has been one of the core objectives in the field of ecology and biogeography.Although climate and soil effects on terrestrial ecosystems are well-documented,largescale patterns in wetlands are poorly understood due to their unique hydrological processes and vegetation types.Here,we explored the pattern of plant species richness of Carex-dominated wetlands and its influencing mechanism in China based on a national field vegetation survey at 120 sites.Results showed that the community type and plant species richness of Carex-dominated wetlands differed significantly among different climate zones in China.The hierarchical partitioning analysis showed that community type and environmental context(spatial location,water regime,climate and soil conditions)together explained 41%of the variations in plant species richness,and community type had the greatest influence on species richness.Partial Least Squares Path Modeling result showed that plant species richness was directly affected by community type,climate factors,soil properties and water regime.Soil properties and water regime also indirectly affected plant species richness by directly affecting community type.These findings help us understand the pattern of plant diversity distribution in wetlands at large spatial scales and design effective conservation strategies for these valuable sedge meadow wetlands in a changing environment.展开更多
Seasonal dynamics of above- and belowground biomass and nutrient characteristics (nitrogen, carbon, and phosphorus) of Carex lasiocarpa were investigated in the typical wetland of Sanjiang Plain, China from May 2007...Seasonal dynamics of above- and belowground biomass and nutrient characteristics (nitrogen, carbon, and phosphorus) of Carex lasiocarpa were investigated in the typical wetland of Sanjiang Plain, China from May 2007 to September 2008. The results show that the changes of aboveground biomass during the growing season are best described by the twice function curve model, whereas the changes of belowground biomass follow the exponential increase curve model. Both the organic carbon contents in the above- and belowground plant parts show significant positive linear correlations with the growing time, and the coefficients R2 are 0.983 and 0.746, respectively. The carbon accu-mulations of the above- and belowground plant parts during the growing season show the same dynamics as those of the biomass. However, the nitrogen contents and accumulation in C. lasiocarpa aboveground and belowground parts show exponential increase during the growing season. The dynamics of C. lasiocarpa phosphorus contents follows the twice function curve model, whereas the accumulation of phosphorus shows the linear increase. The ratios of C/N in different parts of C. lasiocarpa fit the negative linear relations with total nitrogen content in the growing season. Moreover, the ratios of C/P in C. lasiocarpa plant also fit the negative linear relations with total phosphorus content. The results show that nitrogen is the primary limiting nutrient for C. lasiocarpa growth as compared with carbon and phosphorus.展开更多
Carex rigescens (Franch.) V. Krecz is a wild turfgrass perennial species in the Carex genus that is widely distributed in salinised areas of northern China. To investigate genome-wide salt-response gene networks in ...Carex rigescens (Franch.) V. Krecz is a wild turfgrass perennial species in the Carex genus that is widely distributed in salinised areas of northern China. To investigate genome-wide salt-response gene networks in C. rigescens, transcriptome analysis using high-throughput RNA sequencing on C. rigescens exposed to a 0.4% salt treatment (Cr_Salt) was compared to a non-salt control (Cr_Ctrl). In total, 57 742 546 and 47 063 488 clean reads were obtained from the Cr Ctrl and Cr Salt treatments, respectively. Additionally, 21 954 unigenes were found and annotated using multiple databases. Among these unigenes, 34 were found to respond to salt stress at a statistically significant level with 6 genes up-regulated and 28 downregulated. Specifically, genes encoding an EF-hand domain, ZFP and AP2 were responsive to salt stress, highlighting their roles in future research regarding salt tolerance in C. rigescens and other plants. According to our quantitative RT-PCR results, the expression pattern of all detected differentially expressed genes were consistent with the RNA-seq results. Furthermore, we identified 11 643 simple sequence repeats (SSRs) from the unigenes. A total of 144 amplified successfully in the C. rigescens cultivar LOping 1, and 69 of them reflected polymorphisms between the two genotypes tested. This is the first genome-wide transcriptome study of C. rigescens in both salt-responsive gene investigation and SSR marker exploration. Our results provide further insights into genome annotation, novel gene discovery, molecular breeding and comparative genomics in C. rigescens and related grass species.展开更多
Carex tussock plays an important role in supporting biodiversity and carbon sequestration of wetland ecosystems,while it is highly threatened by climate change and anthropogenic activities.Therefore,identifying the po...Carex tussock plays an important role in supporting biodiversity and carbon sequestration of wetland ecosystems,while it is highly threatened by climate change and anthropogenic activities.Therefore,identifying the potential distribution patterns of Carex tussocks wetland is vital for their targeted conservation and restoration.The current and future(2050s and 2070s)potential habitats distribution of Carex tussocks in Northeast China were predicted using a Maximum Entropy(Maxent)model based on 68 current data of Carex tussock distributions and three groups of environmental variables(bioclimate,topography,soil properties).Results show that isothermality,seasonal precipitation variability and altitude are important factors that determine the distribution of Carex tussock.The high suitable habitat of Carex tussock is about 5.7×10^(4)km^(2) and mainly distributed in the Sanjiang Plain,Songnen Plain,Changbai Mountains and Da Hinggan Mountains.The area of stable habitats of Carex tussock is significantly higher than the lost and expanded habitats in the future climate scenarios,and the unsuitable habitats mainly occur in Da Hinggan Mountains,Xiao Hinggan Mountains and Changbai Mountains.Overall,Carex tussock wetlands at high altitude and high latitude are more sensitive to climate change,and more attention should be invested in high latitude and high altitude areas.展开更多
基金Under the auspices of National Key Research and Development Program of China(No.2023YFF1305800)National Natural Science Foundation of China(No.42494820,U23A2004,42077070)Youth Innovation Promotion Association Chinese Academy of Sciences(No.2019234,2020237)。
文摘Determining the pattern and mechanisms of species richness distribution at large spatial scales has been one of the core objectives in the field of ecology and biogeography.Although climate and soil effects on terrestrial ecosystems are well-documented,largescale patterns in wetlands are poorly understood due to their unique hydrological processes and vegetation types.Here,we explored the pattern of plant species richness of Carex-dominated wetlands and its influencing mechanism in China based on a national field vegetation survey at 120 sites.Results showed that the community type and plant species richness of Carex-dominated wetlands differed significantly among different climate zones in China.The hierarchical partitioning analysis showed that community type and environmental context(spatial location,water regime,climate and soil conditions)together explained 41%of the variations in plant species richness,and community type had the greatest influence on species richness.Partial Least Squares Path Modeling result showed that plant species richness was directly affected by community type,climate factors,soil properties and water regime.Soil properties and water regime also indirectly affected plant species richness by directly affecting community type.These findings help us understand the pattern of plant diversity distribution in wetlands at large spatial scales and design effective conservation strategies for these valuable sedge meadow wetlands in a changing environment.
基金This research was supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (No.KZCX2–YW–309)the Major State Basic Research Development Program of China (973 Program No. 2004CB418507)
文摘Seasonal dynamics of above- and belowground biomass and nutrient characteristics (nitrogen, carbon, and phosphorus) of Carex lasiocarpa were investigated in the typical wetland of Sanjiang Plain, China from May 2007 to September 2008. The results show that the changes of aboveground biomass during the growing season are best described by the twice function curve model, whereas the changes of belowground biomass follow the exponential increase curve model. Both the organic carbon contents in the above- and belowground plant parts show significant positive linear correlations with the growing time, and the coefficients R2 are 0.983 and 0.746, respectively. The carbon accu-mulations of the above- and belowground plant parts during the growing season show the same dynamics as those of the biomass. However, the nitrogen contents and accumulation in C. lasiocarpa aboveground and belowground parts show exponential increase during the growing season. The dynamics of C. lasiocarpa phosphorus contents follows the twice function curve model, whereas the accumulation of phosphorus shows the linear increase. The ratios of C/N in different parts of C. lasiocarpa fit the negative linear relations with total nitrogen content in the growing season. Moreover, the ratios of C/P in C. lasiocarpa plant also fit the negative linear relations with total phosphorus content. The results show that nitrogen is the primary limiting nutrient for C. lasiocarpa growth as compared with carbon and phosphorus.
基金supported by the National Natural Science Foundation of China (31472139)
文摘Carex rigescens (Franch.) V. Krecz is a wild turfgrass perennial species in the Carex genus that is widely distributed in salinised areas of northern China. To investigate genome-wide salt-response gene networks in C. rigescens, transcriptome analysis using high-throughput RNA sequencing on C. rigescens exposed to a 0.4% salt treatment (Cr_Salt) was compared to a non-salt control (Cr_Ctrl). In total, 57 742 546 and 47 063 488 clean reads were obtained from the Cr Ctrl and Cr Salt treatments, respectively. Additionally, 21 954 unigenes were found and annotated using multiple databases. Among these unigenes, 34 were found to respond to salt stress at a statistically significant level with 6 genes up-regulated and 28 downregulated. Specifically, genes encoding an EF-hand domain, ZFP and AP2 were responsive to salt stress, highlighting their roles in future research regarding salt tolerance in C. rigescens and other plants. According to our quantitative RT-PCR results, the expression pattern of all detected differentially expressed genes were consistent with the RNA-seq results. Furthermore, we identified 11 643 simple sequence repeats (SSRs) from the unigenes. A total of 144 amplified successfully in the C. rigescens cultivar LOping 1, and 69 of them reflected polymorphisms between the two genotypes tested. This is the first genome-wide transcriptome study of C. rigescens in both salt-responsive gene investigation and SSR marker exploration. Our results provide further insights into genome annotation, novel gene discovery, molecular breeding and comparative genomics in C. rigescens and related grass species.
基金Under the auspices of the National Natural Science Foundation of China(No.41871101)the Science and Technology Development Project of Jilin Province(No.20190201115JC)the‘Strategic Priority Research Program’of the Chinese Academy of Sciences(No.XDA23060402)。
文摘Carex tussock plays an important role in supporting biodiversity and carbon sequestration of wetland ecosystems,while it is highly threatened by climate change and anthropogenic activities.Therefore,identifying the potential distribution patterns of Carex tussocks wetland is vital for their targeted conservation and restoration.The current and future(2050s and 2070s)potential habitats distribution of Carex tussocks in Northeast China were predicted using a Maximum Entropy(Maxent)model based on 68 current data of Carex tussock distributions and three groups of environmental variables(bioclimate,topography,soil properties).Results show that isothermality,seasonal precipitation variability and altitude are important factors that determine the distribution of Carex tussock.The high suitable habitat of Carex tussock is about 5.7×10^(4)km^(2) and mainly distributed in the Sanjiang Plain,Songnen Plain,Changbai Mountains and Da Hinggan Mountains.The area of stable habitats of Carex tussock is significantly higher than the lost and expanded habitats in the future climate scenarios,and the unsuitable habitats mainly occur in Da Hinggan Mountains,Xiao Hinggan Mountains and Changbai Mountains.Overall,Carex tussock wetlands at high altitude and high latitude are more sensitive to climate change,and more attention should be invested in high latitude and high altitude areas.