The recovery of rare earths from industrial rare earth leaching solution is typically achieved through the ammonium carbonate precipitation method,which presents challenges in terms of prolonged production cycle and a...The recovery of rare earths from industrial rare earth leaching solution is typically achieved through the ammonium carbonate precipitation method,which presents challenges in terms of prolonged production cycle and ammonia nitrogen pollution.The present study explored the synthesis of crystalline yttrium carbonate in a sodium carbonate system,employing a conventional mother liquor derived from yttrium chloride.The growth of yttrium carbonate was explored through the lens of density functional theory(DFT)calculations,unveiling a novel perspective on its formation mechanism.The synthesized yttrium carbonate demonstrates enhanced crystallinity,with a D50value of 19.75μm achieved under reaction conditions comprising a temperature of 60℃,stirring rate of 200 r/min,feeding rate of 4 mL/min,and aging time of 30 h.The molar ratio for precipitation is set at 1.6:1.The morphology of yttrium carbonate undergoes a transition from needle-like structures to sheet-like formations,ultimately culminating in the formation of spherical aggregates.The variation in surface energy among distinct crystal planes and CO_(3)^(2-)configurations within crystal cells accounts for this phenomenon.The DFT calculations unveil a progression of growth and trans formation in yttrium carbonate,commencing from a one-dimensional configuration and culminating in a multidimensional morphology.展开更多
To solve the problem of ammonia wastewater pollution generated from preparing rare earth carbonate using the ammonium bicarbonate precipitation method,an eco-friendly precipitant,magnesium bicarbonate,was used to prep...To solve the problem of ammonia wastewater pollution generated from preparing rare earth carbonate using the ammonium bicarbonate precipitation method,an eco-friendly precipitant,magnesium bicarbonate,was used to prepare lanthanum cerium carbonate.The lanthanum cerium sulfate solution obtained from the smelting and separation of Baotou mixed rare earth ore was used as the raw material.The influence of pH on the content of impurities,including SO^(2-)_(4)and magnesium,and the existing states of SO^(2-)_(4)n lanthanum cerium carbonate products,as well as the thermal decomposition behavior of the products,were deeply explored.SO^(2-)_(4)mainly exists in the form of rare earth sulfate complex salts in lanthanum cerium carbonate products.The fo rmation of the salts can be effectively avoided by adjusting the pH of the precipitation process.Then the content of SO^(2-)_(4)in the product is controlled.When the pH ranges from 6.00 to 7.12,the content of SO^(2-)_(4)in the product ranges from 0.42 wt%to 0.99 wt%.The content of MgO is lower than 0.04 wt%.Both contents meet the requirements of the national standard GB/T 16479-2020.In this study,lanthanum cerium carbonate products with low-content SO^(2-)_(4)were prepared.In addition,the existing states of SO^(2-)_(4)in the products are revealed.The research provides a new method for controlling the impurity content in preparing lanthanum cerium carbonate.展开更多
Transition metal-carbonate interfaces often act as active sites in heterogeneous catalytic reactions.The interface between transition metal and metal carbonate exhibits a dynamic equilibrium during the CO_(2)hydrogena...Transition metal-carbonate interfaces often act as active sites in heterogeneous catalytic reactions.The interface between transition metal and metal carbonate exhibits a dynamic equilibrium during the CO_(2)hydrogenation reaction,involving surface carbonate hydrogenation and CO_(2)chemisorption.Nonetheless,there have been few reports on engineering the activity of the interface between transition metal and alkaline earth metal carbonate for catalytic CO_(2)conversion.This work demonstrated that the incorporation of CaH_(2)in Ni/CaCO_(3)enhances the CO_(2)methanation activity of the catalysts.The CO_(2)conversion for Ni/CaH_(2)-CaCO_(3)reached 68.5%at 400°C,which was much higher than that of the Ni/CaCO_(3)(31.6%) and Ni/CaH_(2)-CaO (42.4%) catalysts.Furthermore,the Ni/CaH_(2)-CaCO_(3)catalysts remained stable during the stability test for 24 h at 400°C and 8 bar.Our research revealed that CaH_(2)played a crucial role in promoting the activity of the Ni-carbonate interface for CO_(2)methanation.CaH_(2)could modify the electronic structure of Ni and tune the structural properties of CaCO_(3)to generate medium basic sites (OH groups),which are favorable for the activation of H2and CO_(2).In-situ Fourier transform infrared spectroscopy (FTIR) analysis combined with density functional theory calculations demonstrated that CO_(2)activation occurs at the hydroxyl group (OH) on the CaH_(2)-modified Ni-carbonate surface,leading to the formation of CO_(3)H*species.Furthermore,our study has confirmed that CO_(2)methanation over the Ni/CaH_(2)-CaCO_(3)catalysts proceeds via the formate pathway.展开更多
Present industrial decarbonization technologies require an active CO_(2)-concentration system,often based on lime reaction or amine binding reactions,which is energy intensive and carries a high CO_(2)-footprint.Here ...Present industrial decarbonization technologies require an active CO_(2)-concentration system,often based on lime reaction or amine binding reactions,which is energy intensive and carries a high CO_(2)-footprint.Here instead,an effective process without active CO_(2)concentration is demonstrated in a new process-termed IC2CNT(Insulationdiffusion facilitated CO_(2) to Carbon Nanomaterial Technology)decarbonization process.Molten carbonates such as Li_(2)CO_(3)(mp 723℃)are highly insoluble to industrial feed gas principal components(N2,O_(2),and H2O).However,CO_(2) can readily dissolve and react in molten carbonates.We have recently characterized high CO_(2) diffusion rates through porous aluminosilicate and calcium-magnesium silicate thermal insulations.Here,the CO_(2) in ambient feed gas passes through these membranes into molten Li_(2)CO_(3).The membrane also concurrently insulates the feed gas from the hot molten carbonate chamber,obviating the need to heat the(non-CO_(2))majority of the feed gas to high temperature.In this insulation facilitated decarbonization process CO_(2)is split by electrolysis in the molten carbonate producing sequestered,high-purity carbon nanomaterials(such as CNTs)and O_(2).展开更多
Magnesium alloy is a promising biodegradable metal material for hard tissue engineering.However,its high corrosion rate limits its application.In our previous study,we biomimetically deposited a calcium carbonate coat...Magnesium alloy is a promising biodegradable metal material for hard tissue engineering.However,its high corrosion rate limits its application.In our previous study,we biomimetically deposited a calcium carbonate coating on the surface of magnesium alloy using siloxane induction.This calcium carbonate coating demonstrated excellent in vitro biocompatibility and provided partial protection for the magnesium alloy substrate.In this study,we further enhanced the corrosion resistance of the calcium carbonate coating by treating it with stearic acid and its derivative,sodium stearate.Electrochemical corrosion tests revealed that the sodium stearate-treated calcium carbonate coating reduced the corrosion rate by two orders of magnitude.Additionally,in vitro biocompatibility assessments showed that while the biocompatibility of the sodium stearate-treated coating was slightly reduced,it remained acceptable compared to the magnesium substrate.This study builds on our previous work and offers a promising reinforcement strategy for degradable magnesium alloys in medical applications.展开更多
Burial dissolution is a critical diagenetic process influencing ultra-deep carbonate reservoir development and preservation.Artificial carbonate samples with different internal structures were prepared,and high-temper...Burial dissolution is a critical diagenetic process influencing ultra-deep carbonate reservoir development and preservation.Artificial carbonate samples with different internal structures were prepared,and high-temperature and highpressure dissolution kinetic simulations were conducted.The results demonstrate that the intensity of burial dissolution is controlled by temperature and pressure,while tectonic-fluid activity influences the development pattern of burial dissolution,ultimately determining the direction of its differential modification.Extensive burial dissolution is likely to occur primarily at relatively shallow depths,significantly influencing reservoir formation,preservation,modification,and adjustment.The development of faults facilitates the maintenance of the intensity of burial dissolution.The maximum intensity of burial dissolution occurs at the tips and overlap zones of faults and intersections of multiple faults.The larger the scale of the faults,the more conducive it is to the development of burial dissolution.Burial dissolution fosters the formation of fault networks characterized by enhanced reservoir capacity and permeability.Burial dissolution controlled by episodic tectonic-fluid activity is a plausible explanation for forming the Tarim Basin's ultra-deep fault-controlled“stringbead-like”reservoirs.展开更多
Indoles and their derivatives are an important class of N-heterocycles.In this article,iridium-catalyzed annulation reactions of N-aryl-2-aminopyridines to synthesize indole derivatives are designed and developed,whic...Indoles and their derivatives are an important class of N-heterocycles.In this article,iridium-catalyzed annulation reactions of N-aryl-2-aminopyridines to synthesize indole derivatives are designed and developed,which utilize vinylene carbonate as a new C2 synthon.This protocol is expected to provide a facile and useful access to various indole derivatives.展开更多
Transformation of urea and glycerol to glycerol carbonate is an environmental friendly and economical process.Catalysts play an indispensable role in the process.Although many catalysts have been developed,the perform...Transformation of urea and glycerol to glycerol carbonate is an environmental friendly and economical process.Catalysts play an indispensable role in the process.Although many catalysts have been developed,the performance of the catalysts still cannot meet the needs of industrialization.In this paper,research progress of the homogeneous and heterogeneous catalysts of the reaction over the past 20 years were reviewed systematically.According to the types and active centers of catalysts,the catalysts were classified systematically and analyzed in detail.The typical reaction mechanisms were also summarized.The research and development direction of catalysts is made more explicit through systematic classification and mechanism analysis.The article reveals more novel catalysts have been designed and used for the reaction,such as mixed metal oxides with special structures,solid wastes and non-metallic materials.This work summarized the current state of research and prospected possible routes for design of novel catalysts.It is hoped that this review can provide some references for developing efficient catalysts.展开更多
The opening of the Central South Atlantic and the consequent formation of the eastern Brazilian continental margin was marked by a complex history of mafic magmatism,carbonate sedimentation,and deposition of a thick s...The opening of the Central South Atlantic and the consequent formation of the eastern Brazilian continental margin was marked by a complex history of mafic magmatism,carbonate sedimentation,and deposition of a thick salt layer.The carbonates underlying the salt layer(pre-salt carbonates)were formed in restricted lacustrine basins.Here,the timing and fluid sources of deposition,diagenetic,and hydrothermal alterations of the pre-salt carbonate rocks are defined through in-situ U-Pb dating,87Sr/86Sr,and trace element analyses of samples from the Santos Basin.The very alkaline nature of the Aptian lake(s)produced characteristically unique and widely distributed carbonate rocks such as Mg-clays with calcite spherulite and calcite crystal shrub limestones transitioning laterally and vertically into travertines formed by hydrothermal pulses during basin evolution.Hydrothermalism caused extensive replacement,dissolution,and calcite cementation.REE+Y PAAS-normalised patterns and 87Sr/86Sr ratios indicate that deposition/eo-diagenesis of the primary carbonates occurred in a lacustrine environment primarily controlled by evaporation,pH,and continental water source,with 2%–10%hydrothermal fluid input.Trace elements and Sr-isotope of travertines and burial diagenetic phases show that they are produced from a hot mixture of mafic/mantle-derived fluids and dissolution/alteration of older carbonate formations.U-Pb dating indicates that carbonate deposition occurred between 124.8±2.6 Ma and 120.0±1.6 Ma,earlier than previously proposed,followed closely by the circulation of hydrothermal fluids.Replacement and cementation ages range from 120.5±2.4 Ma to 80.4±2.4 Ma.展开更多
Conversion and capture of carbon pollutants based on carbon dioxide to valuable green oil-field chemicals are target all over the world for controlling the global warming.The present article used new room temperature ...Conversion and capture of carbon pollutants based on carbon dioxide to valuable green oil-field chemicals are target all over the world for controlling the global warming.The present article used new room temperature amphiphilic imidazolium ionic liquids with superior surface activity in the aqueous solutions to convert carbon dioxide gas to superior amphiphilic calcium carbonate nanoparticles.In this respect,tetra-cationic ionic liquids 2-(4-dodecyldimethylamino)phenyl)-1,3-bis(3-dodecyldimethylammnonio)propyl)bromide-1-H-imidazol-3-ium acetate and 2-(4-hexyldimethylamino)phenyl)-1,3-bis(3-hexcyldimethylammnonio)propyl)bromide-1 H-imidazol-3-ium acetate were prepared.Their chemical structures,thermal as well as their carbon dioxide absorption/desorption characteristicswere evaluated.Theywere used as solvent and capping agent to synthesize calcium carbonate nanoparticles with controlled crystalline lattice,sizes,thermal properties and spherical surface morphologies.The prepared calcium carbonate nanoparticles were used as additives for the commercial water based drilling mud to improve their filter lose and rheology.The data confirm that the lower concentrations of 2-(4-dodecyldimethylamino)phenyl)-1,3-bis(3-dodecyldimethylammnonio)propyl)bromide-1-H-imidazol-3-ium acetate achieved lower seawater filter lose and improved viscosities.展开更多
The synthesis of polyurethanes(PUs)from the reaction of low molecular weight poly(ethylene carbonate)diol(PECD)is rarely investigated.This work reports a novel PU with excellent mechanical properties from the solution...The synthesis of polyurethanes(PUs)from the reaction of low molecular weight poly(ethylene carbonate)diol(PECD)is rarely investigated.This work reports a novel PU with excellent mechanical properties from the solution polymerization of 4,4-diphenylmethane diisocyanate(MDI)with PECD that was derived from the copolymerization of carbon dioxide(CO_(2))and ethylene oxide(EO).The tensile strength,the elongation at break and 300%constant tensile strength of the PECD-PU were up to 66±2 MPa,880%±50%and 13 MPa,respectively,higher than the control PUs from the reaction of MDI with commercial polyethers or polyesters.The PECD-PU with high CO_(2) carbonate content exhibited good solvent resistance and chemical stability.Of importance,the mechanical properties and chemical resistance of PECD-PU were significantly enhanced with the increasing content of CO_(2),i.e.,the carbonate unit in PECD.This work provides comprehensive properties of PECD-derived PUs,indicating that PECD is a competitive precursor for the preparation of PU and has broad application prospects.展开更多
Many new and developed oilfields are confined to carbonate reservoirs with a complex void space structure.In this study,the behavior of carbonates as a function of decreased reservoir pressure was examined.The study w...Many new and developed oilfields are confined to carbonate reservoirs with a complex void space structure.In this study,the behavior of carbonates as a function of decreased reservoir pressure was examined.The study was based on actual production data from wells rather than just on model data or results from computational experiments.Well-test data(170 well tests)and laboratory core samples(45 samples)results were used in the analysis.The problem of reservoir deformation has been compre-hensively addressed at the micro and macro levels.The effect of reservoir permeability throughout the entire reservoir volume on reservoir pressure was determined.With a decline in reservoir pressure,the permeability of fractures and pores in carbonates decreases.The deformation coefficients,which char-acterize the actual rate of decrease in permeability with decreasing reservoir pressure,were also calculated.The deformation coefficients and data from core studies using μ-CT and SEM were compared.Based on micro-CT data,the effective diameters of the voids were calculated to be 93μm,109μm,and 140μm for the Vinnikovskoe,Sofinskoe,and Sukharev fields,respectively.Based on μ-CT and SEM data,the predominant geometric shapes of the voids were assessed.The deformation coefficient of voids was found to depend on their size and geometric shape.The study's findings revealed deformation co-efficients of 0.172,0.205,and 0.748 for the Vinnikovskoe,Sofinskoe,and Sukharev fields,respectively.Maximum deformation coefficients are typical for large voids with a predominant slot-like shape.However,even with the predominance of primary spherical voids in carbonates,the permeability of voids decreases with decreasing reservoir pressure.展开更多
This study explores the application of machine learning techniques for predicting permeability,porosity,and flow zone indicator(FZI)in carbonate reservoirs using well log data,aiming to overcome the limitations of tra...This study explores the application of machine learning techniques for predicting permeability,porosity,and flow zone indicator(FZI)in carbonate reservoirs using well log data,aiming to overcome the limitations of traditional empirical methods.Six machine learning algorithms are utilized:support vector machine(SVM),backpropagation(BP)neural network,gaussian process regression(GPR),extreme gradient boosting(XGBoost),K-nearest neighbor(KNN),and random forest(RF).The methodology involves classifying pore-permeability types based on the flow index,leveraging logging curves and geological data.Models are trained using seven logging parameters—spectral gamma rays(SGR),uranium-free gamma rays(CGR),photoelectric absorption cross-section index(PE),lithologic density(RHOB),acoustic transit time(DT),neutron porosity(NPHI),and formation true resistivity(RT)—along with corresponding physical property labels.Machine learning models are trained and evaluated to predict carbonate rock properties.The results demonstrate that GPR achieves the highest accuracy in porosity prediction,with a coefficient of determination(R~2)value of 0.7342,while RF proves to be the most accurate for permeability prediction.Despite these improvements,accurately predicting lowpermeability zones in heterogeneous carbonate rocks remains a significant challenge.Application of cross-validation techniques optimized the performance of GPR,resulting in an accuracy index(ACI)value of 0.9699 for porosity prediction.This study provides a novel framework that leverages machine learning techniques to improve the characterization of carbonate reservoirs.展开更多
Drilling operations in carbonate rock heavy oil blocks(e.g.,in the Tahe Oilfield)are challenged by the intrusion of high-viscosity,temperature-sensitive formation heavy oil into the drilling fluid.This phenomenon ofte...Drilling operations in carbonate rock heavy oil blocks(e.g.,in the Tahe Oilfield)are challenged by the intrusion of high-viscosity,temperature-sensitive formation heavy oil into the drilling fluid.This phenomenon often results in wellbore blockage,reduced penetration rates,and compromised well control,thereby significantly limiting drilling efficiency and operational safety.To address this issue,this study conducts a comprehensive investigation into the mechanisms governing heavy oil invasion using a combination of laboratory experiments and field data analysis.Findings indicate that the reservoir exhibits strong heterogeneity and that the heavy oil possesses distinctive physical properties.The intrusion process is governed by multiple interrelated factors,including pressure differentials,pore structure,and the rheological behavior of the heavy oil.Experimental results reveal that the invasion of heavy oil occurs in distinct phases,with temperature playing a critical role in altering its viscosity.Specifically,as temperature increases,the apparent viscosity of the drilling fluid decreases;however,elevated pressures induce a nonlinear increase in viscosity.Furthermore,the compatibility between the drilling fluid and the intruding heavy oil declines markedly with increasing oil concentration,substantially raising the risk of wellbore obstruction.Simulation experiments further confirm that at temperatures exceeding 40℃and injection rates of L/min,the likelihood of wellbore blockage significantly≥0.4increases due to heavy oil infiltration.Based on these insights,a suite of targeted mitigation strategies is proposed.These include the formulation of specialized chemical additives,such as viscosity reducers,dispersants,and plugging removal agents,the real-time adjustment of drilling fluid density,and the implementation of advanced monitoring and early-warning systems.展开更多
Fluid-rock interaction plays a critical function in physical and chemical processes associated with the formation and evolution of oil and gas reservoir space.In the diagenetic stage of shallow burial,the dissolution ...Fluid-rock interaction plays a critical function in physical and chemical processes associated with the formation and evolution of oil and gas reservoir space.In the diagenetic stage of shallow burial,the dissolution of carbonate rocks by acidic fluids is conducive to the development of secondary pore space in reservoirs.In contrast,the free drift experiment based on water bath instrument can simulate the dissolution process of carbonate rocks in shallow burial environment effectively.In order to study the shallow burial dissolution mechanism of carbonate rocks in different acid solutions,14 samples of typical carbonate rocks of Sinian,Cambrian,Ordovician,Permian and Triassic ages in the Tarim and Sichuan basins,China were used.The dissolution experiments on carbonate rocks in sulfuric acid,acetic acid,hydrochloric acid,silicic acid and carbonic acid at shallow burial temperature(30℃≤T≤90℃)were carried out using a water bath instrument.The PHREEQC software was used to simulate the dissolution of carbonate minerals,in order to compare the results of constant temperature water bath experiment.The results show that acid solutions have significant dissolution effect on shallow burial carbonate rocks when T=50–60℃,which corresponds to the burial depth of 1500–2000 m in the Tarim Basin and 1110–1480 m in the Sichuan Basin.However,there were obvious differences in the dissolution and reformation of carbonate rocks in different acids.In particular,sulfuric acid solution produced by thermochemical sulfate reduction can significantly promote the dissolution of carbonate rocks,especially dolomitic limestone.Moreover,the dissolution of limestone reservoirs is stronger than that of dolomite reservoirs in shallow burial.The results will provide new insights into the study of dissolution laws and influencing factors of reservoir spaces and the evaluation and prediction of carbonate reservoirs in China.展开更多
Seismic fault identification is a critical step in structural interpretation,reservoir characterization,and well-drilling planning.However,fault identification in deep fault-karst carbonate formations is particularly ...Seismic fault identification is a critical step in structural interpretation,reservoir characterization,and well-drilling planning.However,fault identification in deep fault-karst carbonate formations is particularly challenging due to their deep burial depth and the complex effects of dissolution.Traditional manual interpretation methods are often labor intensive and prone to high uncertainty due to their subjective nature.To address these limitations,this study proposes a transfer learningebased strategy for fault identification in deep fault-karst carbonate formations.The proposed methodology began with the generation of a large volume of synthetic seismic samples based on statistical fault distribution patterns observed in the study area.These synthetic samples were used to pretrain an improved U-Net network architecture,enhanced with an attention mechanism,to create a robust pretrained model.Subsequently,real-world fault labels were manually annotated based on verified fault interpretations and integrated into the training dataset.This combination of synthetic and real-world data was used to fine-tune the pretrained model,significantly improving its fault interpretation accuracy.The experimental results demonstrate that the integration of synthetic and real-world samples effectively enhances the quality of the training dataset.Furthermore,the proposed transfer learning strategy significantly im-proves fault recognition accuracy.By replacing the traditional weighted cross-entropy loss function with the Dice loss function,the model successfully addresses the issue of extreme class imbalance between positive and negative samples.Practical applications confirm that the proposed transfer learning strategy can accurately identify fault structures in deep fault-karst carbonate formations,providing a novel and effective technical approach for fault interpretation in such complex geological settings.展开更多
Designing and synthesizing nanomedicines with multi-modal tumor therapeutic capabilities is the key to cancer treatment.Herein,we prepared MICG nanoparticles(NPs)by assembling glucose oxidase(GOx)and indocyanine green...Designing and synthesizing nanomedicines with multi-modal tumor therapeutic capabilities is the key to cancer treatment.Herein,we prepared MICG nanoparticles(NPs)by assembling glucose oxidase(GOx)and indocyanine green(ICG)with manganese carbonate(MnCO_(3))NPs for starvation therapy cascaded chemodynamic therapy,enhanced phototherapy and immune activation.In MICG NPs,the GOx consumes intratumoral glucose resulting in starvation therapy,and simultaneously produces H_(2)O_(2)and decreases p H in tumor.The intensified acidic tumor environment promotes the decomposition of MnCO_(3)NPs to release Mn^(2+).The Mn^(2+)further catalyzes H_(2)O_(2)to generate hydroxyl radical for chemodynamic therapy.While ICG can generate singlet oxygen(^(1)O_(2))and heat to kill cancer cells through phototherapy mechanism.The hydroxyl radical and ^(1)O_(2) will further accelerate the oxidative stress,intensify immunogenic cell death,induce dendritic cell maturation,and thus activate systemic immunity.This work provides a new therapeutic platform for combining therapy of tumor.展开更多
The dominant lithofacies of reservoirs in the Barra Velha formation of the study area are grainstones,which exhibit strong heterogeneity,and the seismic responses of buildups are characterized by low relief,posing a s...The dominant lithofacies of reservoirs in the Barra Velha formation of the study area are grainstones,which exhibit strong heterogeneity,and the seismic responses of buildups are characterized by low relief,posing a substantial challenge in evaluating the factors controlling high-quality reservoir development.This study thoroughly investigated sedimentary facies and diagenetic processes based on petrological and geophysical data,and a semi-open-rimmed carbonate platform model was established to illustrate the lithofacies distribution pattern.Additionally,the diagenetic processes and their main controlling factors were analyzed,and an attempt was made to establish a diagenetic sequence.Our findings indicate that sedimentary processes control the distribution of lithofacies,while diagenesis ultimately determines the petrophysical properties.The lithofacies types are closely associated with depositional environments.Shrub-like stromatolites are more developed at the bench margin and inner slope,while spherulites occur preferentially in the bench interior and mid-slope environments.Laminites accumulate in profundal or bench interior facies,whereas grainstones are present across all depositional environments,although their components vary.Integrated seismic attributes revealed that the bench margin exhibits nearly circular features,representing favorable conditions for high-quality reservoir development.The primary diagenetic processes in the study area include meteoric diagenesis,chemical compaction,and possible hydrothermal activity.During the eodiagenetic phase,the dissolution of Mg-clays played a key role in the diagenesis of carbonate rocks in the Barra Velha formation.This process typically occurred at structural highs,where Mg-clays were replaced by calcite spherulites,silicates,and dolomite.Some grainstones developed dolomite rims around particles,enhancing their resistance to compaction and preserving primary porosity.In the mesodiagenetic phase,chemical compaction and hydrothermal activity often caused primary pores to be filled with mosaic or blocky calcite and macrocrystalline quartz,leading to reduced permeability and porosity.Although dissolution was common in the study area,its impact on increasing pore space was limited.This study aims to improve drilling success rates in high-quality reservoirs and enhance hydrocarbon discoveries in the study area while also contributing to a better understanding of the evolution and distribution of high-quality reservoirs in analogous lacustrine carbonate settings.展开更多
Marine carbonates,the major carrier of carbon upon the upper crust,can be subducted into the Earth’s interior along with oceanic crust,and then returned to the surface through magmatism,which constitute the deep carb...Marine carbonates,the major carrier of carbon upon the upper crust,can be subducted into the Earth’s interior along with oceanic crust,and then returned to the surface through magmatism,which constitute the deep carbon cycle.This process plays an important role in modulating the CO_(2) concentrations in the atmosphere over geologic time,and thus the forming of the habitable earth.Therefore,identifying recycled marine carbonates in the mantle is critical to well understand the global deep carbon cycle.Calcium is one of the major constituent cations in marine carbonates and its isotopes may be a potential tracer for recycled marine carbonates in the mantle.To further evaluate the capability and challenges of Ca isotopes as such a geochemical tracer,we reviewed the Ca isotopic compositions in important reservoirs and the behavior of Ca isotopes during high-temperature geological processes that are related to the deep carbon cycle,including plate subduction,mantle metasomatism,mantle partial melting,magma differentiation,etc.Available studies show that carbonate-rich marine sediments have significantly lowerδ^(44/40) Ca than the Earth mantle,and metasomatism by such recycled materials can cause lighter Ca isotopic compositions in deep mantle-derived rocks than those of the depleted mantle and mid ocean ridge basalts.However,the Ca isotopic fractionation during partial melting of mantle peridotites is small(~0.10‰)and the Ca isotopic fractionation during plate subduction and intermediate-mafic magma evolution is indistinguishable.These investigations suggest that Ca isotopes have great advances in tracing such recycled materials in the mantle.However,other processes(such as the influence by partial melts of eclogites)may induce similar effects on mantle-derived rocks as subducted marine carbonates but still remains debated,and thus further investigations are strongly needed in the future.展开更多
Semicrystalline polymers usually undergo multilevel microstructural evolutions with annealing and stretching processes,which is es-sential to tailor the physical properties of the polymer.Here,poly(butylene carbonate)...Semicrystalline polymers usually undergo multilevel microstructural evolutions with annealing and stretching processes,which is es-sential to tailor the physical properties of the polymer.Here,poly(butylene carbonate)(PBC)sheets were prepared via isothermal annealing and unidirectional pre-stretching processes,then the changes of PBC in crystallinity,mechanical properties,thermal properties and microscopic changes before and after annealing and stretching were measured,as well as the relationship between microstructure and macroscopic proper-ties before and after stretching.The strengthening mechanism of PBC was also described.It was demonstrated that shish-kabab structure emerged under the pre-stretching process.With the increase of the tensile ratio,the crystallinity,structure and mechanical properties are in-creased differently.Among them,the crystallinity and tensile strength after annealing-stretching treatment increased to 24.45%and 104.5 MPa,respectively,which were about 1.55 times and 3.4 times of those-without any treatment.展开更多
基金Project supported by the National Natural Science Foundation of China(52174250,92062110)the Youth Jinggang Scholars Program in Jiangxi Province(QNJG2020048)。
文摘The recovery of rare earths from industrial rare earth leaching solution is typically achieved through the ammonium carbonate precipitation method,which presents challenges in terms of prolonged production cycle and ammonia nitrogen pollution.The present study explored the synthesis of crystalline yttrium carbonate in a sodium carbonate system,employing a conventional mother liquor derived from yttrium chloride.The growth of yttrium carbonate was explored through the lens of density functional theory(DFT)calculations,unveiling a novel perspective on its formation mechanism.The synthesized yttrium carbonate demonstrates enhanced crystallinity,with a D50value of 19.75μm achieved under reaction conditions comprising a temperature of 60℃,stirring rate of 200 r/min,feeding rate of 4 mL/min,and aging time of 30 h.The molar ratio for precipitation is set at 1.6:1.The morphology of yttrium carbonate undergoes a transition from needle-like structures to sheet-like formations,ultimately culminating in the formation of spherical aggregates.The variation in surface energy among distinct crystal planes and CO_(3)^(2-)configurations within crystal cells accounts for this phenomenon.The DFT calculations unveil a progression of growth and trans formation in yttrium carbonate,commencing from a one-dimensional configuration and culminating in a multidimensional morphology.
基金Project supported by the National Natural Science Foundation of China(52274355)the National Key Research and Development Program of China(2022YFC2905305)+1 种基金the Gansu Province Science and Technology Major Special Project,China(22ZD6GD061)the Inner Mongolia Autonomous Region Science and Technology Revitalization of Inner Mongolia Cooperation Project,China(2022YFXM0001)。
文摘To solve the problem of ammonia wastewater pollution generated from preparing rare earth carbonate using the ammonium bicarbonate precipitation method,an eco-friendly precipitant,magnesium bicarbonate,was used to prepare lanthanum cerium carbonate.The lanthanum cerium sulfate solution obtained from the smelting and separation of Baotou mixed rare earth ore was used as the raw material.The influence of pH on the content of impurities,including SO^(2-)_(4)and magnesium,and the existing states of SO^(2-)_(4)n lanthanum cerium carbonate products,as well as the thermal decomposition behavior of the products,were deeply explored.SO^(2-)_(4)mainly exists in the form of rare earth sulfate complex salts in lanthanum cerium carbonate products.The fo rmation of the salts can be effectively avoided by adjusting the pH of the precipitation process.Then the content of SO^(2-)_(4)in the product is controlled.When the pH ranges from 6.00 to 7.12,the content of SO^(2-)_(4)in the product ranges from 0.42 wt%to 0.99 wt%.The content of MgO is lower than 0.04 wt%.Both contents meet the requirements of the national standard GB/T 16479-2020.In this study,lanthanum cerium carbonate products with low-content SO^(2-)_(4)were prepared.In addition,the existing states of SO^(2-)_(4)in the products are revealed.The research provides a new method for controlling the impurity content in preparing lanthanum cerium carbonate.
基金National Natural Science Foundation of China (Nos. 22371244 and 21573192)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX22_3463)。
文摘Transition metal-carbonate interfaces often act as active sites in heterogeneous catalytic reactions.The interface between transition metal and metal carbonate exhibits a dynamic equilibrium during the CO_(2)hydrogenation reaction,involving surface carbonate hydrogenation and CO_(2)chemisorption.Nonetheless,there have been few reports on engineering the activity of the interface between transition metal and alkaline earth metal carbonate for catalytic CO_(2)conversion.This work demonstrated that the incorporation of CaH_(2)in Ni/CaCO_(3)enhances the CO_(2)methanation activity of the catalysts.The CO_(2)conversion for Ni/CaH_(2)-CaCO_(3)reached 68.5%at 400°C,which was much higher than that of the Ni/CaCO_(3)(31.6%) and Ni/CaH_(2)-CaO (42.4%) catalysts.Furthermore,the Ni/CaH_(2)-CaCO_(3)catalysts remained stable during the stability test for 24 h at 400°C and 8 bar.Our research revealed that CaH_(2)played a crucial role in promoting the activity of the Ni-carbonate interface for CO_(2)methanation.CaH_(2)could modify the electronic structure of Ni and tune the structural properties of CaCO_(3)to generate medium basic sites (OH groups),which are favorable for the activation of H2and CO_(2).In-situ Fourier transform infrared spectroscopy (FTIR) analysis combined with density functional theory calculations demonstrated that CO_(2)activation occurs at the hydroxyl group (OH) on the CaH_(2)-modified Ni-carbonate surface,leading to the formation of CO_(3)H*species.Furthermore,our study has confirmed that CO_(2)methanation over the Ni/CaH_(2)-CaCO_(3)catalysts proceeds via the formate pathway.
文摘Present industrial decarbonization technologies require an active CO_(2)-concentration system,often based on lime reaction or amine binding reactions,which is energy intensive and carries a high CO_(2)-footprint.Here instead,an effective process without active CO_(2)concentration is demonstrated in a new process-termed IC2CNT(Insulationdiffusion facilitated CO_(2) to Carbon Nanomaterial Technology)decarbonization process.Molten carbonates such as Li_(2)CO_(3)(mp 723℃)are highly insoluble to industrial feed gas principal components(N2,O_(2),and H2O).However,CO_(2) can readily dissolve and react in molten carbonates.We have recently characterized high CO_(2) diffusion rates through porous aluminosilicate and calcium-magnesium silicate thermal insulations.Here,the CO_(2) in ambient feed gas passes through these membranes into molten Li_(2)CO_(3).The membrane also concurrently insulates the feed gas from the hot molten carbonate chamber,obviating the need to heat the(non-CO_(2))majority of the feed gas to high temperature.In this insulation facilitated decarbonization process CO_(2)is split by electrolysis in the molten carbonate producing sequestered,high-purity carbon nanomaterials(such as CNTs)and O_(2).
基金supported by the National Natural Science Foundation of China(No.52205310)the TUA research funding,UmeåUniversity/Region Västerbotten,Sweden(RV-937838)+1 种基金the Kempe foundation(JCSMK22-0122)the Natural Science Foundation of Shandong Province(No.ZR2021QE263).
文摘Magnesium alloy is a promising biodegradable metal material for hard tissue engineering.However,its high corrosion rate limits its application.In our previous study,we biomimetically deposited a calcium carbonate coating on the surface of magnesium alloy using siloxane induction.This calcium carbonate coating demonstrated excellent in vitro biocompatibility and provided partial protection for the magnesium alloy substrate.In this study,we further enhanced the corrosion resistance of the calcium carbonate coating by treating it with stearic acid and its derivative,sodium stearate.Electrochemical corrosion tests revealed that the sodium stearate-treated calcium carbonate coating reduced the corrosion rate by two orders of magnitude.Additionally,in vitro biocompatibility assessments showed that while the biocompatibility of the sodium stearate-treated coating was slightly reduced,it remained acceptable compared to the magnesium substrate.This study builds on our previous work and offers a promising reinforcement strategy for degradable magnesium alloys in medical applications.
基金supported by the National Natural Science Foundation of China(Grant No.U21B2062)supported by the Key Laboratory for Carbonate Reservoirs of China National Petroleum Corporation。
文摘Burial dissolution is a critical diagenetic process influencing ultra-deep carbonate reservoir development and preservation.Artificial carbonate samples with different internal structures were prepared,and high-temperature and highpressure dissolution kinetic simulations were conducted.The results demonstrate that the intensity of burial dissolution is controlled by temperature and pressure,while tectonic-fluid activity influences the development pattern of burial dissolution,ultimately determining the direction of its differential modification.Extensive burial dissolution is likely to occur primarily at relatively shallow depths,significantly influencing reservoir formation,preservation,modification,and adjustment.The development of faults facilitates the maintenance of the intensity of burial dissolution.The maximum intensity of burial dissolution occurs at the tips and overlap zones of faults and intersections of multiple faults.The larger the scale of the faults,the more conducive it is to the development of burial dissolution.Burial dissolution fosters the formation of fault networks characterized by enhanced reservoir capacity and permeability.Burial dissolution controlled by episodic tectonic-fluid activity is a plausible explanation for forming the Tarim Basin's ultra-deep fault-controlled“stringbead-like”reservoirs.
文摘Indoles and their derivatives are an important class of N-heterocycles.In this article,iridium-catalyzed annulation reactions of N-aryl-2-aminopyridines to synthesize indole derivatives are designed and developed,which utilize vinylene carbonate as a new C2 synthon.This protocol is expected to provide a facile and useful access to various indole derivatives.
基金supported by Fundamental Research Program of Shanxi Province(202203021221303)。
文摘Transformation of urea and glycerol to glycerol carbonate is an environmental friendly and economical process.Catalysts play an indispensable role in the process.Although many catalysts have been developed,the performance of the catalysts still cannot meet the needs of industrialization.In this paper,research progress of the homogeneous and heterogeneous catalysts of the reaction over the past 20 years were reviewed systematically.According to the types and active centers of catalysts,the catalysts were classified systematically and analyzed in detail.The typical reaction mechanisms were also summarized.The research and development direction of catalysts is made more explicit through systematic classification and mechanism analysis.The article reveals more novel catalysts have been designed and used for the reaction,such as mixed metal oxides with special structures,solid wastes and non-metallic materials.This work summarized the current state of research and prospected possible routes for design of novel catalysts.It is hoped that this review can provide some references for developing efficient catalysts.
基金C.Lana and F.F.Alkmim benefit from the Brazilian National Research Council(CNPq)research grants 3073353/2019-2 and 311543/2020-0.C.Lana,F.F.Alkmim,and Maria Eugênia Souza are part of the Instituto GeoAtlântico,a National Institute of Science and Technology,CNPq-Brazil process 405653/2022-0We acknowledge Petrobras’s support during the investigation and permission to publish this study.I.Figueiredo acknowledged the Brazilian Federal Agency for Support and Evaluation of Graduate Education(CAPES)for Master's scholarship 88887.816343/2023-00.
文摘The opening of the Central South Atlantic and the consequent formation of the eastern Brazilian continental margin was marked by a complex history of mafic magmatism,carbonate sedimentation,and deposition of a thick salt layer.The carbonates underlying the salt layer(pre-salt carbonates)were formed in restricted lacustrine basins.Here,the timing and fluid sources of deposition,diagenetic,and hydrothermal alterations of the pre-salt carbonate rocks are defined through in-situ U-Pb dating,87Sr/86Sr,and trace element analyses of samples from the Santos Basin.The very alkaline nature of the Aptian lake(s)produced characteristically unique and widely distributed carbonate rocks such as Mg-clays with calcite spherulite and calcite crystal shrub limestones transitioning laterally and vertically into travertines formed by hydrothermal pulses during basin evolution.Hydrothermalism caused extensive replacement,dissolution,and calcite cementation.REE+Y PAAS-normalised patterns and 87Sr/86Sr ratios indicate that deposition/eo-diagenesis of the primary carbonates occurred in a lacustrine environment primarily controlled by evaporation,pH,and continental water source,with 2%–10%hydrothermal fluid input.Trace elements and Sr-isotope of travertines and burial diagenetic phases show that they are produced from a hot mixture of mafic/mantle-derived fluids and dissolution/alteration of older carbonate formations.U-Pb dating indicates that carbonate deposition occurred between 124.8±2.6 Ma and 120.0±1.6 Ma,earlier than previously proposed,followed closely by the circulation of hydrothermal fluids.Replacement and cementation ages range from 120.5±2.4 Ma to 80.4±2.4 Ma.
基金supported by Science,Technology&Innovation Funding Authority(STDF)under grant(No.47062).
文摘Conversion and capture of carbon pollutants based on carbon dioxide to valuable green oil-field chemicals are target all over the world for controlling the global warming.The present article used new room temperature amphiphilic imidazolium ionic liquids with superior surface activity in the aqueous solutions to convert carbon dioxide gas to superior amphiphilic calcium carbonate nanoparticles.In this respect,tetra-cationic ionic liquids 2-(4-dodecyldimethylamino)phenyl)-1,3-bis(3-dodecyldimethylammnonio)propyl)bromide-1-H-imidazol-3-ium acetate and 2-(4-hexyldimethylamino)phenyl)-1,3-bis(3-hexcyldimethylammnonio)propyl)bromide-1 H-imidazol-3-ium acetate were prepared.Their chemical structures,thermal as well as their carbon dioxide absorption/desorption characteristicswere evaluated.Theywere used as solvent and capping agent to synthesize calcium carbonate nanoparticles with controlled crystalline lattice,sizes,thermal properties and spherical surface morphologies.The prepared calcium carbonate nanoparticles were used as additives for the commercial water based drilling mud to improve their filter lose and rheology.The data confirm that the lower concentrations of 2-(4-dodecyldimethylamino)phenyl)-1,3-bis(3-dodecyldimethylammnonio)propyl)bromide-1-H-imidazol-3-ium acetate achieved lower seawater filter lose and improved viscosities.
基金financially supported by the Maoming Science and Technology Bureau(No.2022DZXHT007)。
文摘The synthesis of polyurethanes(PUs)from the reaction of low molecular weight poly(ethylene carbonate)diol(PECD)is rarely investigated.This work reports a novel PU with excellent mechanical properties from the solution polymerization of 4,4-diphenylmethane diisocyanate(MDI)with PECD that was derived from the copolymerization of carbon dioxide(CO_(2))and ethylene oxide(EO).The tensile strength,the elongation at break and 300%constant tensile strength of the PECD-PU were up to 66±2 MPa,880%±50%and 13 MPa,respectively,higher than the control PUs from the reaction of MDI with commercial polyethers or polyesters.The PECD-PU with high CO_(2) carbonate content exhibited good solvent resistance and chemical stability.Of importance,the mechanical properties and chemical resistance of PECD-PU were significantly enhanced with the increasing content of CO_(2),i.e.,the carbonate unit in PECD.This work provides comprehensive properties of PECD-derived PUs,indicating that PECD is a competitive precursor for the preparation of PU and has broad application prospects.
基金funded by the Ministry of Science and Higher Education of the Russian Federation(Project No.FSNM-2023-0005).
文摘Many new and developed oilfields are confined to carbonate reservoirs with a complex void space structure.In this study,the behavior of carbonates as a function of decreased reservoir pressure was examined.The study was based on actual production data from wells rather than just on model data or results from computational experiments.Well-test data(170 well tests)and laboratory core samples(45 samples)results were used in the analysis.The problem of reservoir deformation has been compre-hensively addressed at the micro and macro levels.The effect of reservoir permeability throughout the entire reservoir volume on reservoir pressure was determined.With a decline in reservoir pressure,the permeability of fractures and pores in carbonates decreases.The deformation coefficients,which char-acterize the actual rate of decrease in permeability with decreasing reservoir pressure,were also calculated.The deformation coefficients and data from core studies using μ-CT and SEM were compared.Based on micro-CT data,the effective diameters of the voids were calculated to be 93μm,109μm,and 140μm for the Vinnikovskoe,Sofinskoe,and Sukharev fields,respectively.Based on μ-CT and SEM data,the predominant geometric shapes of the voids were assessed.The deformation coefficient of voids was found to depend on their size and geometric shape.The study's findings revealed deformation co-efficients of 0.172,0.205,and 0.748 for the Vinnikovskoe,Sofinskoe,and Sukharev fields,respectively.Maximum deformation coefficients are typical for large voids with a predominant slot-like shape.However,even with the predominance of primary spherical voids in carbonates,the permeability of voids decreases with decreasing reservoir pressure.
基金funded by Fundamental Research Funds for the Central Universities(No.00007851)。
文摘This study explores the application of machine learning techniques for predicting permeability,porosity,and flow zone indicator(FZI)in carbonate reservoirs using well log data,aiming to overcome the limitations of traditional empirical methods.Six machine learning algorithms are utilized:support vector machine(SVM),backpropagation(BP)neural network,gaussian process regression(GPR),extreme gradient boosting(XGBoost),K-nearest neighbor(KNN),and random forest(RF).The methodology involves classifying pore-permeability types based on the flow index,leveraging logging curves and geological data.Models are trained using seven logging parameters—spectral gamma rays(SGR),uranium-free gamma rays(CGR),photoelectric absorption cross-section index(PE),lithologic density(RHOB),acoustic transit time(DT),neutron porosity(NPHI),and formation true resistivity(RT)—along with corresponding physical property labels.Machine learning models are trained and evaluated to predict carbonate rock properties.The results demonstrate that GPR achieves the highest accuracy in porosity prediction,with a coefficient of determination(R~2)value of 0.7342,while RF proves to be the most accurate for permeability prediction.Despite these improvements,accurately predicting lowpermeability zones in heterogeneous carbonate rocks remains a significant challenge.Application of cross-validation techniques optimized the performance of GPR,resulting in an accuracy index(ACI)value of 0.9699 for porosity prediction.This study provides a novel framework that leverages machine learning techniques to improve the characterization of carbonate reservoirs.
基金Hubei Key Laboratory of Oil and Gas Drilling and Production Engineering(Yangtze University),China(Grant No.YQZC202415)Hubei Province Science and Technology Plan Project(Key R&D Special Project),China(Grant No.2023BCB070)+2 种基金Key R&D Program Project in Xinjiang,China,Grant No.2022B01042Guiding Project of Scientific Research Program of Education Department of Hubei Province,China(Grant No.B2023024)Open Fund of National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(Southwest Petroleum University),Grant No.PLN2023-03.
文摘Drilling operations in carbonate rock heavy oil blocks(e.g.,in the Tahe Oilfield)are challenged by the intrusion of high-viscosity,temperature-sensitive formation heavy oil into the drilling fluid.This phenomenon often results in wellbore blockage,reduced penetration rates,and compromised well control,thereby significantly limiting drilling efficiency and operational safety.To address this issue,this study conducts a comprehensive investigation into the mechanisms governing heavy oil invasion using a combination of laboratory experiments and field data analysis.Findings indicate that the reservoir exhibits strong heterogeneity and that the heavy oil possesses distinctive physical properties.The intrusion process is governed by multiple interrelated factors,including pressure differentials,pore structure,and the rheological behavior of the heavy oil.Experimental results reveal that the invasion of heavy oil occurs in distinct phases,with temperature playing a critical role in altering its viscosity.Specifically,as temperature increases,the apparent viscosity of the drilling fluid decreases;however,elevated pressures induce a nonlinear increase in viscosity.Furthermore,the compatibility between the drilling fluid and the intruding heavy oil declines markedly with increasing oil concentration,substantially raising the risk of wellbore obstruction.Simulation experiments further confirm that at temperatures exceeding 40℃and injection rates of L/min,the likelihood of wellbore blockage significantly≥0.4increases due to heavy oil infiltration.Based on these insights,a suite of targeted mitigation strategies is proposed.These include the formulation of specialized chemical additives,such as viscosity reducers,dispersants,and plugging removal agents,the real-time adjustment of drilling fluid density,and the implementation of advanced monitoring and early-warning systems.
基金jointly supported by the Science and Technology Development Project of PetroChina Hangzhou Institute of Petroleum Geology(No.RIPED-2020-JS-51008)the Naturacl Science Foundation of China(Nos.41872250,41802159)。
文摘Fluid-rock interaction plays a critical function in physical and chemical processes associated with the formation and evolution of oil and gas reservoir space.In the diagenetic stage of shallow burial,the dissolution of carbonate rocks by acidic fluids is conducive to the development of secondary pore space in reservoirs.In contrast,the free drift experiment based on water bath instrument can simulate the dissolution process of carbonate rocks in shallow burial environment effectively.In order to study the shallow burial dissolution mechanism of carbonate rocks in different acid solutions,14 samples of typical carbonate rocks of Sinian,Cambrian,Ordovician,Permian and Triassic ages in the Tarim and Sichuan basins,China were used.The dissolution experiments on carbonate rocks in sulfuric acid,acetic acid,hydrochloric acid,silicic acid and carbonic acid at shallow burial temperature(30℃≤T≤90℃)were carried out using a water bath instrument.The PHREEQC software was used to simulate the dissolution of carbonate minerals,in order to compare the results of constant temperature water bath experiment.The results show that acid solutions have significant dissolution effect on shallow burial carbonate rocks when T=50–60℃,which corresponds to the burial depth of 1500–2000 m in the Tarim Basin and 1110–1480 m in the Sichuan Basin.However,there were obvious differences in the dissolution and reformation of carbonate rocks in different acids.In particular,sulfuric acid solution produced by thermochemical sulfate reduction can significantly promote the dissolution of carbonate rocks,especially dolomitic limestone.Moreover,the dissolution of limestone reservoirs is stronger than that of dolomite reservoirs in shallow burial.The results will provide new insights into the study of dissolution laws and influencing factors of reservoir spaces and the evaluation and prediction of carbonate reservoirs in China.
基金support provided by the China Postdoctoral Science Foundation(Grant No.2024M763650)the Excellent Young Scientists Fund Program of SINOPEC Petroleum Exploration and Production Research Institute(Grant No.yk2024010).
文摘Seismic fault identification is a critical step in structural interpretation,reservoir characterization,and well-drilling planning.However,fault identification in deep fault-karst carbonate formations is particularly challenging due to their deep burial depth and the complex effects of dissolution.Traditional manual interpretation methods are often labor intensive and prone to high uncertainty due to their subjective nature.To address these limitations,this study proposes a transfer learningebased strategy for fault identification in deep fault-karst carbonate formations.The proposed methodology began with the generation of a large volume of synthetic seismic samples based on statistical fault distribution patterns observed in the study area.These synthetic samples were used to pretrain an improved U-Net network architecture,enhanced with an attention mechanism,to create a robust pretrained model.Subsequently,real-world fault labels were manually annotated based on verified fault interpretations and integrated into the training dataset.This combination of synthetic and real-world data was used to fine-tune the pretrained model,significantly improving its fault interpretation accuracy.The experimental results demonstrate that the integration of synthetic and real-world samples effectively enhances the quality of the training dataset.Furthermore,the proposed transfer learning strategy significantly im-proves fault recognition accuracy.By replacing the traditional weighted cross-entropy loss function with the Dice loss function,the model successfully addresses the issue of extreme class imbalance between positive and negative samples.Practical applications confirm that the proposed transfer learning strategy can accurately identify fault structures in deep fault-karst carbonate formations,providing a novel and effective technical approach for fault interpretation in such complex geological settings.
基金supported by the National Key Research and Development Program of China(No.2022YFA1207600)the National Natural Science Foundation of China(Nos.62375289,62175262)+2 种基金the Science and Technology Innovation Program of Hunan Province(No.2022RC1201)the Scientific Research Fund of Hunan Provincial Education Department(No.22B0081)Postdoctoral Funding Project of Jiangsu Province(No.2019Z156)。
文摘Designing and synthesizing nanomedicines with multi-modal tumor therapeutic capabilities is the key to cancer treatment.Herein,we prepared MICG nanoparticles(NPs)by assembling glucose oxidase(GOx)and indocyanine green(ICG)with manganese carbonate(MnCO_(3))NPs for starvation therapy cascaded chemodynamic therapy,enhanced phototherapy and immune activation.In MICG NPs,the GOx consumes intratumoral glucose resulting in starvation therapy,and simultaneously produces H_(2)O_(2)and decreases p H in tumor.The intensified acidic tumor environment promotes the decomposition of MnCO_(3)NPs to release Mn^(2+).The Mn^(2+)further catalyzes H_(2)O_(2)to generate hydroxyl radical for chemodynamic therapy.While ICG can generate singlet oxygen(^(1)O_(2))and heat to kill cancer cells through phototherapy mechanism.The hydroxyl radical and ^(1)O_(2) will further accelerate the oxidative stress,intensify immunogenic cell death,induce dendritic cell maturation,and thus activate systemic immunity.This work provides a new therapeutic platform for combining therapy of tumor.
基金The National Natural Science Foundation of China under contract Nos 42330810 and U19B6003-01the China National Petroleum Corporation Science Research and Technology Development Project under contract Nos 2021DJ1501 and 2024DQ03016.
文摘The dominant lithofacies of reservoirs in the Barra Velha formation of the study area are grainstones,which exhibit strong heterogeneity,and the seismic responses of buildups are characterized by low relief,posing a substantial challenge in evaluating the factors controlling high-quality reservoir development.This study thoroughly investigated sedimentary facies and diagenetic processes based on petrological and geophysical data,and a semi-open-rimmed carbonate platform model was established to illustrate the lithofacies distribution pattern.Additionally,the diagenetic processes and their main controlling factors were analyzed,and an attempt was made to establish a diagenetic sequence.Our findings indicate that sedimentary processes control the distribution of lithofacies,while diagenesis ultimately determines the petrophysical properties.The lithofacies types are closely associated with depositional environments.Shrub-like stromatolites are more developed at the bench margin and inner slope,while spherulites occur preferentially in the bench interior and mid-slope environments.Laminites accumulate in profundal or bench interior facies,whereas grainstones are present across all depositional environments,although their components vary.Integrated seismic attributes revealed that the bench margin exhibits nearly circular features,representing favorable conditions for high-quality reservoir development.The primary diagenetic processes in the study area include meteoric diagenesis,chemical compaction,and possible hydrothermal activity.During the eodiagenetic phase,the dissolution of Mg-clays played a key role in the diagenesis of carbonate rocks in the Barra Velha formation.This process typically occurred at structural highs,where Mg-clays were replaced by calcite spherulites,silicates,and dolomite.Some grainstones developed dolomite rims around particles,enhancing their resistance to compaction and preserving primary porosity.In the mesodiagenetic phase,chemical compaction and hydrothermal activity often caused primary pores to be filled with mosaic or blocky calcite and macrocrystalline quartz,leading to reduced permeability and porosity.Although dissolution was common in the study area,its impact on increasing pore space was limited.This study aims to improve drilling success rates in high-quality reservoirs and enhance hydrocarbon discoveries in the study area while also contributing to a better understanding of the evolution and distribution of high-quality reservoirs in analogous lacustrine carbonate settings.
基金Supported by the National Natural Science Foundation of China(Nos.42322302,42373048)the Youth Innovation Promotion Association,Chinese Academy of Sciences(No.2022207)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB42020303)the Laoshan Laboratory(No.LSKJ202204100)。
文摘Marine carbonates,the major carrier of carbon upon the upper crust,can be subducted into the Earth’s interior along with oceanic crust,and then returned to the surface through magmatism,which constitute the deep carbon cycle.This process plays an important role in modulating the CO_(2) concentrations in the atmosphere over geologic time,and thus the forming of the habitable earth.Therefore,identifying recycled marine carbonates in the mantle is critical to well understand the global deep carbon cycle.Calcium is one of the major constituent cations in marine carbonates and its isotopes may be a potential tracer for recycled marine carbonates in the mantle.To further evaluate the capability and challenges of Ca isotopes as such a geochemical tracer,we reviewed the Ca isotopic compositions in important reservoirs and the behavior of Ca isotopes during high-temperature geological processes that are related to the deep carbon cycle,including plate subduction,mantle metasomatism,mantle partial melting,magma differentiation,etc.Available studies show that carbonate-rich marine sediments have significantly lowerδ^(44/40) Ca than the Earth mantle,and metasomatism by such recycled materials can cause lighter Ca isotopic compositions in deep mantle-derived rocks than those of the depleted mantle and mid ocean ridge basalts.However,the Ca isotopic fractionation during partial melting of mantle peridotites is small(~0.10‰)and the Ca isotopic fractionation during plate subduction and intermediate-mafic magma evolution is indistinguishable.These investigations suggest that Ca isotopes have great advances in tracing such recycled materials in the mantle.However,other processes(such as the influence by partial melts of eclogites)may induce similar effects on mantle-derived rocks as subducted marine carbonates but still remains debated,and thus further investigations are strongly needed in the future.
基金supported by the Sichuan Provincial Regional Innovation Cooperation Project(No.2024YFHZ0159).
文摘Semicrystalline polymers usually undergo multilevel microstructural evolutions with annealing and stretching processes,which is es-sential to tailor the physical properties of the polymer.Here,poly(butylene carbonate)(PBC)sheets were prepared via isothermal annealing and unidirectional pre-stretching processes,then the changes of PBC in crystallinity,mechanical properties,thermal properties and microscopic changes before and after annealing and stretching were measured,as well as the relationship between microstructure and macroscopic proper-ties before and after stretching.The strengthening mechanism of PBC was also described.It was demonstrated that shish-kabab structure emerged under the pre-stretching process.With the increase of the tensile ratio,the crystallinity,structure and mechanical properties are in-creased differently.Among them,the crystallinity and tensile strength after annealing-stretching treatment increased to 24.45%and 104.5 MPa,respectively,which were about 1.55 times and 3.4 times of those-without any treatment.