Present industrial decarbonization technologies require an active CO_(2)-concentration system,often based on lime reaction or amine binding reactions,which is energy intensive and carries a high CO_(2)-footprint.Here ...Present industrial decarbonization technologies require an active CO_(2)-concentration system,often based on lime reaction or amine binding reactions,which is energy intensive and carries a high CO_(2)-footprint.Here instead,an effective process without active CO_(2)concentration is demonstrated in a new process-termed IC2CNT(Insulationdiffusion facilitated CO_(2) to Carbon Nanomaterial Technology)decarbonization process.Molten carbonates such as Li_(2)CO_(3)(mp 723℃)are highly insoluble to industrial feed gas principal components(N2,O_(2),and H2O).However,CO_(2) can readily dissolve and react in molten carbonates.We have recently characterized high CO_(2) diffusion rates through porous aluminosilicate and calcium-magnesium silicate thermal insulations.Here,the CO_(2) in ambient feed gas passes through these membranes into molten Li_(2)CO_(3).The membrane also concurrently insulates the feed gas from the hot molten carbonate chamber,obviating the need to heat the(non-CO_(2))majority of the feed gas to high temperature.In this insulation facilitated decarbonization process CO_(2)is split by electrolysis in the molten carbonate producing sequestered,high-purity carbon nanomaterials(such as CNTs)and O_(2).展开更多
Addressing global warming,a common change today,requires achieving peak carbon dioxide emissions and carbon neutrality(also referred to as the dual carbon goals).Enhancing research on the carbon cycle is urgently need...Addressing global warming,a common change today,requires achieving peak carbon dioxide emissions and carbon neutrality(also referred to as the dual carbon goals).Enhancing research on the carbon cycle is urgently needed as the foundation.Water,a key carrier in the carbon cycle,necessitates investigation into groundwater carbon pools’contribution to atmospheric carbon sinks.This study assessed carbon stocks in the Yinchuan Basin’s soil and groundwater carbon pools.Findings indicate the basin’s surface soils contain approximately 24.16 Tg of organic carbon and a total of 60.01 Tg of carbon.In contrast,the basin’s groundwater holds around 4.90 Tg of carbon,roughly one-fifth of the organic carbon in surface soils.Thus,groundwater and soil carbon pools possess comparable carbon stocks,underscoring the importance of the groundwater carbon pool.Studies on terrestrial carbon balance should incorporate groundwater carbon pools,which deserve increased focus.Evaluating groundwater carbon pools’contributions is vital for achieving the dual carbon goals.展开更多
This study explores the mechanisms by which China’s pilot carbon emissions trading schemes(ETS)facilitate industrial low-carbon transitions.We construct a theoretical model and conduct an empirical analysis using pro...This study explores the mechanisms by which China’s pilot carbon emissions trading schemes(ETS)facilitate industrial low-carbon transitions.We construct a theoretical model and conduct an empirical analysis using provincial panel data from seven pilot provinces spanning 2006-2021.Applying a multi-period difference-in-differences(DID)approach,we evaluate the environmental and economic impacts of the pilot ETS policies.The findings yield three key insights:(1)The pilot ETS significantly reduces carbon emission intensity and improves low-carbon total factor productivity(TFP),thereby promoting China’s industrial low-carbon transition.(2)Mechanism analysis indicates that the ETS primarily operates through cost constraints and industrial structural upgrading,while the effect of technological progress has yet to fully materialize.(3)Heterogeneity analysis reveals that the policy’s effects are more significant in regions with higher levels of economic development and R&D investment,leading to greater carbon intensity reductions and productivity gains.In addition,regions with higher foreign direct investment(FDI)experience more substantial improvements in low-carbon TFP,possibly reflecting technology spillover effects.展开更多
Mesozoic-Palaeozoic marine carbonate rocks are crucial hydrocarbon reservoirs in the Central Uplift area of the South Yellow Sea Basin(SYSB).Due to the scarcity of boreholes and the significant heterogeneity of carbon...Mesozoic-Palaeozoic marine carbonate rocks are crucial hydrocarbon reservoirs in the Central Uplift area of the South Yellow Sea Basin(SYSB).Due to the scarcity of boreholes and the significant heterogeneity of carbonate reservoirs,the distribution of porous carbonate reservoirs and their related key controlling factors remain unclear.In this study,factors affecting the distribution of porous Carboniferous-Early Permian carbonate reservoirs in the SYSB were investigated through seismic inversion and isotope analysis.The log-seismic characteristics of porous carbonate reservoirs,sensitive lithology parameters,and physical property parameters were extracted and analyzed.The pre-stack simultaneous inversion technique was applied to predict the lithology and physical properties of porous carbonate reservoirs.Moreover,the sedimentary of carbonate was analyzed using isotopes of carbon,oxygen,and strontium.The results show that porous carbonate reservoirs are mainly developed in the open platform sediments with porosities of 3%-5%and are mainly distributed in the paleo-highland(Huanglong Formation and Chuanshan Formation)and the slope of paleo-highland(Hezhou Formation).The porous carbonate reservoirs of the Qixia Formation are only locally developed.In addition,the negativeδ13C excursions indicate a warm and humid tropical climate with three sea-level fluctuations in the study area from the Carboniferous to Early Permian.The favorable conditions for developing porous carbonate rocks include the sedimentary environment and diagenetic process.The primary pore tends to form in high-energy environments of the paleo-highland,and the secondary pore is increased by dissolution during the syngenetic or quasi-syngenetic period.According to the hydrocarbon potential analysis,the Late Ordovician Wufeng Formation and Lower Silurian Gaojiabian Formation are the source rocks in the high-maturity-over-maturity stage,the Carboniferous-Lower Permian carbonate is the good reservoirs,and the Late Permian Longtan-Dalong Formation is the stable seal,ensuring a huge hydrocarbon accumulation potential in SYSB.The methods proposed in this study can be applied to other carbonate-dominated strata worldwide.展开更多
Global warming caused by the emission of CO_(2) in industrial flue gas has attractedmore and more attention.Therefore,to fix CO_(2) with high efficiency and environmentally friendly had become the hot research field.C...Global warming caused by the emission of CO_(2) in industrial flue gas has attractedmore and more attention.Therefore,to fix CO_(2) with high efficiency and environmentally friendly had become the hot research field.Compared with the traditional coal-fired power plant flue gas emission reduction technology,carbon fixation and emission reduction by microalgae is considered as a promising technology due to the advantages of simple process equipment,convenient operation and environmental protection.When the flue gas is treated by microalgae carbon fixation and emission reduction technology,microalgae cells can fix CO_(2) in the flue gas through photosynthesis,and simultaneously absorb NO_(x) and SO_(x) as nitrogen and sulfur sources required for growth.Meanwhile,they can also absorb mercury,selenium,arsenic,cadmium,lead and other heavy metal ions in the flue gas to obtain microalgae biomass.The obtained microalgae biomass can be further transformed into high valueadded products,which has broad development prospects.This paper reviews the mechanisms and pathways of CO_(2) sequestration,the mechanism and impacts of microalgal emission reduction of flue gas pollutants,and the applications of carbon sequestration in industrial flue gas by microalgae.Finally,this paper provides some guidelines and prospects for the research and application of green emission reduction technology for industrial flue gas.展开更多
Biomass-derived hard carbon is becoming promising anodes for potassium-ion batteries(PIBs)thanks to their resource abundance.Yet,it is a big challenge to improve the charge carrier kinetics of the disordered carbon la...Biomass-derived hard carbon is becoming promising anodes for potassium-ion batteries(PIBs)thanks to their resource abundance.Yet,it is a big challenge to improve the charge carrier kinetics of the disordered carbon lattice in hard carbon.Herein,confined pitch-based soft carbon in pollen-derived hard carbon(PSC/PHC)is synthesized by vapor deposition strategy as anodes for PIBs.The ordered pitch-based soft carbon compensates for the short-range electron conduction in hard carbon to enhance the charge transfer kinetics,and the externally disordered pollen-derived hard carbon alleviates the volume change of soft carbon during cycling.Benefiting from the synergistic effect of soft and hard carbon,as well as the reinforced structure of order-in-disordered carbon,the PSC/PHC obtained with deposition time of 0.5 h(PSC/PHC-0.5)displays an excellent rate capability(148.7 mAh g^(-1)at 10 A g^(-1))and superb cycling stability(70%retention over 2000 cycles at 1 A g^(-1)).This work offers a unique insight in tuning the microcrystalline structure of soft-hard carbon anode for advanced PIBs.展开更多
With the rapid economic development and continuous expansion of human activities,forest degradation—characterized by reduced forest stock within the forest including declining carbon storage—poses significant threat...With the rapid economic development and continuous expansion of human activities,forest degradation—characterized by reduced forest stock within the forest including declining carbon storage—poses significant threats to ecosystem stability.Understanding the current status of forest degradation and assessing potential carbon stocks in China are of strategic importance for making forest restoration efforts and enhancing carbon sequestration capacity.In this study,we used the national forest inventory data from 2009 to 2018 to develop a set of standard measures for assessing degraded forests across China,based on five key indicators:forest accumulation growth rate(FAGR),forest recruitment rate(FRR),tree species reduction rate(TSRR),forest canopy cover reduction rate(FCCRR),and forest disaster level(FDL).Additionally,we estimated standing carbon stock,potential carbon stock,and theoretical space to grow by developing a stand growth model,which accounts for stand density across different site classes,to evaluate the restoration potential of degraded forests.The results indicate that degraded forest area in China is 36.15 million hectares,accounting for 20.10% of a total forest area.Standing carbon stock and potential carbon stock of degraded forests in China are 23.93 million tons and 61.90 million tons,respectively.Overall,degraded forest varies significantly across different regions.The results highlight the important trade-offs among environmental factors,policy decisions,and forest conditions,providing a robust foundation for developing measures to enhance forest quality.展开更多
This study focuses on urgent research on restoring and enhancing carbon storage capacity in the Beibu Gulf Urban Agglomer-ation of China,a key area in the‘Belt and Road’Initiative,which aligns with carbon peaking an...This study focuses on urgent research on restoring and enhancing carbon storage capacity in the Beibu Gulf Urban Agglomer-ation of China,a key area in the‘Belt and Road’Initiative,which aligns with carbon peaking and neutrality goals.This research ana-lyzes the spatial characteristics of carbon metabolism from 2000 to 2020 and uses models to identify stable carbon sink areas,positive carbon flow corridors,and carbon sequestration nodes.The goal is to construct a carbon metabolism spatial security pattern(CMSSP)and propose territorial ecological restoration strategies under different development demand scenarios.The results show the following:1)in 2020,the study area’s carbon sink decreased by 8.29×10^(4) t C/yr compared with that in 2010 and by 10.83×10^(4) t C/yr compared with that in 2000.High-carbon sinks were found mainly in mountainous areas,whereas low-carbon sinks are concentrated in urban con-struction land,rural residential areas,and land margins.2)From 2000 to 2020,the spatial security pattern of carbon metabolism tended to be‘high in the middle of the east and west and low in the gulf.’In 2000,2010,and 2020,16 stable carbon sinks were identified.The carbon energy flow density in Guangxi was greater than that in Guangdong and Hainan,with positive carbon flow corridors located primarily in Guangxi and Guangdong.The number of carbon sequestration nodes remained stable at approximately 15,mainly in Guangxi and Hainan.3)Scenario simulations revealed that under the Nature-based mild restoration scenario,the carbon sink rate will reach 611.85×10^(4) t C/yr by 2030 and increase to 612.45×10^(4) t C/yr by 2060,with stable carbon sinks increasing to 18.In the restora-tion scenario based on Anti-globalization,the carbon sink will decrease from 610.24×10^(4) t C/yr in 2030 to 605.19×10^(4) t C/yr in 2060,with the disappearance of some positive carbon flow corridors and stable carbon sinks.Under the Human-based sustainable restoration scenario,the carbon sink area will decrease from 607.00×10^(4) t C/yr in 2030 to 596.39×10^(4) t C/yr in 2060,with carbon sink areas frag-menting and positive carbon flow corridors becoming less dense.4)On the basis of the current and predicted CMSSPs,this study ex-plores spatial ecological restoration strategies for high-carbon storage areas in bay urban agglomerations at four levels:the land control region,urban agglomeration structure system,carbon sink structure and bay structure control region.展开更多
This study analyzes the potential impact of EU carbon border regulation mechanism(CBAM)on the export of China’s carbon-intensive products.First,we summarized the main content of the CBAM.Next,based on the input-outpu...This study analyzes the potential impact of EU carbon border regulation mechanism(CBAM)on the export of China’s carbon-intensive products.First,we summarized the main content of the CBAM.Next,based on the input-output theory,this study proposes a calculation model for the implicit carbon emissions and indirect carbon emissions from electricity consumption in export products and presents the corresponding calculation results.Based on the scenario analysis method,six carbon tariffscenarios were designed to evaluate the impact of the CBAM on the major export sectors under each scenario.The results showed that in 2021,the implicit carbon emissions in all products exported to Europe from China were approximately 375 million tons,of which the indirect carbon emissions from electricity were approximately 41.8 million tons,accounting for more than 10%.According to the current levy plan,China is expected to be subject to carbon tariffs of approximately USD 1.4 billion,accounting for 0.3%of its total export value to Europe in 2021.Finally,to reduce the adverse effects of CBAM,four measures were proposed from the perspective of the power industry.展开更多
As an emerging electrochemical energy storage technology,potassium-ion batteries(PIBs),which are considered a“beyond Li-ion”battery system,have attracted tremendous attention due to their potential for providing a h...As an emerging electrochemical energy storage technology,potassium-ion batteries(PIBs),which are considered a“beyond Li-ion”battery system,have attracted tremendous attention due to their potential for providing a high energy density,and having abundant resource,and a low cost.However,their commercialization is hindered by the lack of practical anode materials.Among various reported anodes,conventional carbon materials,including graphite,soft carbon,and hard carbon,have emerged as promising candidates because of their abundance,low cost,high conductivity,and tunable structures.However,these materials have problems such as a low initial Coulombic efficiency,significant volume expansion,and unsatisfactory cyclability and rate performance.Various strategies to solve these have been explored,including optimizing the interlayer spacing,structural design,surface coating,constructing a multifunctional framework,and forming composites.This review provides a comprehensive overview of the recent progress in conventional carbon anodes,highlighting structural design strategies,mechanisms for improving the electrochemical performance,and underscores the critical role of these materials in promoting the practical application of PIBs.展开更多
As an important component of the global carbon cycle, forest soil organic carbon has a crucial impact on the stability of ecosystems and climate change. As one of the largest carbon pools in terrestrial ecosystems, th...As an important component of the global carbon cycle, forest soil organic carbon has a crucial impact on the stability of ecosystems and climate change. As one of the largest carbon pools in terrestrial ecosystems, the organic carbon stock in forest soils is of great significance for climate change and the health of forest ecosystems. This paper provides a comprehensive review of forest soil organic carbon, discussing its research progress, role, influencing factors, and future trends, with the aim of providing scientific evidence for forest soil carbon management to mitigate global climate change and promote the sustainable development of forest ecosystems.展开更多
Blue carbon ecosystems,including mangroves,seagrasses,and salt marshes,play a crucial role in mitigating climate change by capturing and storing atmospheric CO_(2)at rates exceeding those of terrestrial forests.This s...Blue carbon ecosystems,including mangroves,seagrasses,and salt marshes,play a crucial role in mitigating climate change by capturing and storing atmospheric CO_(2)at rates exceeding those of terrestrial forests.This study explores the potential of HCWs(Human-Controlled Wetlands)in the Italian Venice Lagoon as an underappreciated component of the global blue carbon pool.Using GEE(Google Earth Engine),we conducted a large-scale assessment of carbon sequestration in these wetlands,demonstrating its advantages over traditional in situ methods in addressing spatial variability.Our findings highlight the significance of below-water mud sediments as primary carbon reservoirs,with a TC(Total Carbon)content of 3.81%±0.94%and a stable storage function akin to peat,reinforced by high CEC(Cation Exchange Capacity).GEE analysis identified a redoximorphic zone at a depth of 20-30 cm,where microbial respiration shifts to anaerobic pathways,preventing carbon release and maintaining long-term sequestration.The study also evaluates key factors affecting remote sensing accuracy,including tidal variations,water depth,and sky cover.The strong correlation between field-measured and satellite-derived carbon parameters(R^(2)>0.85)confirms the reliability of our approach.Furthermore,we developed a GEE-based script for monitoring sediment bioturbation,leveraging Sentinel-1 SAR(Synthetic Aperture Radar)and Sentinel-2 optical data to quantify biological disturbances affecting carbon fluxes.Our results underscore the value of HCWs for carbon sequestration,reinforcing the need for targeted conservation strategies.The scalability and efficiency of remote sensing methodologies,particularly GEE,make them essential for the long-term monitoring of blue carbon ecosystems and the development of effective climate mitigation policies.展开更多
Recently,potassium-ion batteries(PIBs)have received significant attention in the energy storage field owing to their high-power output,fast charging capability,natural abundance,and environmental sustainability.Herein...Recently,potassium-ion batteries(PIBs)have received significant attention in the energy storage field owing to their high-power output,fast charging capability,natural abundance,and environmental sustainability.Herein,we comprehensively review recent advancements in the design and development of carbon-based anode materials for PIBs anodes,covering graphite,hard carbon,alloy and conversion materials with carbon,and carbon host for K metal deposition.Chemical strategies such as structural engineering,heteroatom-doping,and surface modifications are highlighted to improve electrochemical performances as well as to resolve technical challenges,such as electrode instability,low initial Coulombic efficiency,and electrolyte compatibility.Furthermore,we discuss the fundamental understanding of potassium-ion storage mechanisms of carbon-based materials and their correlation with electrochemical performance.Finally,we present the current challenges and future research directions for the practical implementation of carbon-based anodes to enhance their potential as next-generation energy storage materials for PIBs.This review aims to provide our own insights into innovative design strategies for advanced PIB's anode through the chemical and engineering strategies.展开更多
Agroforestry systems,as composite ecosystems,possess dual characteristics of both forest and agricultural ecosystems.They have been widely recognized as an important land-use approach in agriculture and play a signifi...Agroforestry systems,as composite ecosystems,possess dual characteristics of both forest and agricultural ecosystems.They have been widely recognized as an important land-use approach in agriculture and play a significant role in changing the climate.However,they also face limitations,including uncertainties related to future global climate change,land use,and land cover.This paper summarized the important role of agroforestry systems in the global carbon cycle and carbon balance from the methods and means used in the research on carbon storage and carbon balance and the research status of carbon storage and carbon balance in agroforestry ecosystems at home and abroad,and pointed out the problems that need to be paid attention to in future research.展开更多
High-quality standards serve as the value scale for consensus on the conversion of green benefits.Taking carbon emissions in production cycle and carbon footprints in life cycle as examples,it is arduous work to signi...High-quality standards serve as the value scale for consensus on the conversion of green benefits.Taking carbon emissions in production cycle and carbon footprints in life cycle as examples,it is arduous work to significantly improve their comparability,credibility,and manageability.At present,there are over 1,400 ISO standards in the dual carbon field.In China,there are over 1,400 relevant national standards,over 3,000 sectoral standards,over 1,900 local standards,and over 800 association standards,forming a comprehensive supporting system.展开更多
Land-use systems are a key factor influencing the biomass and carbon sequestration potential of a given plant species.This study aimed to estimate the above-and belowground biomass and carbon sequestration potential o...Land-use systems are a key factor influencing the biomass and carbon sequestration potential of a given plant species.This study aimed to estimate the above-and belowground biomass and carbon sequestration potential of the Bauhinia thonningii tree across different land-use types in northern Ethiopia.Vegetation and soil data were collected from 72 sampling plots(100 m×50 m)in cultivated and grazing land-use types in the Tselemti district,Tigray region,Ethiopia.Soil organic carbon stocks were calculated from measured carbon contents between 0–15 and 15–30 cm soil depths and bulk density values for cultivated and grazing land-use types.B.thonningii dendrometric parameters showed significant variation among the land-use types.The highest aboveground biomass(16.57±3.64 Mg ha^(-1)),aboveground carbon(8.28±1.82 Mg C ha^(-1)),total carbon stock(65.58±3.92 Mg C ha^(-1)),and CO_(2)sequestration(237.52±14.37 Mg C ha^(-1))were observed in grazing lands compared to cultivated lands.Dendrometric parameters,above-and belowground biomass,and carbon sequestration were significantly higher in grazing lands than in cultivated lands.Soil organic carbon was higher in the upper surface layer(0–15 cm)than in the sub-surface layer(15–30 cm)for both land-use types.Basal area,aboveground biomass,belowground biomass,above-and belowground carbon stocks,total carbon stock,CO_(2),and total biomass carbon stocks exhibited a perfect to moderate range of positive correlation with each other,while showing a low positive correlation with land-use types(p<0.05).Grazing land with B.thonningii trees possesses a higher carbon stock than cultivated land,showing the potential for increasing biomass and carbon stock in grazing land systems by scaling up similar practices.Improved tree-based farming systems can contribute to mitigate global warming,support carbon financing initiatives,and serve as a benchmark for comparing future changes in biomass and carbon stocks.展开更多
At the beginning of 2025,China’s national carbon market carbon price trend exhibited a continuous unilateral downward trajectory,representing a departure from the overall steady upward trend in carbon prices since th...At the beginning of 2025,China’s national carbon market carbon price trend exhibited a continuous unilateral downward trajectory,representing a departure from the overall steady upward trend in carbon prices since the carbon market launched in 2021.The analysis suggests that the primary reason for the recent decline in carbon prices is the reversal of supply and demand dynamics in the carbon market,with increased quota supply amid a sluggish economy.It is expected that downward pressure on carbon prices will persist in the short term,but with more industries being included and continued policy optimization and improvement,a rise in China’s medium-to long-term carbon prices is highly probable.Recommendations for enterprises involved in carbon asset operations and management:first,refining carbon asset reserves and trading strategies;second,accelerating internal CCER project development;third,exploring carbon financial instrument applications;fourth,establishing and improving internal carbon pricing mechanisms;fifth,proactively planning for new industry inclusion.展开更多
Although currently,a large part of the existing buildings is considered inefficient in terms of energy,the ability to save energy consumption up to 80%has been proven in residential and commercial buildings.Also,carbo...Although currently,a large part of the existing buildings is considered inefficient in terms of energy,the ability to save energy consumption up to 80%has been proven in residential and commercial buildings.Also,carbon dioxide is one of the most important greenhouse gases contributing to climate change and is responsible for 60%of global warming.The facade of the building,as the main intermediary between the interior and exterior spaces,plays a significant role in adjusting the weather conditions and providing thermal comfort to the residents.In this research,715 different scenarios were defined with the combination of various types of construction materials,and the effect of each of these scenarios on the process of energy loss from the surface of the external walls of the building during the operation period was determined.In the end,these scenarios were compared during a one-year operation period,and the amount of energy consumption in each of these scenarios was calculated.Also,bymeasuring the amount of carbon emissions in buildings during the operation period and before that,let’s look at practical methods to reduce the effects of the construction industry on the environment.By comparing the research findings,it can be seen that the ranking of each scenario in terms of total energy consumption is not necessarily the same as the ranking of energy consumption for gas consumption or electricity consumption for the same scenario.That is,choosing the optimal scenario depends on the type of energy consumed in the building.Finally,we determined the scenarios with the lowest and highest amounts of embodied and operational carbon.In the end,we obtained the latent carbon compensation period for each scenario.This article can help designers and construction engineers optimize the energy consumption of buildings by deciding on the right materials.展开更多
China is the world's largest carbon dioxide(CO_(2)) emitter and a major trading country. Both anthropogenic and natural factors play a critical role in its carbon budget. However,previous studies mostly focus on e...China is the world's largest carbon dioxide(CO_(2)) emitter and a major trading country. Both anthropogenic and natural factors play a critical role in its carbon budget. However,previous studies mostly focus on evaluating anthropogenic emissions or the natural carbon cycle separately, and few included trade-related(import and export) CO_(2) emissions and its contribution on global warming. Using the Carbon Tracker CT2019 assimilation dataset and China trade emissions from the Global Carbon Project, we found that the change trend of global CO_(2) flux had obvious spatial heterogeneity, which is mainly affected by anthropogenic CO_(2) flux. From 2000 to 2018, carbon emissions from fossil fuels in the world and in China all showed an obvious increasing trend, but the magnitude of the increase tended to slow down.In 2018, the radiative forcing(RF) caused by China's import and export trade was-0.0038 W m^(-2), and the RF caused by natural carbon budget was-0.0027 W m^(-2), offsetting 1.54% and 1.13% of the RF caused by fossil fuels that year, respectively. From 2000 to 2018, the contribution of China's carbon emission from fossil fuels to global RF was 11.32%. Considering China's import and export trade, the contribution of anthropogenic CO_(2) emission to global RF decreased to 9.50%. Furthermore, taking into account the offset of carbon sink from China's terrestrial ecosystems, the net contribution of China to global RF decreased to 7.63%. This study demonstrates that China's terrestrial ecosystem and import and export trade are all mitigating China's impact on global anthropogenic warming, and also confirms that during the research process on climate change, comprehensively considering the carbon budget from anthropogenic and natural carbon budgets is necessary to systematically understand the impacts of regional or national carbon budgets on global warming.展开更多
The combined application of organic manure and chemical fertilizers is an effective way to enhance soil organic carbon(SOC)sequestration through its influences on organic carbon(OC)input and the stability of SOC fract...The combined application of organic manure and chemical fertilizers is an effective way to enhance soil organic carbon(SOC)sequestration through its influences on organic carbon(OC)input and the stability of SOC fractions.However,there is limited information on the carbon sequestration efficiency(CSE)of chemically separated SOC fractions and its response to OC input under long-term fertilization regimes,especially at different sites.This study used three long-term fertilization experiments in Gongzhuling,Zhengzhou and Qiyang spanning 20 years to compare the stocks and CSE in four different OC fractions(very labile OC,labile OC,less labile OC,and non-labile OC)and their relationships with annual OC input.Three treatments of no fertilization(CK),chemical nitrogen,phosphorous,and potassium fertilizers(NPK),and chemical NPK combined with manure(NPKM)were employed.The results showed that compared with CK,NPKM resulted in enhanced SOC stocks and sequestration rates as well as CSE levels of all fractions irrespective of experimental site.Specifically for the very labile and non-labile OC fractions,NPKM significantly increased the SOC stocks by 43 and 83%,77 and 86%,and 73 and 82%in Gongzhuling,Qiyang,and Zhengzhou relative to CK,respectively.However,the greatest changes in SOC stock relative to the initial value were associated with non-labile OC fractions in Gongzhuling,Zhengzhou,and Qiyang,which reached 6.65,7.16,and 7.35 Mg ha^(-1) under NPKM.Similarly,the highest CSE was noted for non-labile OC fractions under NPKM followed sequentially by the very labile OC,labile OC,and less-labile OC fractions,however a CSE of 8.56%in the non-labile OC fraction for Gongzhuling was higher than the values of 6.10 and 4.61%in Zhengzhou and Qiyang,respectively.In addition,the CSE for the passive pool(very labile+labile OC fractions)was higher than the active pool(less-labile+non-labile OC fractions),with the highest value in Gongzhuling.The redundancy analysis revealed that the CSEs of fractions and pools were negatively influenced by annual OC input,mean annual precipitation and temperature,but positively influenced by the initial SOC and total nitrogen contents.This suggests that differential stability of sequestered OC is further governed by indigenous site characteristics and variable amounts of annual OC input.展开更多
文摘Present industrial decarbonization technologies require an active CO_(2)-concentration system,often based on lime reaction or amine binding reactions,which is energy intensive and carries a high CO_(2)-footprint.Here instead,an effective process without active CO_(2)concentration is demonstrated in a new process-termed IC2CNT(Insulationdiffusion facilitated CO_(2) to Carbon Nanomaterial Technology)decarbonization process.Molten carbonates such as Li_(2)CO_(3)(mp 723℃)are highly insoluble to industrial feed gas principal components(N2,O_(2),and H2O).However,CO_(2) can readily dissolve and react in molten carbonates.We have recently characterized high CO_(2) diffusion rates through porous aluminosilicate and calcium-magnesium silicate thermal insulations.Here,the CO_(2) in ambient feed gas passes through these membranes into molten Li_(2)CO_(3).The membrane also concurrently insulates the feed gas from the hot molten carbonate chamber,obviating the need to heat the(non-CO_(2))majority of the feed gas to high temperature.In this insulation facilitated decarbonization process CO_(2)is split by electrolysis in the molten carbonate producing sequestered,high-purity carbon nanomaterials(such as CNTs)and O_(2).
基金supported by the third scientific survey project in Xinjiang(2022xjkk0300)the public welfare geological survey projects initiated by the China Geological Survey(DD20190296,DD20221731).
文摘Addressing global warming,a common change today,requires achieving peak carbon dioxide emissions and carbon neutrality(also referred to as the dual carbon goals).Enhancing research on the carbon cycle is urgently needed as the foundation.Water,a key carrier in the carbon cycle,necessitates investigation into groundwater carbon pools’contribution to atmospheric carbon sinks.This study assessed carbon stocks in the Yinchuan Basin’s soil and groundwater carbon pools.Findings indicate the basin’s surface soils contain approximately 24.16 Tg of organic carbon and a total of 60.01 Tg of carbon.In contrast,the basin’s groundwater holds around 4.90 Tg of carbon,roughly one-fifth of the organic carbon in surface soils.Thus,groundwater and soil carbon pools possess comparable carbon stocks,underscoring the importance of the groundwater carbon pool.Studies on terrestrial carbon balance should incorporate groundwater carbon pools,which deserve increased focus.Evaluating groundwater carbon pools’contributions is vital for achieving the dual carbon goals.
基金Major Project of the National Social Science Foundation of China(NSSFC)-“Study on the Construction of China’s Unified Carbon Market and the Realization Mechanism of the‘Dual Carbon’Goal”(Grant No.24VRC003).
文摘This study explores the mechanisms by which China’s pilot carbon emissions trading schemes(ETS)facilitate industrial low-carbon transitions.We construct a theoretical model and conduct an empirical analysis using provincial panel data from seven pilot provinces spanning 2006-2021.Applying a multi-period difference-in-differences(DID)approach,we evaluate the environmental and economic impacts of the pilot ETS policies.The findings yield three key insights:(1)The pilot ETS significantly reduces carbon emission intensity and improves low-carbon total factor productivity(TFP),thereby promoting China’s industrial low-carbon transition.(2)Mechanism analysis indicates that the ETS primarily operates through cost constraints and industrial structural upgrading,while the effect of technological progress has yet to fully materialize.(3)Heterogeneity analysis reveals that the policy’s effects are more significant in regions with higher levels of economic development and R&D investment,leading to greater carbon intensity reductions and productivity gains.In addition,regions with higher foreign direct investment(FDI)experience more substantial improvements in low-carbon TFP,possibly reflecting technology spillover effects.
基金This study was supported by the project ofthe Science and Technology Innovation Fund of Command Center of Natural Resources Intergrated Survey entitled“Temporal and spatial distribution of paleochannel and origin of organic carbon burial in the Western Bohai Sea since 2.28Ma”(KC20220011)the project entitled“Characterization of Carboniferous-Early Permian heterogeneous porous carbonate reservoirs and hydrocarbon potential analysis in the central uplift of the South Yellow Sea Basin”(KLSG2304)+3 种基金by the Key laboratory of Submarine Science,Ministry of Natural Resources,the project entitled“1∶50000 Marine regional Geological survey in Caofeidian Sea Area,Bohai Sea”(ZD20220602)“1∶250000 Marine regional Geological survey in Weihai Sea Area,North Yellow Sea”(DD20230412)“Geological survey on tectonic and sedimentary conditions of Laoshan uplift”(DD2016015)by the China Geological Survey,and the project entitled“Study on Hydrocarbon Accumulation Failure and Fluid Evolution Reduction of the Permian Reservoir in the Laoshan Uplift,South Yellow Sea”(42076220)organized by the National Natural Science Foundation of China.
文摘Mesozoic-Palaeozoic marine carbonate rocks are crucial hydrocarbon reservoirs in the Central Uplift area of the South Yellow Sea Basin(SYSB).Due to the scarcity of boreholes and the significant heterogeneity of carbonate reservoirs,the distribution of porous carbonate reservoirs and their related key controlling factors remain unclear.In this study,factors affecting the distribution of porous Carboniferous-Early Permian carbonate reservoirs in the SYSB were investigated through seismic inversion and isotope analysis.The log-seismic characteristics of porous carbonate reservoirs,sensitive lithology parameters,and physical property parameters were extracted and analyzed.The pre-stack simultaneous inversion technique was applied to predict the lithology and physical properties of porous carbonate reservoirs.Moreover,the sedimentary of carbonate was analyzed using isotopes of carbon,oxygen,and strontium.The results show that porous carbonate reservoirs are mainly developed in the open platform sediments with porosities of 3%-5%and are mainly distributed in the paleo-highland(Huanglong Formation and Chuanshan Formation)and the slope of paleo-highland(Hezhou Formation).The porous carbonate reservoirs of the Qixia Formation are only locally developed.In addition,the negativeδ13C excursions indicate a warm and humid tropical climate with three sea-level fluctuations in the study area from the Carboniferous to Early Permian.The favorable conditions for developing porous carbonate rocks include the sedimentary environment and diagenetic process.The primary pore tends to form in high-energy environments of the paleo-highland,and the secondary pore is increased by dissolution during the syngenetic or quasi-syngenetic period.According to the hydrocarbon potential analysis,the Late Ordovician Wufeng Formation and Lower Silurian Gaojiabian Formation are the source rocks in the high-maturity-over-maturity stage,the Carboniferous-Lower Permian carbonate is the good reservoirs,and the Late Permian Longtan-Dalong Formation is the stable seal,ensuring a huge hydrocarbon accumulation potential in SYSB.The methods proposed in this study can be applied to other carbonate-dominated strata worldwide.
基金supported by the National Key R&D Program of China(No.2023YFC3709500).
文摘Global warming caused by the emission of CO_(2) in industrial flue gas has attractedmore and more attention.Therefore,to fix CO_(2) with high efficiency and environmentally friendly had become the hot research field.Compared with the traditional coal-fired power plant flue gas emission reduction technology,carbon fixation and emission reduction by microalgae is considered as a promising technology due to the advantages of simple process equipment,convenient operation and environmental protection.When the flue gas is treated by microalgae carbon fixation and emission reduction technology,microalgae cells can fix CO_(2) in the flue gas through photosynthesis,and simultaneously absorb NO_(x) and SO_(x) as nitrogen and sulfur sources required for growth.Meanwhile,they can also absorb mercury,selenium,arsenic,cadmium,lead and other heavy metal ions in the flue gas to obtain microalgae biomass.The obtained microalgae biomass can be further transformed into high valueadded products,which has broad development prospects.This paper reviews the mechanisms and pathways of CO_(2) sequestration,the mechanism and impacts of microalgal emission reduction of flue gas pollutants,and the applications of carbon sequestration in industrial flue gas by microalgae.Finally,this paper provides some guidelines and prospects for the research and application of green emission reduction technology for industrial flue gas.
基金partly supported by the National Natural Science Foundation of China(52072002,52372037,and 22108003)the Postdoctoral Fellowship Program of CPSF(GZC20230015)+2 种基金the Outstanding Scientific Research and Innovation Team Program of Higher Education Institutions of Anhui Province(2023AH010015)the Excellent Young Talents Fund Program of Higher Education Institutions of Anhui Province(2023AH030026)financial support from the Anhui International Research Center of Energy Materials Green Manufacturing and Biotechnology。
文摘Biomass-derived hard carbon is becoming promising anodes for potassium-ion batteries(PIBs)thanks to their resource abundance.Yet,it is a big challenge to improve the charge carrier kinetics of the disordered carbon lattice in hard carbon.Herein,confined pitch-based soft carbon in pollen-derived hard carbon(PSC/PHC)is synthesized by vapor deposition strategy as anodes for PIBs.The ordered pitch-based soft carbon compensates for the short-range electron conduction in hard carbon to enhance the charge transfer kinetics,and the externally disordered pollen-derived hard carbon alleviates the volume change of soft carbon during cycling.Benefiting from the synergistic effect of soft and hard carbon,as well as the reinforced structure of order-in-disordered carbon,the PSC/PHC obtained with deposition time of 0.5 h(PSC/PHC-0.5)displays an excellent rate capability(148.7 mAh g^(-1)at 10 A g^(-1))and superb cycling stability(70%retention over 2000 cycles at 1 A g^(-1)).This work offers a unique insight in tuning the microcrystalline structure of soft-hard carbon anode for advanced PIBs.
基金supported by National Key Research and Development Program of China(No.2021YFD2200405(S.R.L.))Natural Science Foundation of China(Grant No.31971653).
文摘With the rapid economic development and continuous expansion of human activities,forest degradation—characterized by reduced forest stock within the forest including declining carbon storage—poses significant threats to ecosystem stability.Understanding the current status of forest degradation and assessing potential carbon stocks in China are of strategic importance for making forest restoration efforts and enhancing carbon sequestration capacity.In this study,we used the national forest inventory data from 2009 to 2018 to develop a set of standard measures for assessing degraded forests across China,based on five key indicators:forest accumulation growth rate(FAGR),forest recruitment rate(FRR),tree species reduction rate(TSRR),forest canopy cover reduction rate(FCCRR),and forest disaster level(FDL).Additionally,we estimated standing carbon stock,potential carbon stock,and theoretical space to grow by developing a stand growth model,which accounts for stand density across different site classes,to evaluate the restoration potential of degraded forests.The results indicate that degraded forest area in China is 36.15 million hectares,accounting for 20.10% of a total forest area.Standing carbon stock and potential carbon stock of degraded forests in China are 23.93 million tons and 61.90 million tons,respectively.Overall,degraded forest varies significantly across different regions.The results highlight the important trade-offs among environmental factors,policy decisions,and forest conditions,providing a robust foundation for developing measures to enhance forest quality.
基金Under the auspices of the National Natural Science Foundation of China(No.52268008)。
文摘This study focuses on urgent research on restoring and enhancing carbon storage capacity in the Beibu Gulf Urban Agglomer-ation of China,a key area in the‘Belt and Road’Initiative,which aligns with carbon peaking and neutrality goals.This research ana-lyzes the spatial characteristics of carbon metabolism from 2000 to 2020 and uses models to identify stable carbon sink areas,positive carbon flow corridors,and carbon sequestration nodes.The goal is to construct a carbon metabolism spatial security pattern(CMSSP)and propose territorial ecological restoration strategies under different development demand scenarios.The results show the following:1)in 2020,the study area’s carbon sink decreased by 8.29×10^(4) t C/yr compared with that in 2010 and by 10.83×10^(4) t C/yr compared with that in 2000.High-carbon sinks were found mainly in mountainous areas,whereas low-carbon sinks are concentrated in urban con-struction land,rural residential areas,and land margins.2)From 2000 to 2020,the spatial security pattern of carbon metabolism tended to be‘high in the middle of the east and west and low in the gulf.’In 2000,2010,and 2020,16 stable carbon sinks were identified.The carbon energy flow density in Guangxi was greater than that in Guangdong and Hainan,with positive carbon flow corridors located primarily in Guangxi and Guangdong.The number of carbon sequestration nodes remained stable at approximately 15,mainly in Guangxi and Hainan.3)Scenario simulations revealed that under the Nature-based mild restoration scenario,the carbon sink rate will reach 611.85×10^(4) t C/yr by 2030 and increase to 612.45×10^(4) t C/yr by 2060,with stable carbon sinks increasing to 18.In the restora-tion scenario based on Anti-globalization,the carbon sink will decrease from 610.24×10^(4) t C/yr in 2030 to 605.19×10^(4) t C/yr in 2060,with the disappearance of some positive carbon flow corridors and stable carbon sinks.Under the Human-based sustainable restoration scenario,the carbon sink area will decrease from 607.00×10^(4) t C/yr in 2030 to 596.39×10^(4) t C/yr in 2060,with carbon sink areas frag-menting and positive carbon flow corridors becoming less dense.4)On the basis of the current and predicted CMSSPs,this study ex-plores spatial ecological restoration strategies for high-carbon storage areas in bay urban agglomerations at four levels:the land control region,urban agglomeration structure system,carbon sink structure and bay structure control region.
文摘This study analyzes the potential impact of EU carbon border regulation mechanism(CBAM)on the export of China’s carbon-intensive products.First,we summarized the main content of the CBAM.Next,based on the input-output theory,this study proposes a calculation model for the implicit carbon emissions and indirect carbon emissions from electricity consumption in export products and presents the corresponding calculation results.Based on the scenario analysis method,six carbon tariffscenarios were designed to evaluate the impact of the CBAM on the major export sectors under each scenario.The results showed that in 2021,the implicit carbon emissions in all products exported to Europe from China were approximately 375 million tons,of which the indirect carbon emissions from electricity were approximately 41.8 million tons,accounting for more than 10%.According to the current levy plan,China is expected to be subject to carbon tariffs of approximately USD 1.4 billion,accounting for 0.3%of its total export value to Europe in 2021.Finally,to reduce the adverse effects of CBAM,four measures were proposed from the perspective of the power industry.
文摘As an emerging electrochemical energy storage technology,potassium-ion batteries(PIBs),which are considered a“beyond Li-ion”battery system,have attracted tremendous attention due to their potential for providing a high energy density,and having abundant resource,and a low cost.However,their commercialization is hindered by the lack of practical anode materials.Among various reported anodes,conventional carbon materials,including graphite,soft carbon,and hard carbon,have emerged as promising candidates because of their abundance,low cost,high conductivity,and tunable structures.However,these materials have problems such as a low initial Coulombic efficiency,significant volume expansion,and unsatisfactory cyclability and rate performance.Various strategies to solve these have been explored,including optimizing the interlayer spacing,structural design,surface coating,constructing a multifunctional framework,and forming composites.This review provides a comprehensive overview of the recent progress in conventional carbon anodes,highlighting structural design strategies,mechanisms for improving the electrochemical performance,and underscores the critical role of these materials in promoting the practical application of PIBs.
文摘As an important component of the global carbon cycle, forest soil organic carbon has a crucial impact on the stability of ecosystems and climate change. As one of the largest carbon pools in terrestrial ecosystems, the organic carbon stock in forest soils is of great significance for climate change and the health of forest ecosystems. This paper provides a comprehensive review of forest soil organic carbon, discussing its research progress, role, influencing factors, and future trends, with the aim of providing scientific evidence for forest soil carbon management to mitigate global climate change and promote the sustainable development of forest ecosystems.
文摘Blue carbon ecosystems,including mangroves,seagrasses,and salt marshes,play a crucial role in mitigating climate change by capturing and storing atmospheric CO_(2)at rates exceeding those of terrestrial forests.This study explores the potential of HCWs(Human-Controlled Wetlands)in the Italian Venice Lagoon as an underappreciated component of the global blue carbon pool.Using GEE(Google Earth Engine),we conducted a large-scale assessment of carbon sequestration in these wetlands,demonstrating its advantages over traditional in situ methods in addressing spatial variability.Our findings highlight the significance of below-water mud sediments as primary carbon reservoirs,with a TC(Total Carbon)content of 3.81%±0.94%and a stable storage function akin to peat,reinforced by high CEC(Cation Exchange Capacity).GEE analysis identified a redoximorphic zone at a depth of 20-30 cm,where microbial respiration shifts to anaerobic pathways,preventing carbon release and maintaining long-term sequestration.The study also evaluates key factors affecting remote sensing accuracy,including tidal variations,water depth,and sky cover.The strong correlation between field-measured and satellite-derived carbon parameters(R^(2)>0.85)confirms the reliability of our approach.Furthermore,we developed a GEE-based script for monitoring sediment bioturbation,leveraging Sentinel-1 SAR(Synthetic Aperture Radar)and Sentinel-2 optical data to quantify biological disturbances affecting carbon fluxes.Our results underscore the value of HCWs for carbon sequestration,reinforcing the need for targeted conservation strategies.The scalability and efficiency of remote sensing methodologies,particularly GEE,make them essential for the long-term monitoring of blue carbon ecosystems and the development of effective climate mitigation policies.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(No.RS-2024-00453815)Korea Institute of Energy Technology Evaluation and Planning(KETEP)grant funded by the Korea government(MOTIE)(20228510070100)。
文摘Recently,potassium-ion batteries(PIBs)have received significant attention in the energy storage field owing to their high-power output,fast charging capability,natural abundance,and environmental sustainability.Herein,we comprehensively review recent advancements in the design and development of carbon-based anode materials for PIBs anodes,covering graphite,hard carbon,alloy and conversion materials with carbon,and carbon host for K metal deposition.Chemical strategies such as structural engineering,heteroatom-doping,and surface modifications are highlighted to improve electrochemical performances as well as to resolve technical challenges,such as electrode instability,low initial Coulombic efficiency,and electrolyte compatibility.Furthermore,we discuss the fundamental understanding of potassium-ion storage mechanisms of carbon-based materials and their correlation with electrochemical performance.Finally,we present the current challenges and future research directions for the practical implementation of carbon-based anodes to enhance their potential as next-generation energy storage materials for PIBs.This review aims to provide our own insights into innovative design strategies for advanced PIB's anode through the chemical and engineering strategies.
文摘Agroforestry systems,as composite ecosystems,possess dual characteristics of both forest and agricultural ecosystems.They have been widely recognized as an important land-use approach in agriculture and play a significant role in changing the climate.However,they also face limitations,including uncertainties related to future global climate change,land use,and land cover.This paper summarized the important role of agroforestry systems in the global carbon cycle and carbon balance from the methods and means used in the research on carbon storage and carbon balance and the research status of carbon storage and carbon balance in agroforestry ecosystems at home and abroad,and pointed out the problems that need to be paid attention to in future research.
文摘High-quality standards serve as the value scale for consensus on the conversion of green benefits.Taking carbon emissions in production cycle and carbon footprints in life cycle as examples,it is arduous work to significantly improve their comparability,credibility,and manageability.At present,there are over 1,400 ISO standards in the dual carbon field.In China,there are over 1,400 relevant national standards,over 3,000 sectoral standards,over 1,900 local standards,and over 800 association standards,forming a comprehensive supporting system.
基金financial support from Mekelle University and the MU-HU-NMBU institutional collaboration project。
文摘Land-use systems are a key factor influencing the biomass and carbon sequestration potential of a given plant species.This study aimed to estimate the above-and belowground biomass and carbon sequestration potential of the Bauhinia thonningii tree across different land-use types in northern Ethiopia.Vegetation and soil data were collected from 72 sampling plots(100 m×50 m)in cultivated and grazing land-use types in the Tselemti district,Tigray region,Ethiopia.Soil organic carbon stocks were calculated from measured carbon contents between 0–15 and 15–30 cm soil depths and bulk density values for cultivated and grazing land-use types.B.thonningii dendrometric parameters showed significant variation among the land-use types.The highest aboveground biomass(16.57±3.64 Mg ha^(-1)),aboveground carbon(8.28±1.82 Mg C ha^(-1)),total carbon stock(65.58±3.92 Mg C ha^(-1)),and CO_(2)sequestration(237.52±14.37 Mg C ha^(-1))were observed in grazing lands compared to cultivated lands.Dendrometric parameters,above-and belowground biomass,and carbon sequestration were significantly higher in grazing lands than in cultivated lands.Soil organic carbon was higher in the upper surface layer(0–15 cm)than in the sub-surface layer(15–30 cm)for both land-use types.Basal area,aboveground biomass,belowground biomass,above-and belowground carbon stocks,total carbon stock,CO_(2),and total biomass carbon stocks exhibited a perfect to moderate range of positive correlation with each other,while showing a low positive correlation with land-use types(p<0.05).Grazing land with B.thonningii trees possesses a higher carbon stock than cultivated land,showing the potential for increasing biomass and carbon stock in grazing land systems by scaling up similar practices.Improved tree-based farming systems can contribute to mitigate global warming,support carbon financing initiatives,and serve as a benchmark for comparing future changes in biomass and carbon stocks.
文摘At the beginning of 2025,China’s national carbon market carbon price trend exhibited a continuous unilateral downward trajectory,representing a departure from the overall steady upward trend in carbon prices since the carbon market launched in 2021.The analysis suggests that the primary reason for the recent decline in carbon prices is the reversal of supply and demand dynamics in the carbon market,with increased quota supply amid a sluggish economy.It is expected that downward pressure on carbon prices will persist in the short term,but with more industries being included and continued policy optimization and improvement,a rise in China’s medium-to long-term carbon prices is highly probable.Recommendations for enterprises involved in carbon asset operations and management:first,refining carbon asset reserves and trading strategies;second,accelerating internal CCER project development;third,exploring carbon financial instrument applications;fourth,establishing and improving internal carbon pricing mechanisms;fifth,proactively planning for new industry inclusion.
文摘Although currently,a large part of the existing buildings is considered inefficient in terms of energy,the ability to save energy consumption up to 80%has been proven in residential and commercial buildings.Also,carbon dioxide is one of the most important greenhouse gases contributing to climate change and is responsible for 60%of global warming.The facade of the building,as the main intermediary between the interior and exterior spaces,plays a significant role in adjusting the weather conditions and providing thermal comfort to the residents.In this research,715 different scenarios were defined with the combination of various types of construction materials,and the effect of each of these scenarios on the process of energy loss from the surface of the external walls of the building during the operation period was determined.In the end,these scenarios were compared during a one-year operation period,and the amount of energy consumption in each of these scenarios was calculated.Also,bymeasuring the amount of carbon emissions in buildings during the operation period and before that,let’s look at practical methods to reduce the effects of the construction industry on the environment.By comparing the research findings,it can be seen that the ranking of each scenario in terms of total energy consumption is not necessarily the same as the ranking of energy consumption for gas consumption or electricity consumption for the same scenario.That is,choosing the optimal scenario depends on the type of energy consumed in the building.Finally,we determined the scenarios with the lowest and highest amounts of embodied and operational carbon.In the end,we obtained the latent carbon compensation period for each scenario.This article can help designers and construction engineers optimize the energy consumption of buildings by deciding on the right materials.
基金National Natural Science Foundation of China,No.42071415National Key Research and Development Program of China,No.2021YFE0106700Outstanding Youth Foundation of Henan Natural Science Foundation,No.202300410049。
文摘China is the world's largest carbon dioxide(CO_(2)) emitter and a major trading country. Both anthropogenic and natural factors play a critical role in its carbon budget. However,previous studies mostly focus on evaluating anthropogenic emissions or the natural carbon cycle separately, and few included trade-related(import and export) CO_(2) emissions and its contribution on global warming. Using the Carbon Tracker CT2019 assimilation dataset and China trade emissions from the Global Carbon Project, we found that the change trend of global CO_(2) flux had obvious spatial heterogeneity, which is mainly affected by anthropogenic CO_(2) flux. From 2000 to 2018, carbon emissions from fossil fuels in the world and in China all showed an obvious increasing trend, but the magnitude of the increase tended to slow down.In 2018, the radiative forcing(RF) caused by China's import and export trade was-0.0038 W m^(-2), and the RF caused by natural carbon budget was-0.0027 W m^(-2), offsetting 1.54% and 1.13% of the RF caused by fossil fuels that year, respectively. From 2000 to 2018, the contribution of China's carbon emission from fossil fuels to global RF was 11.32%. Considering China's import and export trade, the contribution of anthropogenic CO_(2) emission to global RF decreased to 9.50%. Furthermore, taking into account the offset of carbon sink from China's terrestrial ecosystems, the net contribution of China to global RF decreased to 7.63%. This study demonstrates that China's terrestrial ecosystem and import and export trade are all mitigating China's impact on global anthropogenic warming, and also confirms that during the research process on climate change, comprehensively considering the carbon budget from anthropogenic and natural carbon budgets is necessary to systematically understand the impacts of regional or national carbon budgets on global warming.
基金support from the National Natural Science Foundation of China(42177341)is highly acknowledged。
文摘The combined application of organic manure and chemical fertilizers is an effective way to enhance soil organic carbon(SOC)sequestration through its influences on organic carbon(OC)input and the stability of SOC fractions.However,there is limited information on the carbon sequestration efficiency(CSE)of chemically separated SOC fractions and its response to OC input under long-term fertilization regimes,especially at different sites.This study used three long-term fertilization experiments in Gongzhuling,Zhengzhou and Qiyang spanning 20 years to compare the stocks and CSE in four different OC fractions(very labile OC,labile OC,less labile OC,and non-labile OC)and their relationships with annual OC input.Three treatments of no fertilization(CK),chemical nitrogen,phosphorous,and potassium fertilizers(NPK),and chemical NPK combined with manure(NPKM)were employed.The results showed that compared with CK,NPKM resulted in enhanced SOC stocks and sequestration rates as well as CSE levels of all fractions irrespective of experimental site.Specifically for the very labile and non-labile OC fractions,NPKM significantly increased the SOC stocks by 43 and 83%,77 and 86%,and 73 and 82%in Gongzhuling,Qiyang,and Zhengzhou relative to CK,respectively.However,the greatest changes in SOC stock relative to the initial value were associated with non-labile OC fractions in Gongzhuling,Zhengzhou,and Qiyang,which reached 6.65,7.16,and 7.35 Mg ha^(-1) under NPKM.Similarly,the highest CSE was noted for non-labile OC fractions under NPKM followed sequentially by the very labile OC,labile OC,and less-labile OC fractions,however a CSE of 8.56%in the non-labile OC fraction for Gongzhuling was higher than the values of 6.10 and 4.61%in Zhengzhou and Qiyang,respectively.In addition,the CSE for the passive pool(very labile+labile OC fractions)was higher than the active pool(less-labile+non-labile OC fractions),with the highest value in Gongzhuling.The redundancy analysis revealed that the CSEs of fractions and pools were negatively influenced by annual OC input,mean annual precipitation and temperature,but positively influenced by the initial SOC and total nitrogen contents.This suggests that differential stability of sequestered OC is further governed by indigenous site characteristics and variable amounts of annual OC input.