期刊文献+
共找到552,869篇文章
< 1 2 250 >
每页显示 20 50 100
P4LoF: Scheduling Loop-Free Multi-Flow Updates in Programmable Networks
1
作者 Jiqiang Xia Qi Zhan +2 位作者 Le Tian Yuxiang Hu Jianhua Peng 《Computers, Materials & Continua》 2026年第1期1236-1254,共19页
The rapid growth of distributed data-centric applications and AI workloads increases demand for low-latency,high-throughput communication,necessitating frequent and flexible updates to network routing configurations.H... The rapid growth of distributed data-centric applications and AI workloads increases demand for low-latency,high-throughput communication,necessitating frequent and flexible updates to network routing configurations.However,maintaining consistent forwarding states during these updates is challenging,particularly when rerouting multiple flows simultaneously.Existing approaches pay little attention to multi-flow update,where improper update sequences across data plane nodes may construct deadlock dependencies.Moreover,these methods typically involve excessive control-data plane interactions,incurring significant resource overhead and performance degradation.This paper presents P4LoF,an efficient loop-free update approach that enables the controller to reroute multiple flows through minimal interactions.P4LoF first utilizes a greedy-based algorithm to generate the shortest update dependency chain for the single-flow update.These chains are then dynamically merged into a dependency graph and resolved as a Shortest Common Super-sequence(SCS)problem to produce the update sequence of multi-flow update.To address deadlock dependencies in multi-flow updates,P4LoF builds a deadlock-fix forwarding model that leverages the flexible packet processing capabilities of the programmable data plane.Experimental results show that P4LoF reduces control-data plane interactions by at least 32.6%with modest overhead,while effectively guaranteeing loop-free consistency. 展开更多
关键词 network management update consistency programmable data plane P4
在线阅读 下载PDF
FMCSNet: Mobile Devices-Oriented Lightweight Multi-Scale Object Detection via Fast Multi-Scale Channel Shuffling Network Model
2
作者 Lijuan Huang Xianyi Liu +1 位作者 Jinping Liu Pengfei Xu 《Computers, Materials & Continua》 2026年第1期1292-1311,共20页
The ubiquity of mobile devices has driven advancements in mobile object detection.However,challenges in multi-scale object detection in open,complex environments persist due to limited computational resources.Traditio... The ubiquity of mobile devices has driven advancements in mobile object detection.However,challenges in multi-scale object detection in open,complex environments persist due to limited computational resources.Traditional approaches like network compression,quantization,and lightweight design often sacrifice accuracy or feature representation robustness.This article introduces the Fast Multi-scale Channel Shuffling Network(FMCSNet),a novel lightweight detection model optimized for mobile devices.FMCSNet integrates a fully convolutional Multilayer Perceptron(MLP)module,offering global perception without significantly increasing parameters,effectively bridging the gap between CNNs and Vision Transformers.FMCSNet achieves a delicate balance between computation and accuracy mainly by two key modules:the ShiftMLP module,including a shift operation and an MLP module,and a Partial group Convolutional(PGConv)module,reducing computation while enhancing information exchange between channels.With a computational complexity of 1.4G FLOPs and 1.3M parameters,FMCSNet outperforms CNN-based and DWConv-based ShuffleNetv2 by 1%and 4.5%mAP on the Pascal VOC 2007 dataset,respectively.Additionally,FMCSNet achieves a mAP of 30.0(0.5:0.95 IoU threshold)with only 2.5G FLOPs and 2.0M parameters.It achieves 32 FPS on low-performance i5-series CPUs,meeting real-time detection requirements.The versatility of the PGConv module’s adaptability across scenarios further highlights FMCSNet as a promising solution for real-time mobile object detection. 展开更多
关键词 Object detection lightweight network partial group convolution multilayer perceptron
在线阅读 下载PDF
Integration of deep neural network modeling and LC-MS-based pseudo-targeted metabolomics to discriminate easily confused ginseng species 被引量:2
3
作者 Meiting Jiang Yuyang Sha +8 位作者 Yadan Zou Xiaoyan Xu Mengxiang Ding Xu Lian Hongda Wang Qilong Wang Kefeng Li De-an Guo Wenzhi Yang 《Journal of Pharmaceutical Analysis》 2025年第1期126-137,共12页
Metabolomics covers a wide range of applications in life sciences,biomedicine,and phytology.Data acquisition(to achieve high coverage and efficiency)and analysis(to pursue good classification)are two key segments invo... Metabolomics covers a wide range of applications in life sciences,biomedicine,and phytology.Data acquisition(to achieve high coverage and efficiency)and analysis(to pursue good classification)are two key segments involved in metabolomics workflows.Various chemometric approaches utilizing either pattern recognition or machine learning have been employed to separate different groups.However,insufficient feature extraction,inappropriate feature selection,overfitting,or underfitting lead to an insufficient capacity to discriminate plants that are often easily confused.Using two ginseng varieties,namely Panax japonicus(PJ)and Panax japonicus var.major(PJvm),containing the similar ginsenosides,we integrated pseudo-targeted metabolomics and deep neural network(DNN)modeling to achieve accurate species differentiation.A pseudo-targeted metabolomics approach was optimized through data acquisition mode,ion pairs generation,comparison between multiple reaction monitoring(MRM)and scheduled MRM(sMRM),and chromatographic elution gradient.In total,1980 ion pairs were monitored within 23 min,allowing for the most comprehensive ginseng metabolome analysis.The established DNN model demonstrated excellent classification performance(in terms of accuracy,precision,recall,F1 score,area under the curve,and receiver operating characteristic(ROC))using the entire metabolome data and feature-selection dataset,exhibiting superior advantages over random forest(RF),support vector machine(SVM),extreme gradient boosting(XGBoost),and multilayer perceptron(MLP).Moreover,DNNs were advantageous for automated feature learning,nonlinear modeling,adaptability,and generalization.This study confirmed practicality of the established strategy for efficient metabolomics data analysis and reliable classification performance even when using small-volume samples.This established approach holds promise for plant metabolomics and is not limited to ginseng. 展开更多
关键词 Liquid chromatography-mass spectrometry Pseudo-targeted metabolomics Deep neural network Species differentiation GINSENG
在线阅读 下载PDF
Constrained Networked Predictive Control for Nonlinear Systems Using a High-Order Fully Actuated System Approach 被引量:1
4
作者 Yi Huang Guo-Ping Liu +1 位作者 Yi Yu Wenshan Hu 《IEEE/CAA Journal of Automatica Sinica》 2025年第2期478-480,共3页
Dear Editor,In this letter,a constrained networked predictive control strategy is proposed for the optimal control problem of complex nonlinear highorder fully actuated(HOFA)systems with noises.The method can effectiv... Dear Editor,In this letter,a constrained networked predictive control strategy is proposed for the optimal control problem of complex nonlinear highorder fully actuated(HOFA)systems with noises.The method can effectively deal with nonlinearities,constraints,and noises in the system,optimize the performance metric,and present an upper bound on the stable output of the system. 展开更多
关键词 optimal control problem constrained networked predictive control strategy Performance Optimization present upper bound Nonlinear Systems NOISES Constrained networked Predictive Control High Order Fully Actuated Systems
在线阅读 下载PDF
Nonlinear Interference-Aware Routing,Wavelength and Power Allocation in C+L+S Multi-Band Optical Networks 被引量:1
5
作者 Zhang Xu Xie Wang +4 位作者 Feng Chuan Zeng Hankun Zhou Shanshan Zhang Fan Gong Xiaoxue 《China Communications》 2025年第4期129-142,共14页
Multi-band optical networks are a potential technology for increasing network capacity.However,the strong interference and non-uniformity between wavelengths in multi-band optical networks have become a bottleneck res... Multi-band optical networks are a potential technology for increasing network capacity.However,the strong interference and non-uniformity between wavelengths in multi-band optical networks have become a bottleneck restricting the transmission capacity of multi-band optical networks.To overcome these challenges,it is particularly important to implement optical power optimization targeting wavelength differences.Therefore,based on the generalized Gaussian noise model,we first formulate an optimization model for the problems of routing,modulation format,wavelength,and power allocation in C+L+S multi-band optical networks.Our objective function is to maximize the average link capacity of the network while ensuring that the Optical Signal-to-Noise(OSNR)threshold of the service request is not exceeded.Next,we propose a NonLinear Interferenceaware(NLI-aware)routing,modulation format,wavelength,and power allocation algorithm.Finally,we conduct simulations under different test conditions.The simulation results indicate that our algorithm can effectively reduce the blocking probability by 23.5%and improve the average link capacity by 3.78%in C+L+S multi-band optical networks. 展开更多
关键词 multiband optical communications multiband optical networks power allocation wavelength assignment
在线阅读 下载PDF
A Survey of Link Failure Detection and Recovery in Software-Defined Networks
6
作者 Suheib Alhiyari Siti Hafizah AB Hamid Nur Nasuha Daud 《Computers, Materials & Continua》 SCIE EI 2025年第1期103-137,共35页
Software-defined networking(SDN)is an innovative paradigm that separates the control and data planes,introducing centralized network control.SDN is increasingly being adopted by Carrier Grade networks,offering enhance... Software-defined networking(SDN)is an innovative paradigm that separates the control and data planes,introducing centralized network control.SDN is increasingly being adopted by Carrier Grade networks,offering enhanced networkmanagement capabilities than those of traditional networks.However,because SDN is designed to ensure high-level service availability,it faces additional challenges.One of themost critical challenges is ensuring efficient detection and recovery from link failures in the data plane.Such failures can significantly impact network performance and lead to service outages,making resiliency a key concern for the effective adoption of SDN.Since the recovery process is intrinsically dependent on timely failure detection,this research surveys and analyzes the current literature on both failure detection and recovery approaches in SDN.The survey provides a critical comparison of existing failure detection techniques,highlighting their advantages and disadvantages.Additionally,it examines the current failure recovery methods,categorized as either restoration-based or protection-based,and offers a comprehensive comparison of their strengths and limitations.Lastly,future research challenges and directions are discussed to address the shortcomings of existing failure recovery methods. 展开更多
关键词 Software defined networking failure detection failure recovery RESTORATION PROTECTION
在线阅读 下载PDF
Modeling and Comprehensive Review of Signaling Storms in 3GPP-Based Mobile Broadband Networks:Causes,Solutions,and Countermeasures
7
作者 Muhammad Qasim Khan Fazal Malik +1 位作者 Fahad Alturise Noor Rahman 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期123-153,共31页
Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important a... Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important and scarce network resources such as bandwidth and processing power.There have been several reports of these control signaling turning into signaling storms halting network operations and causing the respective Telecom companies big financial losses.This paper draws its motivation from such real network disaster incidents attributed to signaling storms.In this paper,we present a thorough survey of the causes,of the signaling storm problems in 3GPP-based mobile broadband networks and discuss in detail their possible solutions and countermeasures.We provide relevant analytical models to help quantify the effect of the potential causes and benefits of their corresponding solutions.Another important contribution of this paper is the comparison of the possible causes and solutions/countermeasures,concerning their effect on several important network aspects such as architecture,additional signaling,fidelity,etc.,in the form of a table.This paper presents an update and an extension of our earlier conference publication.To our knowledge,no similar survey study exists on the subject. 展开更多
关键词 Signaling storm problems control signaling load analytical modeling 3GPP networks smart devices diameter signaling mobile broadband data access data traffic mobility management signaling network architecture 5G mobile communication
在线阅读 下载PDF
An efficient and accurate numerical method for simulating close-range blast loads of cylindrical charges based on neural network 被引量:1
8
作者 Ting Liu Changhai Chen +2 位作者 Han Li Yaowen Yu Yuansheng Cheng 《Defence Technology(防务技术)》 2025年第2期257-271,共15页
To address the problems of low accuracy by the CONWEP model and poor efficiency by the Coupled Eulerian-Lagrangian(CEL)method in predicting close-range air blast loads of cylindrical charges,a neural network-based sim... To address the problems of low accuracy by the CONWEP model and poor efficiency by the Coupled Eulerian-Lagrangian(CEL)method in predicting close-range air blast loads of cylindrical charges,a neural network-based simulation(NNS)method with higher accuracy and better efficiency was proposed.The NNS method consisted of three main steps.First,the parameters of blast loads,including the peak pressures and impulses of cylindrical charges with different aspect ratios(L/D)at different stand-off distances and incident angles were obtained by two-dimensional numerical simulations.Subsequently,incident shape factors of cylindrical charges with arbitrary aspect ratios were predicted by a neural network.Finally,reflected shape factors were derived and implemented into the subroutine of the ABAQUS code to modify the CONWEP model,including modifications of impulse and overpressure.The reliability of the proposed NNS method was verified by related experimental results.Remarkable accuracy improvement was acquired by the proposed NNS method compared with the unmodified CONWEP model.Moreover,huge efficiency superiority was obtained by the proposed NNS method compared with the CEL method.The proposed NNS method showed good accuracy when the scaled distance was greater than 0.2 m/kg^(1/3).It should be noted that there is no need to generate a new dataset again since the blast loads satisfy the similarity law,and the proposed NNS method can be directly used to simulate the blast loads generated by different cylindrical charges.The proposed NNS method with high efficiency and accuracy can be used as an effective method to analyze the dynamic response of structures under blast loads,and it has significant application prospects in designing protective structures. 展开更多
关键词 Close-range air blast load Cylindrical charge Numerical method Neural network CEL method CONWEP model
在线阅读 下载PDF
Multi-Timescale Optimization Scheduling of Distribution Networks Based on the Uncertainty Intervals in Source-Load Forecasting 被引量:1
9
作者 Huanan Yu Chunhe Ye +3 位作者 Shiqiang Li He Wang Jing Bian Jinling Li 《Energy Engineering》 2025年第6期2417-2448,共32页
With the increasing integration of large-scale distributed energy resources into the grid,traditional distribution network optimization and dispatch methods struggle to address the challenges posed by both generation ... With the increasing integration of large-scale distributed energy resources into the grid,traditional distribution network optimization and dispatch methods struggle to address the challenges posed by both generation and load.Accounting for these issues,this paper proposes a multi-timescale coordinated optimization dispatch method for distribution networks.First,the probability box theory was employed to determine the uncertainty intervals of generation and load forecasts,based on which,the requirements for flexibility dispatch and capacity constraints of the grid were calculated and analyzed.Subsequently,a multi-timescale optimization framework was constructed,incorporating the generation and load forecast uncertainties.This framework included optimization models for dayahead scheduling,intra-day optimization,and real-time adjustments,aiming to meet flexibility needs across different timescales and improve the economic efficiency of the grid.Furthermore,an improved soft actor-critic algorithm was introduced to enhance the uncertainty exploration capability.Utilizing a centralized training and decentralized execution framework,a multi-agent SAC network model was developed to improve the decision-making efficiency of the agents.Finally,the effectiveness and superiority of the proposed method were validated using a modified IEEE-33 bus test system. 展开更多
关键词 Renewable energy distribution networks source-load uncertainty interval flexible scheduling soft actor-critic algorithm optimization model
在线阅读 下载PDF
Unraveling the mechanism of action of Shangxia Liangji formula for treating insomnia:a metabolomics and network pharmacology approach
10
作者 Xia-Jie Quan Hao Liang +5 位作者 Yong-Hong Tang Li Jiang Xiong-Ying Ji Feng-Ying Zhang Ping Zhang Bo Ouyang 《Traditional Medicine Research》 2025年第2期16-29,共14页
Background:Insomnia is a prevalent clinical condition and Shangxia Liangji formula(SXLJF)is a well-established method of treatment.Nevertheless,the specific mechanism of action of SXLJF remains unclear.Methods:The mou... Background:Insomnia is a prevalent clinical condition and Shangxia Liangji formula(SXLJF)is a well-established method of treatment.Nevertheless,the specific mechanism of action of SXLJF remains unclear.Methods:The mouse model of insomnia was established by intraperitoneal injection of para-chlorophenylalanine.Forty-two mice were randomly divided into a negative control group,model group,SXLJF group(18.72 g/kg/day),and positive control group(diazepam,2 mg/kg)and treated with the corresponding drugs for 7 consecutive days.The open field test and pentobarbital-induced sleeping test were conducted.LC-MS-based untargeted metabolomics and network pharmacology were applied to explore the potential targets of SXLJF for treating insomnia.Finally,key targets were validated using RT-qPCR.Results:Behavioral tests demonstrated that SXLJF reduced the total distance,average velocity,central distance,and sleep latency,and prolonged sleep duration.Metabolomics and network pharmacology revealed potential targets,signaling pathways,metabolic pathways,and metabolites associated with the anti-insomnia effects of SXLJF.Specifically,tyrosine hydroxylase(TH)and tyrosine metabolism emerged as crucial metabolic pathways and targets,respectively.RT-qPCR results supported the role of TH in the mechanism of SXLJF in treating insomnia.Conclusion:In conclusion,TH and tyrosine metabolism may represent significant targets and pathways for SXLJF in treating insomnia. 展开更多
关键词 Shangxia Liangji formula INSOMNIA metabolomics network pharmacology tyrosine hydroxylase tyrosine metabolism
暂未订购
A method for modeling and evaluating the interoperability of multi-agent systems based on hierarchical weighted networks
11
作者 DONG Jingwei TANG Wei YU Minggang 《Journal of Systems Engineering and Electronics》 2025年第3期754-767,共14页
Multi-agent systems often require good interoperability in the process of completing their assigned tasks.This paper first models the static structure and dynamic behavior of multiagent systems based on layered weight... Multi-agent systems often require good interoperability in the process of completing their assigned tasks.This paper first models the static structure and dynamic behavior of multiagent systems based on layered weighted scale-free community network and susceptible-infected-recovered(SIR)model.To solve the problem of difficulty in describing the changes in the structure and collaboration mode of the system under external factors,a two-dimensional Monte Carlo method and an improved dynamic Bayesian network are used to simulate the impact of external environmental factors on multi-agent systems.A collaborative information flow path optimization algorithm for agents under environmental factors is designed based on the Dijkstra algorithm.A method for evaluating system interoperability is designed based on simulation experiments,providing reference for the construction planning and optimization of organizational application of the system.Finally,the feasibility of the method is verified through case studies. 展开更多
关键词 complex network agent INTEROPERABILITY susceptible-infected-recovered model dynamic Bayesian network
在线阅读 下载PDF
Modeling,Analysis and Validation of Friendship Paradox in Evolving Networks
12
作者 Xu Jiasheng Fu Luoyi +4 位作者 Xu Zhiying Ding Jiaxin Zhou Lei Wang Xinbing Zhou Chenghu 《China Communications》 2025年第1期216-234,共19页
Friendship paradox states that individuals are likely to have fewer friends than their friends do,on average.Despite of its wide existence and appealing applications in real social networks,the mathematical understand... Friendship paradox states that individuals are likely to have fewer friends than their friends do,on average.Despite of its wide existence and appealing applications in real social networks,the mathematical understanding of friendship paradox is very limited.Only few works provide theoretical evidence of single-step and multi-step friendship paradoxes,given that the neighbors of interest are onehop and multi-hop away from the target node.However,they consider non-evolving networks,as opposed to the topology of real social networks that are constantly growing over time.We are thus motivated to present a first look into friendship paradox in evolving networks,where newly added nodes preferentially attach themselves to those with higher degrees.Our analytical verification of both single-step and multistep friendship paradoxes in evolving networks,along with comparison to the non-evolving counterparts,discloses that“friendship paradox is even more paradoxical in evolving networks”,primarily from three aspects:1)we demonstrate a strengthened effect of single-step friendship paradox in evolving networks,with a larger probability(more than 0.8)of a random node’s neighbors having higher average degree than the random node itself;2)we unravel higher effectiveness of multi-step friendship paradox in seeking for influential nodes in evolving networks,as the rate of reaching the max degree node can be improved by a factor of at least Θ(t^(2/3))with t being the network size;3)we empirically verify our findings through both synthetic and real datasets,which suggest high agreements of results and consolidate the reasonability of evolving model for real social networks. 展开更多
关键词 evolving networks friendship paradox random walk social networks
在线阅读 下载PDF
Mechanisms and preliminary validation of luteolin in the treatment of hyperuricemia based on network pharmacology and toxicology studies
13
作者 Yulin Hong Xinhui Yang +3 位作者 Zhenyu Liu Yizhen Chen Yunkun Zhang Xin Wu 《Asian Journal of Traditional Medicines》 2025年第4期161-172,共12页
Hyperuricemia(HUA)refers to a condition where fasting serum uric acid levels exceed 420μmol/L in men and 350μmol/L in women,affecting 17.4%of China’s general population,showing increasing prevalence among younger i... Hyperuricemia(HUA)refers to a condition where fasting serum uric acid levels exceed 420μmol/L in men and 350μmol/L in women,affecting 17.4%of China’s general population,showing increasing prevalence among younger individuals.Luteolin,a common flavonoid compound,exhibits multiple biological effects,including inhibition of tumor proliferation and inflammatory responses.It also suppresses the activity of urate transporter 1(URAT1),promoting uric acid excretion.This study is the first to integrate network toxicology and network pharmacology approaches to systematically analyze the multi-target mechanisms of adenine-induced HUA and luteolin-treated HUA,with molecular docking validation of interaction targets.We constructed compound-pathway-intersection gene networks and a dual-group PPI network to analyze the mechanisms of adenine-induced HUA and luteolin-treated HUA.The dual-group PPI network identified 7 shared targets,namely XDH,PYGL,IL10,PPARG,TNF,VEGFA,and MAOA,involving core intersecting pathways such as purine-xanthine metabolism and insulin resistance.Luteolin may activate PPARG to regulate inflammation and uric acid excretion modules in the adenine network.GO-KEGG analysis indicates that intersection genes for adenine pathogenesis involve diverse biological processes,cellular components,and molecular functions,with core target KEGG analysis revealing 15 signaling pathways.Luteolin’s therapeutic targets are associated with more entries,and its core target KEGG analysis identified 46 signaling pathways.Molecular docking shows TNF,PPARG,and PYGL bind to both luteolin and adenine with negative binding energies,and luteolin’s binding energies are all below 5 kJ/mol,confirming stable binding.Luteolin’s anti-HUA mechanism is characterized by inhibition of production,promotion of excretion,anti-inflammation and metabolic regulation,but interactions with gut microbiota metabolites require further study. 展开更多
关键词 hyperuricemia(HUA) LUTEOlin network pharmacology network toxicology molecular docking
在线阅读 下载PDF
Intelligent AP Clustering and Receiver Design for Uplink Cell-free Networks
14
作者 AN Zhenyu HE Shiwen +2 位作者 YANG Li ZHAN Hang HUANG Yongming 《ZTE Communications》 2025年第2期103-108,共6页
Cell-free networks can effectively reduce interference due to diversity gain.Two key technologies,access point(AP)clustering and transceiver design,play key roles in cell-free networks,and they are implemented at diff... Cell-free networks can effectively reduce interference due to diversity gain.Two key technologies,access point(AP)clustering and transceiver design,play key roles in cell-free networks,and they are implemented at different layers of the air interface.To address the issues and obtain global optimal results,this paper proposes an uplink joint AP clustering and receiver optimization algorithm,where a cross-layer optimization model is built based on graph neural networks(GNNs)with low computational complexity.Experimental results show that the proposed algorithm can activate fewer APs for each user with a small performance loss compared with conventional algorithms. 展开更多
关键词 AP clustering cell-free networks cross-layer optimization graph neural network
在线阅读 下载PDF
DRL-AMIR: Intelligent Flow Scheduling for Software-Defined Zero Trust Networks
15
作者 Wenlong Ke Zilong Li +5 位作者 Peiyu Chen Benfeng Chen Jinglin Lv Qiang Wang Ziyi Jia Shigen Shen 《Computers, Materials & Continua》 2025年第8期3305-3319,共15页
Zero Trust Network(ZTN)enhances network security through strict authentication and access control.However,in the ZTN,optimizing flow control to improve the quality of service is still facing challenges.Software Define... Zero Trust Network(ZTN)enhances network security through strict authentication and access control.However,in the ZTN,optimizing flow control to improve the quality of service is still facing challenges.Software Defined Network(SDN)provides solutions through centralized control and dynamic resource allocation,but the existing scheduling methods based on Deep Reinforcement Learning(DRL)are insufficient in terms of convergence speed and dynamic optimization capability.To solve these problems,this paper proposes DRL-AMIR,which is an efficient flow scheduling method for software defined ZTN.This method constructs a flow scheduling optimization model that comprehensively considers service delay,bandwidth occupation,and path hops.Additionally,it balances the differentiated requirements of delay-critical K-flows,bandwidth-intensive D-flows,and background B-flows through adaptiveweighting.Theproposed framework employs a customized state space comprising node labels,link bandwidth,delaymetrics,and path length.It incorporates an action space derived fromnode weights and a hybrid reward function that integrates both single-step and multi-step excitation mechanisms.Based on these components,a hierarchical architecture is designed,effectively integrating the data plane,control plane,and knowledge plane.In particular,the adaptive expert mechanism is introduced,which triggers the shortest path algorithm in the training process to accelerate convergence,reduce trial and error costs,and maintain stability.Experiments across diverse real-world network topologies demonstrate that DRL-AMIR achieves a 15–20%reduction in K-flow transmission delays,a 10–15%improvement in link bandwidth utilization compared to SPR,QoSR,and DRSIR,and a 30%faster convergence speed via adaptive expert mechanisms. 展开更多
关键词 Zero trust network software-defined networking deep reinforcement learning flow scheduling
在线阅读 下载PDF
Learning-Based Matching Game for Task Scheduling and Resource Collaboration in Intent-Driven Task-Oriented Networks
16
作者 Jiaorui Huang Min Cao +2 位作者 Chungang Yang Zhu Han Tong Li 《Engineering》 2025年第11期143-154,共12页
With the rapid advancement of satellite communication technologies,space information networks(SINs)have become essential infrastructure for complex service delivery and cross-domain task coordination,facilitating the ... With the rapid advancement of satellite communication technologies,space information networks(SINs)have become essential infrastructure for complex service delivery and cross-domain task coordination,facilitating the transition toward an intent-driven task-oriented coordination paradigm across the space,ground,and user segments.This study presents a novel intent-driven task-oriented network(IDTN)framework to address task scheduling and resource allocation challenges in SINs.The scheduling problem is formulated as a three-sided matching game that incorporates the preference attributes of entities across all network segments.To manage the variability of random task arrivals and dynamic resources,a context-aware linear upper-confidence-bound online learning mechanism is integrated to reduce decision-making uncertainty.Simulation results demonstrate the effectiveness of the proposed IDTN framework.Compared with conventional baseline methods,the framework achieves significant performance improvements,including a 4.4%-28.9%increase in average system reward,a 6.2%-34.5%improvement in resource utilization,and a 5.6%-35.7%enhancement in user satisfaction.The proposed framework is expected to facilitate the integration and orchestration of space-based platforms. 展开更多
关键词 Intent-driven network Matching game Resource allocation Space information network Task scheduling
在线阅读 下载PDF
Resting-state brain network remodeling after different nerve reconstruction surgeries:a functional magnetic resonance imaging study in brachial plexus injury rats
17
作者 Yunting Xiang Xiangxin Xing +6 位作者 Xuyun Hua Yuwen Zhang Xin Xue Jiajia Wu Mouxiong Zheng He Wang Jianguang Xu 《Neural Regeneration Research》 SCIE CAS 2025年第5期1495-1504,共10页
Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network lev... Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network level have not been elucidated.This study aimed to explore intranetwork changes related to altered peripheral neural pathways after different nerve reconstruction surgeries,including nerve repair,endto-end nerve transfer,and end-to-side nerve transfer.Sprague–Dawley rats underwent complete left brachial plexus transection and were divided into four equal groups of eight:no nerve repair,grafted nerve repair,phrenic nerve end-to-end transfer,and end-to-side transfer with a graft sutured to the anterior upper trunk.Resting-state brain functional magnetic resonance imaging was obtained 7 months after surgery.The independent component analysis algorithm was utilized to identify group-level network components of interest and extract resting-state functional connectivity values of each voxel within the component.Alterations in intra-network resting-state functional connectivity were compared among the groups.Target muscle reinnervation was assessed by behavioral observation(elbow flexion)and electromyography.The results showed that alterations in the sensorimotor and interoception networks were mostly related to changes in the peripheral neural pathway.Nerve repair was related to enhanced connectivity within the sensorimotor network,while end-to-side nerve transfer might be more beneficial for restoring control over the affected limb by the original motor representation.The thalamic-cortical pathway was enhanced within the interoception network after nerve repair and end-to-end nerve transfer.Brain areas related to cognition and emotion were enhanced after end-to-side nerve transfer.Our study revealed important brain networks related to different nerve reconstructions.These networks may be potential targets for enhancing motor recovery. 展开更多
关键词 brain functional networks end-to-end nerve transfer end-to-side nerve transfer independent component analysis nerve repair peripheral plexus injury resting-state functional connectivity
暂未订购
Distinct element modeling of hydraulic fracture propagation with discrete fracture network at Gonghe enhanced geothermal system site, northwest China
18
作者 Botong Du Fengshou Zhang Chongyuan Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第6期3435-3448,共14页
Accurate prediction of hydraulic fracture propagation is vital for Enhanced Geothermal System(EGS)design.We study the first hydraulic fracturing job at the GR1 well in the Gonghe Basin using field data,where the overa... Accurate prediction of hydraulic fracture propagation is vital for Enhanced Geothermal System(EGS)design.We study the first hydraulic fracturing job at the GR1 well in the Gonghe Basin using field data,where the overall direction of hydraulic fractures does not show a delineated shape parallel to the maximum principal stress orientation.A field-scale numerical model based on the distinct element method is set up to carry out a fully coupled hydromechanical simulation,with the explicit representation of natural fractures via the discrete fracture network(DFN)approach.The effects of injection parameters and in situ stress on hydraulic fracture patterns are then quantitatively assessed.The study reveals that shear-induced deformation primarily governs the fracturing morphology in the GR1 well,driven by smaller injection rates and viscosities that promote massive activation of natural fractures,ultimately dominating the direction of hydraulic fracturing.Furthermore,the increase of in situ differential stress may promote shear damage of natural fracture surfaces,with the exact influence pattern depending on the combination of specific discontinuity properties and in situ stress state.Finally,we provide recommendations for EGS fracturing based on the influence characteristics of multiple parameters.This study can serve as an effective basis and reference for the design and optimization of EGS in the Gonghe basin and other sites. 展开更多
关键词 Enhanced geothermal system 3DEC Discrete fracture network Hydraulic fracture simulation Fracture network propagation
在线阅读 下载PDF
Physics-Guided Deep Network for Milling Dynamics Prediction
19
作者 Kunpeng Zhu Jun Li 《Engineering》 2025年第12期71-85,共15页
Milling force is key to the understanding of cutting mechanism and the control of machining process.Traditional milling force models have limited prediction accuracy due to their simplified conditions and incomplete k... Milling force is key to the understanding of cutting mechanism and the control of machining process.Traditional milling force models have limited prediction accuracy due to their simplified conditions and incomplete knowledge contained for model construction.On the other hand,due to the lack of guidance from physics,the data-driven models lack interpretability,making them challenging to generalize to practical applications.To meet these difficulties,a deep network model guided by milling dynamics is proposed in this study to predict the instantaneous milling force and spindle vibration under varying cutting conditions.The model uses a milling dynamics model to generate data sets to pre-train the deep network and then integrates the experimental data for fine-tuning to improve the model’s generalization and accuracy.Additionally,the vibration equation is incorporated into the loss function as the physical constraint,enhancing the model’s interpretability.A milling experiment is conducted to validate the effectiveness of the proposed model,and the results indicate that the physics incorporated could improve the network learning capability and interpretability.The predicted results are in good agreement with the measured values,with an average error as low as 2.6705%.The prediction accuracy is increased by 24.4367%compared to the pure data-driven model. 展开更多
关键词 Milling force DYNAMICS Physics-guided network PREDICTION
在线阅读 下载PDF
Yunweiling alleviates functional constipation:integrating network pharmacology and experimental study
20
作者 Peng Zhang Wei Li +4 位作者 Weiwen Zheng Jinwen Liu Nuonan She Xia Chen Weibo Wen 《Animal Models and Experimental Medicine》 2025年第7期1277-1291,共15页
Background:This study investigated the impacts and mechanisms of yunweiling in the management of Functional Constipation(FC)using network pharmacology and experimental research.Methods:Using the Traditional Chinese Me... Background:This study investigated the impacts and mechanisms of yunweiling in the management of Functional Constipation(FC)using network pharmacology and experimental research.Methods:Using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP),Genecard,and Online Mendelian Inheritance in Man(OMIM)databases,a potential gene target for yunweiling in treating FC was found.A pharmacological network was built and viewed in Cytoscape.A protein interac-tion map was created with STRING and Cytoscape.‘clusterProfiler’helped uncover its mechanism.Molecular docking was done with AutoDock Vina.In a constipation mouse model,Western blot was used to assess yunweiling's effectiveness.Results:To investigate yunweiling's therapeutic effects on FC,we employed a loperamide-induced constipation model.Successful model establishment was con-firmed by first black stool time,reduced stool output,and impaired gastrointestinal motility.Yunweiling treatment,especially at high and medium doses,significantly al-leviated constipation symptoms by reducing first black stool time,increasing stool output,and enhancing gastrointestinal motility.HE staining revealed yunweiling's ability to restore colon tissue structure.Yunweiling modulated the expression of key proteins TP53,P-AKT,P-PI3K,RET,and Rai,implicating its involvement in the PI3K-Akt signaling pathway.Comparative analysis showed yunweiling to be more effective than its individual components(shionone,β-sitosterol,and daucosterol)in improving constipation.The combination of yunweiling with TP53 and PI3K-Akt inhibitors fur-ther enhanced its therapeutic effects,suggesting a synergistic mechanism.Conclusions:The integration of network pharmacology and experimental investiga-tions indicated the effectiveness of yunweiling in managing FC,offering essential theoretical support for clinical application. 展开更多
关键词 functional constipation mouse model network pharmacology yunweiling
暂未订购
上一页 1 2 250 下一页 到第
使用帮助 返回顶部