【目的】天然气补燃型压缩空气储能(compressed air energy storage,CAES)系统存在环境污染问题,氢气作为替代燃料不会造成温室气体排放,但现阶段对纯氢补燃型CAES系统的技术经济可行性认识不足,因此有必要开展相关研究。【方法】基于[...【目的】天然气补燃型压缩空气储能(compressed air energy storage,CAES)系统存在环境污染问题,氢气作为替代燃料不会造成温室气体排放,但现阶段对纯氢补燃型CAES系统的技术经济可行性认识不足,因此有必要开展相关研究。【方法】基于[火用]和[火用]经济分析方法,进行了纯氢补燃型和天然气补燃型CAES系统的对比分析,重点关注其热力学性能、不可逆损失分布、经济性和[火用]经济性的影响。此外,探讨了两者参数敏感性。【结果】纯氢补燃型CAES系统在放电时间、储能密度和[火用]效率方面均优于天然气补燃型CAES系统;由于氢气成本高于天然气,纯氢补燃型CAES系统的产品平均[火用]成本为155.62美元/GJ,显著高于天然气补燃型CAES系统对应的27.57美元/GJ;为使纯氢补燃型CAES系统具备与天然气补燃型CAES系统相同的商用竞争力,推荐售电价格为0.2062美元/(kW·h);此外,纯氢补燃型CAES系统对参数变化更加敏感,在高参数条件下可实现更好的性能提升和成本降低。【结论】研究成果揭示了纯氢补燃型CAES系统的应用潜力,并为其进一步商业推广提供了技术参考。展开更多
随着全球能源结构转型与电力系统灵活性需求的日益增长,压缩空气储能(Compressed Air Energy Storage,CAES)作为一种大容量、长时储能技术,其展现出巨大的发展潜力。陕西省作为我国西部重要能源基地,拥有大量的盐穴、废弃煤矿、枯竭油...随着全球能源结构转型与电力系统灵活性需求的日益增长,压缩空气储能(Compressed Air Energy Storage,CAES)作为一种大容量、长时储能技术,其展现出巨大的发展潜力。陕西省作为我国西部重要能源基地,拥有大量的盐穴、废弃煤矿、枯竭油气藏、灰岩溶洞等地下空间,这些天然或人工形成的地下空间为建设大型压缩空气储能设施提供了理想的场所,其通常具有较高的密封性和稳定性,适合作为高压空气的储存容器,可减少新建储气室的成本和对环境的影响。我省在资源、技术、政策与市场需求方面均具备开展地下空间压缩空气储能的良好条件,其发展前景广阔,有望成为我国乃至全球储能技术应用的典范。展开更多
Renewable energy storage technologies are critical for transitioning to sustainable energy systems,with salt caverns playing a significant role in large-scale solutions.In water-soluble mining of low-grade salt format...Renewable energy storage technologies are critical for transitioning to sustainable energy systems,with salt caverns playing a significant role in large-scale solutions.In water-soluble mining of low-grade salt formations,insoluble impurities and interlayers detach during salt dissolution and accumulate as sediment at the cavern base,thereby reducing the storage capacity and economic viability of salt cavern gas storage(SCGS).This study investigates sediment formation mechanisms,void distribution,and voidage in the Huai'an low-grade salt mine,introducing a novel self-developed physical simulation device for two butted-well horizontal(TWH)caverns that replicates compressed air injection and brine discharge.Experiments comparing“one injection and one discharge”and“two injections and one discharge”modes revealed that(1)compressed air effectively displaces brine from sediment voids,(2)a 0.5 MPa injection pressure corresponds to a 10.3 MPa operational lower limit in practice,aligning with field data,and(3)sediment voidage is approximately 46%,validated via air-brine interface theory.The“two injections and one discharge”mode outperformed in both discharge volume and rate.Additionally,a mathematical model for brine displacement via compressed air was established.These results provide foundational insights for optimizing compressed air energy storage(CAES)in low-grade salt mines,advancing their role in renewable energy integration.展开更多
Compressed air energy storage(CAES)has emerged as a grid-scale energy storage linchpin,providing diurnal-to-seasonal timescale energy buffering for renewable power integration.Diverging from conventional salt cavernde...Compressed air energy storage(CAES)has emerged as a grid-scale energy storage linchpin,providing diurnal-to-seasonal timescale energy buffering for renewable power integration.Diverging from conventional salt caverndependent approaches,artificial cavern-based CAES unlocks geographical adaptability through engineered underground containment.This study systematically reviews critical technologies in chamber construction,including site selection,structural design,excavation methods,and post-construction evaluation.Site selection employs a multi-criteria matrix that combines geological and environmental factors.Structural design integrates spatial layout,burial depth,sealing system,and component compatibility to ensure chamber stability.Excavation prioritizes controlled blasting for homogeneous rock,while a tunnel boring machine is deployed in fractured zones to preserve integrity.Postconstruction assessments validate load-bearing capacity,sealing performance,and operational readiness,supported by data-driven maintenance strategies.Ongoing challenges include site-specific geological risks,sealing system durability under cyclic loading,equipment integration,field-scale validation,standardization gaps,and cost-efficiency optimization.These innovations will establish best practices for building large-scale,high-efficiency CAES plants with ultra-long duration and grid resilience,accelerating the transition to carbon-neutral power systems.展开更多
The structural integrity of the interface between a concrete plug and the surrounding rock may be compromised during frequent cycles of air charging,discharging,and storage,which is typical of compressed air energy st...The structural integrity of the interface between a concrete plug and the surrounding rock may be compromised during frequent cycles of air charging,discharging,and storage,which is typical of compressed air energy storage systems in abandoned mines.To investigate this,nitrogen permeability tests were conducted on the interface samples of rockeconcrete interface in both consolidated and unconsolidated states under cyclic loading.The variations in the flow rate throughout the permeability process under different cycle numbers and load range conditions were investigated.The microscopic analysis at the interfaces was imaged using computed tomography scanning.The results indicated that the gas permeability of the cemented interfaces with different roughness values varied with confining pressure ranging from 10^(-13) m^(2) to 10^(-12) m^(2),whereas that of the non-cemented interfaces ranged from 10^(-12) m^(2) to 10^(-11) m^(2).A larger load variation range encompassed the permeability variation characteristics within a smaller variation range.The evolution pattern of the permeability ratio with the number of cycles was influenced by the inlet pressure.The greater the inlet pressure,the larger the increment ratio of the permeability.The permeability change patterns of interfaces with different roughness values were similar.Microscopic analysis revealed that pores inside the concrete were connected to the interface gaps.Under the coupling of stress and gas pressure,the gas could penetrate the crack tips or pores,accelerating the development of microcracks during the cyclic opening and closing of the pores.This study provides valuable insights into the safe long-term operation of underground high-pressure air storage.展开更多
Renewable energies including solar and wind are intermittent,causing difficulty in connection to conventional power grids due to instability of output duty.Compressed air energy storage(CAES)in underground caverns has...Renewable energies including solar and wind are intermittent,causing difficulty in connection to conventional power grids due to instability of output duty.Compressed air energy storage(CAES)in underground caverns has been considered a potential large-scale energy storage technology.In order to explore the gas injection char-acteristic of underground cavern,a detailed thermodynamic model of the system is established in the process modelling software gPROMS.The four subsystem models,i.e.the compressor,heat exchanger,underground cavern storage and expander,are connected with inlet-outlet equilibrium of flow rate/pressure/temperature to form an integrated CAES system model in gPROMS.The maximum air pressure and temperature in the cavern are focused to interrogate the critical condition of the cavern during the injection process.When analyzing the mass flow rate-pressure ratio relationship,it’s found that under specified operating conditions,an increase in mass flow rate can lead to a higher pressure ratio.Compression power demand also escalates significantly with increasing mass flow rates,underscoring the system’s energy-intensive nature.Additionally,the cooler outlet energy rate progressively decreases,becoming increasingly negative as the mass flow rate increases.These in-sights offer critical theoretical foundations for optimizing practical efficiency of CAES.展开更多
以改变储热器中热量的分配为基础,建立了先进绝热压缩空气储能(Advanced Adiabatic Compressed Air EnergyStorage,简称AA-CAES)系统的冷热电联供模型。推导了系统的主要参数表达式,并以某建筑冷热电负荷的变化情况为例,对比了AA-CAES...以改变储热器中热量的分配为基础,建立了先进绝热压缩空气储能(Advanced Adiabatic Compressed Air EnergyStorage,简称AA-CAES)系统的冷热电联供模型。推导了系统的主要参数表达式,并以某建筑冷热电负荷的变化情况为例,对比了AA-CAES系统的供电模型与冷热电联供模型的能量输出特性。结果表明,相比供电模型:冷热电联供模型有最大发电量时,同时可最大输出0.62单位的制冷量和1.1单位的供热量(最大发电量为单位1);通过调节储热器的热量分配,可改变冷热电联供模型冷热电的输出比例,对负荷变动的应对性更好。展开更多
含水层压缩空气储能(compressed air energy storage in aquifer,CAESA)是实现“双碳”目标的重要途径,储层中的渗流条件及地球化学过程是其能否规模化应用的先决条件.本文在文献计量学分析基础上,系统归纳技术发展历程及场地探索案例,...含水层压缩空气储能(compressed air energy storage in aquifer,CAESA)是实现“双碳”目标的重要途径,储层中的渗流条件及地球化学过程是其能否规模化应用的先决条件.本文在文献计量学分析基础上,系统归纳技术发展历程及场地探索案例,全面整理CAESA过程中储层渗流条件的前期研究,以地球化学过程为关注重点总结储层渗流条件的变化特征,提出相应的研究展望.结果表明:①渗透率、孔隙度通过影响储存气囊压力的稳定性进而决定系统性能,其中渗透率存在适宜区间,渗透率较低将限制气体循环,渗透率较高则不利于维持气囊压力.②应力变化及地球化学过程均会引起储层渗流条件的变化,地球化学过程影响途径主要包括原生矿物溶解、次生矿物沉淀及氧化反应,CO_(2)组分参与的水-岩反应对储层具有重要影响.为实现对于储层渗流特性的认识突破,未来应以储层渗流条件、压缩空气储存机制为研究重点,充分结合试验、数值模拟等技术手段,进一步关注储能模式下储层渗流条件变化及非均质性影响,加强针对压缩空气在储层中的动力学、热力学行为研究,明晰地球化学过程对储层条件的关键影响,从储层角度论证大规模储能应用的高效可行.展开更多
为了验证和分析风电与先进绝热压缩空气储能(Advanced Adiabatic Compressed Air Energy Storage,简称AACAES)集成系统用于分布式供能的能量输出特性,建立了以风能储能技术为基础的分布式能源系统模型,从热力学角度推导了与能量输出相...为了验证和分析风电与先进绝热压缩空气储能(Advanced Adiabatic Compressed Air Energy Storage,简称AACAES)集成系统用于分布式供能的能量输出特性,建立了以风能储能技术为基础的分布式能源系统模型,从热力学角度推导了与能量输出相关的参数表达式,得到了分布式能源系统冷热电输出特性与储热器中热量利用的关联性,并以某写字楼为例,分析了分布式能源系统的优势。结果表明:随系统供热量的增加,系统供电量减少,制冷量增加,且能量输出总量增加;在满足冷量和热量需求的前提下,相比供电模型,分布式供能模型有更多的供电量,而在能量输出相同的条件下,分布式能源系统模型更节能。展开更多
文摘【目的】天然气补燃型压缩空气储能(compressed air energy storage,CAES)系统存在环境污染问题,氢气作为替代燃料不会造成温室气体排放,但现阶段对纯氢补燃型CAES系统的技术经济可行性认识不足,因此有必要开展相关研究。【方法】基于[火用]和[火用]经济分析方法,进行了纯氢补燃型和天然气补燃型CAES系统的对比分析,重点关注其热力学性能、不可逆损失分布、经济性和[火用]经济性的影响。此外,探讨了两者参数敏感性。【结果】纯氢补燃型CAES系统在放电时间、储能密度和[火用]效率方面均优于天然气补燃型CAES系统;由于氢气成本高于天然气,纯氢补燃型CAES系统的产品平均[火用]成本为155.62美元/GJ,显著高于天然气补燃型CAES系统对应的27.57美元/GJ;为使纯氢补燃型CAES系统具备与天然气补燃型CAES系统相同的商用竞争力,推荐售电价格为0.2062美元/(kW·h);此外,纯氢补燃型CAES系统对参数变化更加敏感,在高参数条件下可实现更好的性能提升和成本降低。【结论】研究成果揭示了纯氢补燃型CAES系统的应用潜力,并为其进一步商业推广提供了技术参考。
文摘随着全球能源结构转型与电力系统灵活性需求的日益增长,压缩空气储能(Compressed Air Energy Storage,CAES)作为一种大容量、长时储能技术,其展现出巨大的发展潜力。陕西省作为我国西部重要能源基地,拥有大量的盐穴、废弃煤矿、枯竭油气藏、灰岩溶洞等地下空间,这些天然或人工形成的地下空间为建设大型压缩空气储能设施提供了理想的场所,其通常具有较高的密封性和稳定性,适合作为高压空气的储存容器,可减少新建储气室的成本和对环境的影响。我省在资源、技术、政策与市场需求方面均具备开展地下空间压缩空气储能的良好条件,其发展前景广阔,有望成为我国乃至全球储能技术应用的典范。
基金financial support from the National Key Research and Development Program of China(No.2024YFB4007100)the Basic ForwardLooking Project of the Sinopec Science and Technology Department,“Research on the Long-Term Sealing Mechanism of Multi-layer Salt Cavern Hydrogen Storage”(No.P24197-4)。
文摘Renewable energy storage technologies are critical for transitioning to sustainable energy systems,with salt caverns playing a significant role in large-scale solutions.In water-soluble mining of low-grade salt formations,insoluble impurities and interlayers detach during salt dissolution and accumulate as sediment at the cavern base,thereby reducing the storage capacity and economic viability of salt cavern gas storage(SCGS).This study investigates sediment formation mechanisms,void distribution,and voidage in the Huai'an low-grade salt mine,introducing a novel self-developed physical simulation device for two butted-well horizontal(TWH)caverns that replicates compressed air injection and brine discharge.Experiments comparing“one injection and one discharge”and“two injections and one discharge”modes revealed that(1)compressed air effectively displaces brine from sediment voids,(2)a 0.5 MPa injection pressure corresponds to a 10.3 MPa operational lower limit in practice,aligning with field data,and(3)sediment voidage is approximately 46%,validated via air-brine interface theory.The“two injections and one discharge”mode outperformed in both discharge volume and rate.Additionally,a mathematical model for brine displacement via compressed air was established.These results provide foundational insights for optimizing compressed air energy storage(CAES)in low-grade salt mines,advancing their role in renewable energy integration.
基金National Natural Science Foundation of China,Grant/Award Number:52474080National Key R&D Program of China,Grant/Award Number:2024YFB4007100。
文摘Compressed air energy storage(CAES)has emerged as a grid-scale energy storage linchpin,providing diurnal-to-seasonal timescale energy buffering for renewable power integration.Diverging from conventional salt caverndependent approaches,artificial cavern-based CAES unlocks geographical adaptability through engineered underground containment.This study systematically reviews critical technologies in chamber construction,including site selection,structural design,excavation methods,and post-construction evaluation.Site selection employs a multi-criteria matrix that combines geological and environmental factors.Structural design integrates spatial layout,burial depth,sealing system,and component compatibility to ensure chamber stability.Excavation prioritizes controlled blasting for homogeneous rock,while a tunnel boring machine is deployed in fractured zones to preserve integrity.Postconstruction assessments validate load-bearing capacity,sealing performance,and operational readiness,supported by data-driven maintenance strategies.Ongoing challenges include site-specific geological risks,sealing system durability under cyclic loading,equipment integration,field-scale validation,standardization gaps,and cost-efficiency optimization.These innovations will establish best practices for building large-scale,high-efficiency CAES plants with ultra-long duration and grid resilience,accelerating the transition to carbon-neutral power systems.
基金supported by the National Natural Science Foundation of China(Grant No.52409132)China Postdoctoral Science Foundation(Grant No.2024M751813)the Major key technical research projects of Shandong Energy Group(Grant No.SNKJ2023A07-R14).
文摘The structural integrity of the interface between a concrete plug and the surrounding rock may be compromised during frequent cycles of air charging,discharging,and storage,which is typical of compressed air energy storage systems in abandoned mines.To investigate this,nitrogen permeability tests were conducted on the interface samples of rockeconcrete interface in both consolidated and unconsolidated states under cyclic loading.The variations in the flow rate throughout the permeability process under different cycle numbers and load range conditions were investigated.The microscopic analysis at the interfaces was imaged using computed tomography scanning.The results indicated that the gas permeability of the cemented interfaces with different roughness values varied with confining pressure ranging from 10^(-13) m^(2) to 10^(-12) m^(2),whereas that of the non-cemented interfaces ranged from 10^(-12) m^(2) to 10^(-11) m^(2).A larger load variation range encompassed the permeability variation characteristics within a smaller variation range.The evolution pattern of the permeability ratio with the number of cycles was influenced by the inlet pressure.The greater the inlet pressure,the larger the increment ratio of the permeability.The permeability change patterns of interfaces with different roughness values were similar.Microscopic analysis revealed that pores inside the concrete were connected to the interface gaps.Under the coupling of stress and gas pressure,the gas could penetrate the crack tips or pores,accelerating the development of microcracks during the cyclic opening and closing of the pores.This study provides valuable insights into the safe long-term operation of underground high-pressure air storage.
基金supported by National Natural Science Foundation of China Excellent Young Scientists Fund Program,Deep Earth Probe and Mineral Resources Exploration-National Science and Technology Major Project(grant No.2024ZD1004105)Shandong Excellent Young Scientists Fund Program(Overseas)(grant No.2022HWYQ-020)Shenzhen Science and Technology Program(grant No.JCYJ20220530141016036,GJHZ20240218113359001).
文摘Renewable energies including solar and wind are intermittent,causing difficulty in connection to conventional power grids due to instability of output duty.Compressed air energy storage(CAES)in underground caverns has been considered a potential large-scale energy storage technology.In order to explore the gas injection char-acteristic of underground cavern,a detailed thermodynamic model of the system is established in the process modelling software gPROMS.The four subsystem models,i.e.the compressor,heat exchanger,underground cavern storage and expander,are connected with inlet-outlet equilibrium of flow rate/pressure/temperature to form an integrated CAES system model in gPROMS.The maximum air pressure and temperature in the cavern are focused to interrogate the critical condition of the cavern during the injection process.When analyzing the mass flow rate-pressure ratio relationship,it’s found that under specified operating conditions,an increase in mass flow rate can lead to a higher pressure ratio.Compression power demand also escalates significantly with increasing mass flow rates,underscoring the system’s energy-intensive nature.Additionally,the cooler outlet energy rate progressively decreases,becoming increasingly negative as the mass flow rate increases.These in-sights offer critical theoretical foundations for optimizing practical efficiency of CAES.
文摘以改变储热器中热量的分配为基础,建立了先进绝热压缩空气储能(Advanced Adiabatic Compressed Air EnergyStorage,简称AA-CAES)系统的冷热电联供模型。推导了系统的主要参数表达式,并以某建筑冷热电负荷的变化情况为例,对比了AA-CAES系统的供电模型与冷热电联供模型的能量输出特性。结果表明,相比供电模型:冷热电联供模型有最大发电量时,同时可最大输出0.62单位的制冷量和1.1单位的供热量(最大发电量为单位1);通过调节储热器的热量分配,可改变冷热电联供模型冷热电的输出比例,对负荷变动的应对性更好。
文摘含水层压缩空气储能(compressed air energy storage in aquifer,CAESA)是实现“双碳”目标的重要途径,储层中的渗流条件及地球化学过程是其能否规模化应用的先决条件.本文在文献计量学分析基础上,系统归纳技术发展历程及场地探索案例,全面整理CAESA过程中储层渗流条件的前期研究,以地球化学过程为关注重点总结储层渗流条件的变化特征,提出相应的研究展望.结果表明:①渗透率、孔隙度通过影响储存气囊压力的稳定性进而决定系统性能,其中渗透率存在适宜区间,渗透率较低将限制气体循环,渗透率较高则不利于维持气囊压力.②应力变化及地球化学过程均会引起储层渗流条件的变化,地球化学过程影响途径主要包括原生矿物溶解、次生矿物沉淀及氧化反应,CO_(2)组分参与的水-岩反应对储层具有重要影响.为实现对于储层渗流特性的认识突破,未来应以储层渗流条件、压缩空气储存机制为研究重点,充分结合试验、数值模拟等技术手段,进一步关注储能模式下储层渗流条件变化及非均质性影响,加强针对压缩空气在储层中的动力学、热力学行为研究,明晰地球化学过程对储层条件的关键影响,从储层角度论证大规模储能应用的高效可行.
文摘为了验证和分析风电与先进绝热压缩空气储能(Advanced Adiabatic Compressed Air Energy Storage,简称AACAES)集成系统用于分布式供能的能量输出特性,建立了以风能储能技术为基础的分布式能源系统模型,从热力学角度推导了与能量输出相关的参数表达式,得到了分布式能源系统冷热电输出特性与储热器中热量利用的关联性,并以某写字楼为例,分析了分布式能源系统的优势。结果表明:随系统供热量的增加,系统供电量减少,制冷量增加,且能量输出总量增加;在满足冷量和热量需求的前提下,相比供电模型,分布式供能模型有更多的供电量,而在能量输出相同的条件下,分布式能源系统模型更节能。