For the Cooperative Adaptive Cruise Control (CACC) Algorithm, existing research studies mainly focus on how inter-vehicle communication can be used to develop CACC controller, the influence of the communication dela...For the Cooperative Adaptive Cruise Control (CACC) Algorithm, existing research studies mainly focus on how inter-vehicle communication can be used to develop CACC controller, the influence of the communication delays and lags of the actuators to the string stability. However, whether the string stability can be guaranteed when inter-vehicle communication is invalid partially has hardly been considered. This paper presents an improved CACC algorithm based on the sliding mode control theory and analyses the range of CACC controller parameters to maintain string stability. A dynamic model of vehicle spacing deviation in a platoon is then established, and the string stability conditions under improved CACC are analyzed. Unlike the traditional CACC algorithms, the proposed algorithm can ensure the functionality of the CACC system even if inter-vehicle communication is partially invalid. Finally, this paper establishes a platoon of five vehicles to simulate the improved CACC algorithm in MATLAB/Simulink, and the simulation results demonstrate that the improved CACC algorithm can maintain the string stability of a CACC platoon through adjusting the controller parameters and enlarging the spacing to prevent accidents. With guaranteed string stability, the proposed CACC algorithm can prevent oscillation of vehicle spacing and reduce chain collision accidents under real-world circumstances. This research proposes an improved CACC algorithm, which can guarantee the string stability when inter-vehicle communication is invalid.展开更多
钙激活氯通道(calcium-activated chloride channels,CaCCs)是一类在多种细胞中广泛表达的氯离子通道,介导一系列重要的生理功能。TMEM16A(transmembrane protein 16A)于2008年被确认为CaCCs的分子身份之一。TMEM16A在多种病理生理过程...钙激活氯通道(calcium-activated chloride channels,CaCCs)是一类在多种细胞中广泛表达的氯离子通道,介导一系列重要的生理功能。TMEM16A(transmembrane protein 16A)于2008年被确认为CaCCs的分子身份之一。TMEM16A在多种病理生理过程中发挥重要的作用,如卵母细胞多重受精、分泌上皮细胞的液体分泌、平滑肌收缩、神经元兴奋、膜电位调节、感官信号传导以及肿瘤的发生和细胞迁移。近年来,TMEM16A在病理生理学中的作用及其在疾病治疗中的药靶地位受到高度重视。本文对TMEM16A研究的最新进展进行综述。展开更多
基金Supported by National Natural Science Foundation of China(Grant No.61371076)
文摘For the Cooperative Adaptive Cruise Control (CACC) Algorithm, existing research studies mainly focus on how inter-vehicle communication can be used to develop CACC controller, the influence of the communication delays and lags of the actuators to the string stability. However, whether the string stability can be guaranteed when inter-vehicle communication is invalid partially has hardly been considered. This paper presents an improved CACC algorithm based on the sliding mode control theory and analyses the range of CACC controller parameters to maintain string stability. A dynamic model of vehicle spacing deviation in a platoon is then established, and the string stability conditions under improved CACC are analyzed. Unlike the traditional CACC algorithms, the proposed algorithm can ensure the functionality of the CACC system even if inter-vehicle communication is partially invalid. Finally, this paper establishes a platoon of five vehicles to simulate the improved CACC algorithm in MATLAB/Simulink, and the simulation results demonstrate that the improved CACC algorithm can maintain the string stability of a CACC platoon through adjusting the controller parameters and enlarging the spacing to prevent accidents. With guaranteed string stability, the proposed CACC algorithm can prevent oscillation of vehicle spacing and reduce chain collision accidents under real-world circumstances. This research proposes an improved CACC algorithm, which can guarantee the string stability when inter-vehicle communication is invalid.
文摘钙激活氯通道(calcium-activated chloride channels,CaCCs)组织分布广泛,参与了众多生理过程,如感觉传导、神经和心肌兴奋性调节、腺体和上皮分泌等,甚至可能参与细胞分裂周期与细胞增殖。钙激活氯通道生理病理意义如此重要,但直到2008年才报道了跨膜蛋白16A(transmem-brane protein 16A,TMEM16A)为钙激活氯通道的分子基础,同时研究揭示TMEM16A在一些肿瘤组织中表达明显上调。该文即对钙激活氯通道的生理、病理学意义进行综述。
文摘钙激活氯通道(calcium-activated chloride channels,CaCCs)是一类在多种细胞中广泛表达的氯离子通道,介导一系列重要的生理功能。TMEM16A(transmembrane protein 16A)于2008年被确认为CaCCs的分子身份之一。TMEM16A在多种病理生理过程中发挥重要的作用,如卵母细胞多重受精、分泌上皮细胞的液体分泌、平滑肌收缩、神经元兴奋、膜电位调节、感官信号传导以及肿瘤的发生和细胞迁移。近年来,TMEM16A在病理生理学中的作用及其在疾病治疗中的药靶地位受到高度重视。本文对TMEM16A研究的最新进展进行综述。