期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Fault Diagnosis of Linear Guide Rails Based on SSTG Combined with CA-DenseNet
1
作者 Yanping Wu Juncai Song +2 位作者 Xianhong Wu Xiaoxian Wang Siliang Lu 《Journal of Dynamics, Monitoring and Diagnostics》 2024年第1期1-10,共10页
Monitoring the status of linear guide rails is essential because they are important components in linear motion mechanical production.Thus,this paper proposes a new method of conducting the fault diagnosis of linear g... Monitoring the status of linear guide rails is essential because they are important components in linear motion mechanical production.Thus,this paper proposes a new method of conducting the fault diagnosis of linear guide rails.First,synchrosqueezing transform(SST)combined with Gaussian high-pass filter,termed as SSTG,is proposed to process vibration signals of linear guide rails and obtain time-frequency images,thus helping realize fault feature visual enhancement.Next,the coordinate attention(CA)mechanism is introduced to promote the DenseNet model and obtain the CA-DenseNet deep learning framework,thus realizing accurate fault classifica-tion.Comparison experiments with other methods reveal that the proposed method has a high classification accuracy of up to 95.0%.The experimental results further demonstrate the effectiveness and robustness of the proposed method for the fault diagnosis of linear guide rails. 展开更多
关键词 ca-densenet fault diagnosis linear guide rails SSTG
在线阅读 下载PDF
基于改进YOLOv8的模型在矿物智能识别中的研究
2
作者 牛福生 吴凡 +3 位作者 张晋霞 武佳慧 王秋月 张梦飞 《有色金属(中英文)》 北大核心 2025年第4期621-628,共8页
针对当前矿物识别工作中成本高、效率低、矿物特征不明显等问题,引进YOLOv8算法,又针对其特征提取能力不强的问题,在此基础上进一步构建一种加强特征提取的单阶段目标检测算法(CA-DenseNet-YOLOv8),以更适应实际生产的需要。通过数据增... 针对当前矿物识别工作中成本高、效率低、矿物特征不明显等问题,引进YOLOv8算法,又针对其特征提取能力不强的问题,在此基础上进一步构建一种加强特征提取的单阶段目标检测算法(CA-DenseNet-YOLOv8),以更适应实际生产的需要。通过数据增强构建了一个多样化的七类矿物数据集,并引入CA注意力机制以提升特征处理能力,融合DenseNet模块以增强特征提取和重用,实验结果表明,改进算法的各项评价指标Precision、Recall、mAP@0.5、mAP@0.5∶0.95分别达到92.3%、81.5%、90.9%、78.3%,总体上优于其他算法,且改进效果明显,四项指标分别比基准模型上升4.1、7.6、5.1与5.2个百分点,对工业应用中矿物识别的降本增效具有重要意义。 展开更多
关键词 矿物识别 YOLOv8 特征提取 CA DenseNet
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部