The neutron capture cross section for^(165)Ho was measured at the backstreaming white neutron beam line(Back-n)of the China Spallation Neutron Source(CSNS)using total energy detection systems,composed of a set of four...The neutron capture cross section for^(165)Ho was measured at the backstreaming white neutron beam line(Back-n)of the China Spallation Neutron Source(CSNS)using total energy detection systems,composed of a set of four C_(6)D_(6)scintillator detectors coupled with pulse height weighting techniques.The resonance parameters were extracted using the multilevel multichannel R-matrix code SAMMY to fit the measured capture yields of the^(165)Ho(n,γ)reaction in the neutron energy range below100 eV.Subsequently,the resonance region’s capture cross sections were reconstructed based on the obtained parameters.Furthermore,the unresolved resonance average cross section of the^(165)Ho(n,γ)reaction was determined relative to that of the standard sample^(197)Au within the neutron energy range of 2 keV to 1 MeV.The experimental data were compared with the recommended nuclear data from the ENDF/B-VIII.0 library,as well as with results of calculations performed using the TALYS-1.9 code.The comparison revealed agreement between the measured^(165)Ho(n,γ)cross sections and these data.The present results are crucial for evaluating the^(165)Ho neutron capture cross section and thus enhance the quality of evaluated nuclear data libraries.They provide valuable guidance for nuclear theoretical models and nuclear astrophysical studies.展开更多
Introduction The neutron capture cross sections are very important in the field of nuclear device design and basic physics research.Hydrogen-free liquid scintillator such as C_(6)D_(6)detectors are widely used in the ...Introduction The neutron capture cross sections are very important in the field of nuclear device design and basic physics research.Hydrogen-free liquid scintillator such as C_(6)D_(6)detectors are widely used in the neutron capture cross-sectional measurements for the low neutron sensitivity and fast time response.The Back-n white neutron source at China Spallation Neutron Source is the first spallation white neutron source in China,and it is suitable for neutron capture cross-sectional measurement.Materials and methods A C_(6)D_(6)detector system was built in the Back-n experimental station.The pulse height weighting technique was used to determine the system’s detection efficiency.The response to gamma rays of the C_(6)D_(6)detector was measured,and the energy resolution function was determined.Monte Carlo simulation with Geant4 code was carried out to get the weighting function of this C_(6)D_(6)detector system.Additionally,the systematic uncertainty of the weighting function was also determined.Conclusion According to the experimental and simulation results,this C_(6)D_(6)detector system can be used to measure neutron capture cross section.展开更多
基金supported by the National Natural Science Foundation of China(Nos.12465024,12365018,U2032146)Inner Mongolia National Science Foundation(Nos.2024ZD23,2024FX30,2023MS01005)+1 种基金Program for Innovative Research Team in Universities of Inner Mongolia Autonomous Region(NMGIRT2217)Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region(NJYT23109)。
文摘The neutron capture cross section for^(165)Ho was measured at the backstreaming white neutron beam line(Back-n)of the China Spallation Neutron Source(CSNS)using total energy detection systems,composed of a set of four C_(6)D_(6)scintillator detectors coupled with pulse height weighting techniques.The resonance parameters were extracted using the multilevel multichannel R-matrix code SAMMY to fit the measured capture yields of the^(165)Ho(n,γ)reaction in the neutron energy range below100 eV.Subsequently,the resonance region’s capture cross sections were reconstructed based on the obtained parameters.Furthermore,the unresolved resonance average cross section of the^(165)Ho(n,γ)reaction was determined relative to that of the standard sample^(197)Au within the neutron energy range of 2 keV to 1 MeV.The experimental data were compared with the recommended nuclear data from the ENDF/B-VIII.0 library,as well as with results of calculations performed using the TALYS-1.9 code.The comparison revealed agreement between the measured^(165)Ho(n,γ)cross sections and these data.The present results are crucial for evaluating the^(165)Ho neutron capture cross section and thus enhance the quality of evaluated nuclear data libraries.They provide valuable guidance for nuclear theoretical models and nuclear astrophysical studies.
基金the National Natural Science Foundation of China(Grant Nos.11790321 and 11805282)the National Key R&D Program of China(Grant No.2016YFA0401601).
文摘Introduction The neutron capture cross sections are very important in the field of nuclear device design and basic physics research.Hydrogen-free liquid scintillator such as C_(6)D_(6)detectors are widely used in the neutron capture cross-sectional measurements for the low neutron sensitivity and fast time response.The Back-n white neutron source at China Spallation Neutron Source is the first spallation white neutron source in China,and it is suitable for neutron capture cross-sectional measurement.Materials and methods A C_(6)D_(6)detector system was built in the Back-n experimental station.The pulse height weighting technique was used to determine the system’s detection efficiency.The response to gamma rays of the C_(6)D_(6)detector was measured,and the energy resolution function was determined.Monte Carlo simulation with Geant4 code was carried out to get the weighting function of this C_(6)D_(6)detector system.Additionally,the systematic uncertainty of the weighting function was also determined.Conclusion According to the experimental and simulation results,this C_(6)D_(6)detector system can be used to measure neutron capture cross section.