The deformation mechanism of C5191 phosphor bronze sheet under ultra-high-speed blanking was investigated.By virtue of a DOBBY-OMEGA F1 ultra-high-speed press,the ultra-high-speed blanking test was conducted on C5191 ...The deformation mechanism of C5191 phosphor bronze sheet under ultra-high-speed blanking was investigated.By virtue of a DOBBY-OMEGA F1 ultra-high-speed press,the ultra-high-speed blanking test was conducted on C5191 phosphor bronze sheets with a thickness of 0.12 mm at 3000 strokes per minute.The microstructures of the blanked edges were characterized and analyzed separately by electron back-scatter diffraction(EBSD)and transmission electron microscopy(TEM).The results show that grains in the blanked edges are stretched along the blanking direction.Strong{001}<100>cube textures(maximum pole densities of 9 and 12,respectively)and secondarily strong{011}<011>textures(maximum pole densities of 4 and 7,respectively)are formed in local zones.Additionally,deformation twins are found in the shear zone of the blanked edges which are rotated and coarsened due to the blanking-induced extrusion and local thermal effect which can further form into sub-grains with clear and high-angle boundaries.The C5191 phosphor bronze sheet is subjected to adiabatic shear during ultra-high-speed blanking,accompanied with dynamic recrystallization.展开更多
Strain hardening,strain rate strengthening and thermal softening data of C5191 phosphor bronze at highspeed blanking are not easy to be obtained with a general measure method,therefore,it is quite difficult to establi...Strain hardening,strain rate strengthening and thermal softening data of C5191 phosphor bronze at highspeed blanking are not easy to be obtained with a general measure method,therefore,it is quite difficult to establish the dynamic constitutive model.To solve this problem,the tensile properties at a strain rate of 1 s^(-1) by GLEEBLE-3500,and dynamic tensile conditions at strain rates of 500,1 000 and 1 500 s^(-1) by split Hopkinson tensile bar (SHTB) apparatus are studied.According to these test data,the classic Johnson-Cook equation is modified.Furthermore,the modified Johnson-Cook equation is validated in the physical simulation model of high-speed blanking.The results show that the strength of C5191 phosphor bronze maintains a certain degree of increase as the strain rate increasing and presents a clear sensitivity to strain rate.The modified Johnson-Cook equation,which has better description accuracy than the classical Johnson-Cook equation,can provide important material parameters for physical simulation models of its high-speed blanking process.展开更多
基金The authors are grateful for the financial supports from Jiangsu Key Laboratory of Precision and Micro-manufacturing Technology of China(JSJMYWX2020-01)Zhejiang Provincial Natural Science Foundation of China(LY18E050005)the Startup Foundation for Introducing Talent of Nanjing Institute of Industry Technology(YK18-13-02)of China.
文摘The deformation mechanism of C5191 phosphor bronze sheet under ultra-high-speed blanking was investigated.By virtue of a DOBBY-OMEGA F1 ultra-high-speed press,the ultra-high-speed blanking test was conducted on C5191 phosphor bronze sheets with a thickness of 0.12 mm at 3000 strokes per minute.The microstructures of the blanked edges were characterized and analyzed separately by electron back-scatter diffraction(EBSD)and transmission electron microscopy(TEM).The results show that grains in the blanked edges are stretched along the blanking direction.Strong{001}<100>cube textures(maximum pole densities of 9 and 12,respectively)and secondarily strong{011}<011>textures(maximum pole densities of 4 and 7,respectively)are formed in local zones.Additionally,deformation twins are found in the shear zone of the blanked edges which are rotated and coarsened due to the blanking-induced extrusion and local thermal effect which can further form into sub-grains with clear and high-angle boundaries.The C5191 phosphor bronze sheet is subjected to adiabatic shear during ultra-high-speed blanking,accompanied with dynamic recrystallization.
基金supported by Zhejiang Provincial Natural Science Foundation of China(No.LY18E050005)
文摘Strain hardening,strain rate strengthening and thermal softening data of C5191 phosphor bronze at highspeed blanking are not easy to be obtained with a general measure method,therefore,it is quite difficult to establish the dynamic constitutive model.To solve this problem,the tensile properties at a strain rate of 1 s^(-1) by GLEEBLE-3500,and dynamic tensile conditions at strain rates of 500,1 000 and 1 500 s^(-1) by split Hopkinson tensile bar (SHTB) apparatus are studied.According to these test data,the classic Johnson-Cook equation is modified.Furthermore,the modified Johnson-Cook equation is validated in the physical simulation model of high-speed blanking.The results show that the strength of C5191 phosphor bronze maintains a certain degree of increase as the strain rate increasing and presents a clear sensitivity to strain rate.The modified Johnson-Cook equation,which has better description accuracy than the classical Johnson-Cook equation,can provide important material parameters for physical simulation models of its high-speed blanking process.