期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于SDGW-YOLOv11的煤矿井下遮挡场景输送带异物检测
1
作者 于绍凯 董立红 秦昳 《电子测量技术》 北大核心 2025年第17期151-159,共9页
针对煤矿井下输送带中的大块矸石和锚杆等异物被遮挡且异物尺度多变容易导致漏检误检问题,提出了一种改进的煤矿井下输送带异物检测模型SDGW-YOLOv11。首先为了通过多视角特征融合和一致性正则化,从多个位置和尺度上提取特征,对遮挡异... 针对煤矿井下输送带中的大块矸石和锚杆等异物被遮挡且异物尺度多变容易导致漏检误检问题,提出了一种改进的煤矿井下输送带异物检测模型SDGW-YOLOv11。首先为了通过多视角特征融合和一致性正则化,从多个位置和尺度上提取特征,对遮挡异物也进行良好的检测,在YOLOv11的颈部网络中引入SEAM注意力机制,减少了遮挡对检测干扰;为了改善模型对异物自身以及被遮挡的尺寸变化的适应能力,设计C3k2_DCN模块,并添加到YOLOv11骨干网络中,提高模型对异物的局部感知能力;最后为了防止添加注意力机制导致模型过大,影响检测速度,对模型进行优化,使用GhostConv代替部分Conv减少模型的参数量,并采用WIoU损失函数替换原有损失函数提高收敛速度。实验结果表明,SDGW-YOLOv11模型检测精度可达86.1%,相对于原模型提高了4.6%,改进的模型检测速度达82fps,可充分满足输送带异物实时检测要求,改进的模型在精确率和mAP@0.5指标上均高于Faster R-CNN、SSD、YOLOv3、YOLOv5、YOLOv7、YOLOv8、YOLOv9、YOLOv10、YOLOv11模型,减少了异物遮挡以及尺度变化的漏检误检情况,能更好的适应煤矿输送带异物检测场景。 展开更多
关键词 异物检测 YOLOv11 c3k2_dcn SEAM GhostConv
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部