期刊导航
期刊开放获取
vip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
融合改进的YOLOv5n和通道剪枝的寄生卵检测和分类
被引量:
1
1
作者
王杰
马纪颖
《计算机技术与发展》
2025年第2期146-152,共7页
当前众多目标检测模型过于复杂,难以实现将寄生卵的检测和分类任务部署在移动设备,就此该文研究探讨了一种融合改进的YOLOv5n和通道剪枝的算法。选择YOLOv5是由于YOLOv5的轻量化以及较高的精确度,能够达到该文的实验目的。该文采用融合C...
当前众多目标检测模型过于复杂,难以实现将寄生卵的检测和分类任务部署在移动设备,就此该文研究探讨了一种融合改进的YOLOv5n和通道剪枝的算法。选择YOLOv5是由于YOLOv5的轻量化以及较高的精确度,能够达到该文的实验目的。该文采用融合C3_Faster模块和RepConv重参数化模块对YOLOv5n的BackBone中的所有C3模块和Neck网络中部分卷积模块进行替换,C3_Faster模块通过PConv减少卷积操作加快网络模型推理速度,RepConv重参数化模块在训练阶段实行多分支结构增强特征提取能力,在验证阶段实行单分支结构加快检测速度,同时在改进后的YOLOv5n模型上进行稀疏训练和通道剪枝,通过减少模型中的冗余通道来降低模型复杂度、减少参数数量、提高检测效率和降低模型权重。在寄生卵检测和分类任务对比实验中,该方法与YOLOv5n、YOLOv5s、YOLOv7-tiny、YOLOv8n和SSD目标检测算法相比,在检测精度略微下降的情况下,在GFLOPs、FPS、参数数量以及模型权重上具有相对优势。经过实验验证,模型检测精度保持98.3%的同时能够更方便更容易部署在性能不高的移动设备。该文为基于YOLOv5n的寄生卵检测和分类任务在实用性方面提供了一种有效的解决方案。
展开更多
关键词
YOLOv5算法
寄生卵检测
c3_faster
RepConv
通道剪枝
在线阅读
下载PDF
职称材料
题名
融合改进的YOLOv5n和通道剪枝的寄生卵检测和分类
被引量:
1
1
作者
王杰
马纪颖
机构
沈阳化工大学计算机科学与技术学院
辽宁省化工过程工业智能化技术重点实验室
出处
《计算机技术与发展》
2025年第2期146-152,共7页
基金
辽宁省自然基金项目(2022-MS-291)
国家外国专家项目计划(G2022006008L)
辽宁省教育厅基本科研项目(LJKMZ20220781)。
文摘
当前众多目标检测模型过于复杂,难以实现将寄生卵的检测和分类任务部署在移动设备,就此该文研究探讨了一种融合改进的YOLOv5n和通道剪枝的算法。选择YOLOv5是由于YOLOv5的轻量化以及较高的精确度,能够达到该文的实验目的。该文采用融合C3_Faster模块和RepConv重参数化模块对YOLOv5n的BackBone中的所有C3模块和Neck网络中部分卷积模块进行替换,C3_Faster模块通过PConv减少卷积操作加快网络模型推理速度,RepConv重参数化模块在训练阶段实行多分支结构增强特征提取能力,在验证阶段实行单分支结构加快检测速度,同时在改进后的YOLOv5n模型上进行稀疏训练和通道剪枝,通过减少模型中的冗余通道来降低模型复杂度、减少参数数量、提高检测效率和降低模型权重。在寄生卵检测和分类任务对比实验中,该方法与YOLOv5n、YOLOv5s、YOLOv7-tiny、YOLOv8n和SSD目标检测算法相比,在检测精度略微下降的情况下,在GFLOPs、FPS、参数数量以及模型权重上具有相对优势。经过实验验证,模型检测精度保持98.3%的同时能够更方便更容易部署在性能不高的移动设备。该文为基于YOLOv5n的寄生卵检测和分类任务在实用性方面提供了一种有效的解决方案。
关键词
YOLOv5算法
寄生卵检测
c3_faster
RepConv
通道剪枝
Keywords
YOLOv5 algorithm
parasitic egg detection
c3_faster
RepConv
channel pruning
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
融合改进的YOLOv5n和通道剪枝的寄生卵检测和分类
王杰
马纪颖
《计算机技术与发展》
2025
1
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部