期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
面向复杂背景下烟雾火焰检测的改进YOLOv8s算法 被引量:2
1
作者 马耀名 张鹏飞 谭福生 《计算机工程与应用》 北大核心 2025年第3期121-130,共10页
针对复杂背景下烟雾火焰目标与背景混淆,导致烟雾火焰检测精度低等问题,提出一种面向复杂背景下烟雾火焰检测的YOLOv8s改进模型。特征通道之间具有高度相似性,为了有效利用跨不同通道间的冗余,提高模型对烟雾火焰目标和背景的区分,设计... 针对复杂背景下烟雾火焰目标与背景混淆,导致烟雾火焰检测精度低等问题,提出一种面向复杂背景下烟雾火焰检测的YOLOv8s改进模型。特征通道之间具有高度相似性,为了有效利用跨不同通道间的冗余,提高模型对烟雾火焰目标和背景的区分,设计了C2fFR(C2f with partial rep conv)轻量级特征提取模块。设计了MCFM(multi-scale context fusion module)多尺度上下文融合模块,来捕捉并利用上下文信息,增强特征的表示。使用Inner-SIoU损失函数,解决边界框不匹配的问题,提高模型对高IoU样本的回归能力。实验结果表明,改进后的YOLOv8s烟雾火焰检测模型相比于基线模型YOLOv8s,mAP@50提升了4.6个百分点,mAP@50:95提升了2.3个百分点,模型参数量降低了18.9%,计算量降低了8.1%,FPS为93帧/s,与其他主流检测算法相比也具有较好的检测性能。 展开更多
关键词 YOLOv8s c2ffr 多尺度上下文融合 Inner-SIoU
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部