传统的应急响应及搜救行动的指挥控制(Command and Control,C2)活动以经典理论OODA环为指导。该模式可以快速、有效地指导救援现场的组织指挥活动。但当事件规模较大,响应层级较高时,该模式失去效用。论文针对以上问题,结合C2活动过程...传统的应急响应及搜救行动的指挥控制(Command and Control,C2)活动以经典理论OODA环为指导。该模式可以快速、有效地指导救援现场的组织指挥活动。但当事件规模较大,响应层级较高时,该模式失去效用。论文针对以上问题,结合C2活动过程机理的尺度关联性,运用PREA环&OODA环理论,建立了多域多尺度分布式C2模型框架。该模型在不同尺度(层级)的C2活动采用不同的理论指导,完整地描述了搜救C2活动从宏观到微观的指挥决策过程。论文将该模型应用分析至海上搜救领域,指导海上搜救行动。海上搜救的应用分析表明,多域多尺度分布式C2模型框架对海上应急救援指挥体系建设具有现实指导意义。展开更多
Let R be a ring and n be a positive integer.Then R is called a left n-C2-ring(strongly left C2-ring)if every n-generated(finitely generated)proper right ideal of R has nonzero left annihilator.We discuss some n-C2 and...Let R be a ring and n be a positive integer.Then R is called a left n-C2-ring(strongly left C2-ring)if every n-generated(finitely generated)proper right ideal of R has nonzero left annihilator.We discuss some n-C2 and strongly C2 extensions,such as trivial extensions,formal triangular matrix rings,group rings and[D,C].展开更多
For a ring R, let ip(RR)={a ∈ R: every right R-homomorphism f from any right ideal of R into R with Imf = aR can extend to R}. It is known that R is right IP-injective if and only if R = ip(RR) and R is right si...For a ring R, let ip(RR)={a ∈ R: every right R-homomorphism f from any right ideal of R into R with Imf = aR can extend to R}. It is known that R is right IP-injective if and only if R = ip(RR) and R is right simple-injective if and only if {a ∈ R : aR is simple} ∪→ ip(RR). In this note, we introduce the concept of right S-IP-injective rings, i.e., the ring R with S ∪→ ip(RR), where S is a subset of R. Some properties of this kind of rings are obtained.展开更多
文摘传统的应急响应及搜救行动的指挥控制(Command and Control,C2)活动以经典理论OODA环为指导。该模式可以快速、有效地指导救援现场的组织指挥活动。但当事件规模较大,响应层级较高时,该模式失去效用。论文针对以上问题,结合C2活动过程机理的尺度关联性,运用PREA环&OODA环理论,建立了多域多尺度分布式C2模型框架。该模型在不同尺度(层级)的C2活动采用不同的理论指导,完整地描述了搜救C2活动从宏观到微观的指挥决策过程。论文将该模型应用分析至海上搜救领域,指导海上搜救行动。海上搜救的应用分析表明,多域多尺度分布式C2模型框架对海上应急救援指挥体系建设具有现实指导意义。
文摘Let R be a ring and n be a positive integer.Then R is called a left n-C2-ring(strongly left C2-ring)if every n-generated(finitely generated)proper right ideal of R has nonzero left annihilator.We discuss some n-C2 and strongly C2 extensions,such as trivial extensions,formal triangular matrix rings,group rings and[D,C].
基金the Specialized Research Fund for the Doctoral Program of Higher Education of China (20020284009, 20030284033)the Postdoctoral Research Fund of China (2005037713)Jiangsu Planned Projects for Postdoctoral Research Fund (0203003403)
文摘For a ring R, let ip(RR)={a ∈ R: every right R-homomorphism f from any right ideal of R into R with Imf = aR can extend to R}. It is known that R is right IP-injective if and only if R = ip(RR) and R is right simple-injective if and only if {a ∈ R : aR is simple} ∪→ ip(RR). In this note, we introduce the concept of right S-IP-injective rings, i.e., the ring R with S ∪→ ip(RR), where S is a subset of R. Some properties of this kind of rings are obtained.