期刊文献+
共找到89,771篇文章
< 1 2 250 >
每页显示 20 50 100
Taxonomic classification of 80 near-Earth asteroids
1
作者 Fan Mo Bin Li +9 位作者 HaiBin Zhao Jian Chen Yan Jin MengHui Tang Igor Molotov A.M.Abdelaziz A.Takey S.K.Tealib Ahmed.Shokry JianYang Li 《Earth and Planetary Physics》 2026年第1期196-204,共9页
Near-Earth objects are important not only in studying the early formation of the Solar System,but also because they pose a serious hazard to humanity when they make close approaches to the Earth.Study of their physica... Near-Earth objects are important not only in studying the early formation of the Solar System,but also because they pose a serious hazard to humanity when they make close approaches to the Earth.Study of their physical properties can provide useful information on their origin,evolution,and hazard to human beings.However,it remains challenging to investigate small,newly discovered,near-Earth objects because of our limited observational window.This investigation seeks to determine the visible colors of near-Earth asteroids(NEAs),perform an initial taxonomic classification based on visible colors and analyze possible correlations between the distribution of taxonomic classification and asteroid size or orbital parameters.Observations were performed in the broadband BVRI Johnson−Cousins photometric system,applied to images from the Yaoan High Precision Telescope and the 1.88 m telescope at the Kottamia Astronomical Observatory.We present new photometric observations of 84 near-Earth asteroids,and classify 80 of them taxonomically,based on their photometric colors.We find that nearly half(46.3%)of the objects in our sample can be classified as S-complex,26.3%as C-complex,6%as D-complex,and 15.0%as X-complex;the remaining belong to the A-or V-types.Additionally,we identify three P-type NEAs in our sample,according to the Tholen scheme.The fractional abundances of the C/X-complex members with absolute magnitude H≥17.0 were more than twice as large as those with H<17.0.However,the fractions of C-and S-complex members with diameters≤1 km and>1 km are nearly equal,while X-complex members tend to have sub-kilometer diameters.In our sample,the C/D-complex objects are predominant among those with a Jovian Tisserand parameter of T_(J)<3.1.These bodies could have a cometary origin.C-and S-complex members account for a considerable proportion of the asteroids that are potentially hazardous. 展开更多
关键词 near-Earth asteroids optical telescope photometric observation taxonomic classification
在线阅读 下载PDF
A Novel Unsupervised Structural Attack and Defense for Graph Classification
2
作者 Yadong Wang Zhiwei Zhang +2 位作者 Pengpeng Qiao Ye Yuan Guoren Wang 《Computers, Materials & Continua》 2026年第1期1761-1782,共22页
Graph Neural Networks(GNNs)have proven highly effective for graph classification across diverse fields such as social networks,bioinformatics,and finance,due to their capability to learn complex graph structures.Howev... Graph Neural Networks(GNNs)have proven highly effective for graph classification across diverse fields such as social networks,bioinformatics,and finance,due to their capability to learn complex graph structures.However,despite their success,GNNs remain vulnerable to adversarial attacks that can significantly degrade their classification accuracy.Existing adversarial attack strategies primarily rely on label information to guide the attacks,which limits their applicability in scenarios where such information is scarce or unavailable.This paper introduces an innovative unsupervised attack method for graph classification,which operates without relying on label information,thereby enhancing its applicability in a broad range of scenarios.Specifically,our method first leverages a graph contrastive learning loss to learn high-quality graph embeddings by comparing different stochastic augmented views of the graphs.To effectively perturb the graphs,we then introduce an implicit estimator that measures the impact of various modifications on graph structures.The proposed strategy identifies and flips edges with the top-K highest scores,determined by the estimator,to maximize the degradation of the model’s performance.In addition,to defend against such attack,we propose a lightweight regularization-based defense mechanism that is specifically tailored to mitigate the structural perturbations introduced by our attack strategy.It enhances model robustness by enforcing embedding consistency and edge-level smoothness during training.We conduct experiments on six public TU graph classification datasets:NCI1,NCI109,Mutagenicity,ENZYMES,COLLAB,and DBLP_v1,to evaluate the effectiveness of our attack and defense strategies.Under an attack budget of 3,the maximum reduction in model accuracy reaches 6.67%on the Graph Convolutional Network(GCN)and 11.67%on the Graph Attention Network(GAT)across different datasets,indicating that our unsupervised method induces degradation comparable to state-of-the-art supervised attacks.Meanwhile,our defense achieves the highest accuracy recovery of 3.89%(GCN)and 5.00%(GAT),demonstrating improved robustness against structural perturbations. 展开更多
关键词 Graph classification graph neural networks adversarial attack
在线阅读 下载PDF
Graph Attention Networks for Skin Lesion Classification with CNN-Driven Node Features
3
作者 Ghadah Naif Alwakid Samabia Tehsin +3 位作者 Mamoona Humayun Asad Farooq Ibrahim Alrashdi Amjad Alsirhani 《Computers, Materials & Continua》 2026年第1期1964-1984,共21页
Skin diseases affect millions worldwide.Early detection is key to preventing disfigurement,lifelong disability,or death.Dermoscopic images acquired in primary-care settings show high intra-class visual similarity and ... Skin diseases affect millions worldwide.Early detection is key to preventing disfigurement,lifelong disability,or death.Dermoscopic images acquired in primary-care settings show high intra-class visual similarity and severe class imbalance,and occasional imaging artifacts can create ambiguity for state-of-the-art convolutional neural networks(CNNs).We frame skin lesion recognition as graph-based reasoning and,to ensure fair evaluation and avoid data leakage,adopt a strict lesion-level partitioning strategy.Each image is first over-segmented using SLIC(Simple Linear Iterative Clustering)to produce perceptually homogeneous superpixels.These superpixels form the nodes of a region-adjacency graph whose edges encode spatial continuity.Node attributes are 1280-dimensional embeddings extracted with a lightweight yet expressive EfficientNet-B0 backbone,providing strong representational power at modest computational cost.The resulting graphs are processed by a five-layer Graph Attention Network(GAT)that learns to weight inter-node relationships dynamically and aggregates multi-hop context before classifying lesions into seven classes with a log-softmax output.Extensive experiments on the DermaMNIST benchmark show the proposed pipeline achieves 88.35%accuracy and 98.04%AUC,outperforming contemporary CNNs,AutoML approaches,and alternative graph neural networks.An ablation study indicates EfficientNet-B0 produces superior node descriptors compared with ResNet-18 and DenseNet,and that roughly five GAT layers strike a good balance between being too shallow and over-deep while avoiding oversmoothing.The method requires no data augmentation or external metadata,making it a drop-in upgrade for clinical computer-aided diagnosis systems. 展开更多
关键词 Graph neural network image classification DermaMNIST dataset graph representation
在线阅读 下载PDF
Deep Learning for Brain Tumor Segmentation and Classification: A Systematic Review of Methods and Trends
4
作者 Ameer Hamza Robertas Damaševicius 《Computers, Materials & Continua》 2026年第1期132-172,共41页
This systematic review aims to comprehensively examine and compare deep learning methods for brain tumor segmentation and classification using MRI and other imaging modalities,focusing on recent trends from 2022 to 20... This systematic review aims to comprehensively examine and compare deep learning methods for brain tumor segmentation and classification using MRI and other imaging modalities,focusing on recent trends from 2022 to 2025.The primary objective is to evaluate methodological advancements,model performance,dataset usage,and existing challenges in developing clinically robust AI systems.We included peer-reviewed journal articles and highimpact conference papers published between 2022 and 2025,written in English,that proposed or evaluated deep learning methods for brain tumor segmentation and/or classification.Excluded were non-open-access publications,books,and non-English articles.A structured search was conducted across Scopus,Google Scholar,Wiley,and Taylor&Francis,with the last search performed in August 2025.Risk of bias was not formally quantified but considered during full-text screening based on dataset diversity,validation methods,and availability of performance metrics.We used narrative synthesis and tabular benchmarking to compare performance metrics(e.g.,accuracy,Dice score)across model types(CNN,Transformer,Hybrid),imaging modalities,and datasets.A total of 49 studies were included(43 journal articles and 6 conference papers).These studies spanned over 9 public datasets(e.g.,BraTS,Figshare,REMBRANDT,MOLAB)and utilized a range of imaging modalities,predominantly MRI.Hybrid models,especially ResViT and UNetFormer,consistently achieved high performance,with classification accuracy exceeding 98%and segmentation Dice scores above 0.90 across multiple studies.Transformers and hybrid architectures showed increasing adoption post2023.Many studies lacked external validation and were evaluated only on a few benchmark datasets,raising concerns about generalizability and dataset bias.Few studies addressed clinical interpretability or uncertainty quantification.Despite promising results,particularly for hybrid deep learning models,widespread clinical adoption remains limited due to lack of validation,interpretability concerns,and real-world deployment barriers. 展开更多
关键词 Brain tumor segmentation brain tumor classification deep learning vision transformers hybrid models
在线阅读 下载PDF
HCL Net: Deep Learning for Accurate Classification of Honeycombing Lung and Ground Glass Opacity in CT Images
5
作者 Hairul Aysa Abdul Halim Sithiq Liyana Shuib +1 位作者 Muneer Ahmad Chermaine Deepa Antony 《Computers, Materials & Continua》 2026年第1期999-1023,共25页
Honeycombing Lung(HCL)is a chronic lung condition marked by advanced fibrosis,resulting in enlarged air spaces with thick fibrotic walls,which are visible on Computed Tomography(CT)scans.Differentiating between normal... Honeycombing Lung(HCL)is a chronic lung condition marked by advanced fibrosis,resulting in enlarged air spaces with thick fibrotic walls,which are visible on Computed Tomography(CT)scans.Differentiating between normal lung tissue,honeycombing lungs,and Ground Glass Opacity(GGO)in CT images is often challenging for radiologists and may lead to misinterpretations.Although earlier studies have proposed models to detect and classify HCL,many faced limitations such as high computational demands,lower accuracy,and difficulty distinguishing between HCL and GGO.CT images are highly effective for lung classification due to their high resolution,3D visualization,and sensitivity to tissue density variations.This study introduces Honeycombing Lungs Network(HCL Net),a novel classification algorithm inspired by ResNet50V2 and enhanced to overcome the shortcomings of previous approaches.HCL Net incorporates additional residual blocks,refined preprocessing techniques,and selective parameter tuning to improve classification performance.The dataset,sourced from the University Malaya Medical Centre(UMMC)and verified by expert radiologists,consists of CT images of normal,honeycombing,and GGO lungs.Experimental evaluations across five assessments demonstrated that HCL Net achieved an outstanding classification accuracy of approximately 99.97%.It also recorded strong performance in other metrics,achieving 93%precision,100%sensitivity,89%specificity,and an AUC-ROC score of 97%.Comparative analysis with baseline feature engineering methods confirmed the superior efficacy of HCL Net.The model significantly reduces misclassification,particularly between honeycombing and GGO lungs,enhancing diagnostic precision and reliability in lung image analysis. 展开更多
关键词 Deep learning honeycombing lung ground glass opacity Resnet50v2 multiclass classification
在线阅读 下载PDF
An Improved Forest Fire Detection Model Using Audio Classification and Machine Learning
6
作者 Kemahyanto Exaudi Deris Stiawan +4 位作者 Bhakti Yudho Suprapto Hanif Fakhrurroja MohdYazid Idris Tami AAlghamdi Rahmat Budiarto 《Computers, Materials & Continua》 2026年第1期2062-2085,共24页
Sudden wildfires cause significant global ecological damage.While satellite imagery has advanced early fire detection and mitigation,image-based systems face limitations including high false alarm rates,visual obstruc... Sudden wildfires cause significant global ecological damage.While satellite imagery has advanced early fire detection and mitigation,image-based systems face limitations including high false alarm rates,visual obstructions,and substantial computational demands,especially in complex forest terrains.To address these challenges,this study proposes a novel forest fire detection model utilizing audio classification and machine learning.We developed an audio-based pipeline using real-world environmental sound recordings.Sounds were converted into Mel-spectrograms and classified via a Convolutional Neural Network(CNN),enabling the capture of distinctive fire acoustic signatures(e.g.,crackling,roaring)that are minimally impacted by visual or weather conditions.Internet of Things(IoT)sound sensors were crucial for generating complex environmental parameters to optimize feature extraction.The CNN model achieved high performance in stratified 5-fold cross-validation(92.4%±1.6 accuracy,91.2%±1.8 F1-score)and on test data(94.93%accuracy,93.04%F1-score),with 98.44%precision and 88.32%recall,demonstrating reliability across environmental conditions.These results indicate that the audio-based approach not only improves detection reliability but also markedly reduces computational overhead compared to traditional image-based methods.The findings suggest that acoustic sensing integrated with machine learning offers a powerful,low-cost,and efficient solution for real-time forest fire monitoring in complex,dynamic environments. 展开更多
关键词 Audio classification convolutional neural network(CNN) environmental science forest fire detection machine learning spectrogram analysis IOT
在线阅读 下载PDF
A Hybrid Deep Learning Multi-Class Classification Model for Alzheimer’s Disease Using Enhanced MRI Images
7
作者 Ghadah Naif Alwakid 《Computers, Materials & Continua》 2026年第1期797-821,共25页
Alzheimer’s Disease(AD)is a progressive neurodegenerative disorder that significantly affects cognitive function,making early and accurate diagnosis essential.Traditional Deep Learning(DL)-based approaches often stru... Alzheimer’s Disease(AD)is a progressive neurodegenerative disorder that significantly affects cognitive function,making early and accurate diagnosis essential.Traditional Deep Learning(DL)-based approaches often struggle with low-contrast MRI images,class imbalance,and suboptimal feature extraction.This paper develops a Hybrid DL system that unites MobileNetV2 with adaptive classification methods to boost Alzheimer’s diagnosis by processing MRI scans.Image enhancement is done using Contrast-Limited Adaptive Histogram Equalization(CLAHE)and Enhanced Super-Resolution Generative Adversarial Networks(ESRGAN).A classification robustness enhancement system integrates class weighting techniques and a Matthews Correlation Coefficient(MCC)-based evaluation method into the design.The trained and validated model gives a 98.88%accuracy rate and 0.9614 MCC score.We also performed a 10-fold cross-validation experiment with an average accuracy of 96.52%(±1.51),a loss of 0.1671,and an MCC score of 0.9429 across folds.The proposed framework outperforms the state-of-the-art models with a 98%weighted F1-score while decreasing misdiagnosis results for every AD stage.The model demonstrates apparent separation abilities between AD progression stages according to the results of the confusion matrix analysis.These results validate the effectiveness of hybrid DL models with adaptive preprocessing for early and reliable Alzheimer’s diagnosis,contributing to improved computer-aided diagnosis(CAD)systems in clinical practice. 展开更多
关键词 Alzheimer’s disease deep learning MRI images MobileNetV2 contrast-limited adaptive histogram equalization(CLAHE) enhanced super-resolution generative adversarial networks(ESRGAN) multi-class classification
在线阅读 下载PDF
CT影像特征联合C-TIRADS分类、超微细血流显像鉴别甲状腺结节良恶性的价值分析 被引量:3
8
作者 马炎 许文哲 +1 位作者 赵玮 霍晓光 《临床放射学杂志》 北大核心 2025年第3期423-428,共6页
目的探讨CT影像特征联合中国超声甲状腺影像报告和数据系统(C-TIRADS)分类、超微细血流显像(SMI)鉴别甲状腺结节良恶性的应用价值。方法回顾性搜集2023年1月至2024年1月于淄博市中心医院检查发现甲状腺结节的178例患者。所有患者均行颈... 目的探讨CT影像特征联合中国超声甲状腺影像报告和数据系统(C-TIRADS)分类、超微细血流显像(SMI)鉴别甲状腺结节良恶性的应用价值。方法回顾性搜集2023年1月至2024年1月于淄博市中心医院检查发现甲状腺结节的178例患者。所有患者均行颈部CT、常规超声、SMI检查。比较良恶性甲状腺结节的CT影像特征、超声C-TIRADS分类结果、超声影像特征、SMI的Adler血流信号分级分布和血流形态分级分布;Logistic回归分析CT影像特征、超声影像特征与甲状腺结节良恶性鉴别的关系;计算并比较CT影像特征、超声C-TIRADS分类和SMI分级对甲状腺结节良恶性的诊断效能。结果良性组的形态规则、边界清晰、粗颗粒钙化、包膜完整、结节位于腺体内、均匀强化、囊实性检出率高于恶性组,纵横比≥1、钙化、低回声检出率低于恶性组;良性组4B以上分类的甲状腺结节少于恶性组;良性组的2~3级血流信号比例和Ⅲ~Ⅳ级血流形态比例低于恶性组;Logistic回归分析显示形态、边界、钙化程度、包膜完整度、结节位置是CT鉴别甲状腺结节良恶性的独立影响因素,边界、纵横比、钙化程度、回声、囊性变是超声鉴别甲状腺结节良恶性的独立影响因素;CT单独检查敏感度较低,特异度较高,其准确率、阳性预测值与C-TIRADS、SMI相当,C-TIRADS和SMI单独检查均具有较高的敏感度,但特异度、准确率、阳性预测值均低于三者联合检测(均P<0.05)。结论相较于CT、C-TIRADS分类和SMI单独应用,三者联合可提高对甲状腺良恶性结节诊断的敏感度、特异度和准确率,其诊断效能最佳。 展开更多
关键词 甲状腺结节 CT影像 c-tirads指南 超微细血流显像 预测价值
原文传递
超声AI联合C-TIRADS在甲状腺结节良恶性鉴别中的效果分析 被引量:2
9
作者 董明华 孟芳 《中国实验诊断学》 2025年第8期910-915,共6页
目的分析超声人工智能(AI)联合C-TIRADS在甲状腺结节(TNS)良恶性鉴别中的效果。方法回顾性分析2023年6月至2024年5月收治的87例(96个结节)TNS患者的临床资料,均行超声检查,并按照手术病理检查结果分为良性和恶性。比较两组的基线资料及... 目的分析超声人工智能(AI)联合C-TIRADS在甲状腺结节(TNS)良恶性鉴别中的效果。方法回顾性分析2023年6月至2024年5月收治的87例(96个结节)TNS患者的临床资料,均行超声检查,并按照手术病理检查结果分为良性和恶性。比较两组的基线资料及超声AI指标、C-TIRADS评分。分析甲状腺恶性结节的影响因素及超声AI联合C-TIRADS对甲状腺恶性结节的诊断价值。结果87例患者中,32例为恶性,55例为良性。恶性组形态不规则、边界模糊、声晕不完整或中断、低回声、钙化、血流1~2级、纵横比<1及C-TIRADS≥2分的占比分别为75.00%、87.50%、87.50%、68.75%、68.75%、62.50%、68.75%、75.00%,高于良性组的21.82%、9.09%、47.27%、43.64%、25.45%、12.73%、45.45%、5.45%(P<0.05)。多因素Logistic回归分析可得出:形态不规则[OR=10.750(95%CI:3.859,29.948)]、边界模糊[OR=14.126(95%CI:4.828,41.328)]、声晕不完整或中断[OR=7.808(95%CI:2.414,25.252)]、内部低回声[OR=2.842(95%CI:1.135,7.116)]、钙化[OR=6.443(95%CI:2.460,16.873)]、血流1~2级[OR=11.429(95%CI:3.927,33.258)]、纵横比<1[OR=2.640(95%CI:1.055,6.603)]、C-TIRADS评分≥2分[OR=19.125(95%CI:6.537,55.954)]均为甲状腺恶性结节的危险因素(P<0.05)。ROC曲线可得出:超声AI联合C-TIRADS诊断甲状腺恶性结节的AUC值为0.983(95%CI:0.961,1.000),敏感度为100.00%,特异度为83.50%,具有较高的诊断价值。结论超声AI联合C-TIRADS可更好的鉴别TNS的良恶性。 展开更多
关键词 超声AI c-tirads 甲状腺结节 良恶性 鉴别诊断
暂未订购
实时剪切波弹性成像技术对甲状腺结节C-TIRADS优化分类的应用价值 被引量:1
10
作者 兰长利 《实用医学影像杂志》 2025年第2期91-94,共4页
目的探讨实时剪切波弹性成像(SWE)技术对甲状腺结节C-TIRADS优化分类的应用价值。方法收集2022年1月至2023年12月就诊于宁夏医科大学总医院心脑血管病医院甲状腺结节患者122例(146个结节),手术或穿刺前均行常规超声C-TIRADS分类和SWE检... 目的探讨实时剪切波弹性成像(SWE)技术对甲状腺结节C-TIRADS优化分类的应用价值。方法收集2022年1月至2023年12月就诊于宁夏医科大学总医院心脑血管病医院甲状腺结节患者122例(146个结节),手术或穿刺前均行常规超声C-TIRADS分类和SWE检查优化分类,SWE定量参数Emax值选择57.00 kPa,以病理结果为“金标准”对比2组在诊断甲状腺结节良恶性中的效能差异。结果常规超声诊断甲状腺恶性结节83个,良性结节63个,诊断的灵敏度为82.9%,特异度为76.6%,阳性预测值为81.9%,阴性预测值为77.8%,准确度为80.1%;SWE技术对C-TIRADS优化分类后诊断恶性结节75个,良性结节71个,其诊断的敏感度为93.4%,特异度为94.3%,阳性预测值为94.7%,阴性预测值为93.0%,准确率93.8%。SWE技术优化后C-TIRADS分类诊断甲状腺良恶性结节的特异度(χ^(2)=17.72,P=0.001)、阳性预测值(χ^(2)=6.04,P=0.014)、阴性预测值(χ^(2)=6.32,P=0.012)和准确率(χ^(2)=12.10,P=0.001)均明显高于常规超声C-TIRADS分类,两者差异有统计学意义(P<0.05),而敏感度(χ^(2)=0.54,P=0.463)较常规超声C-TIRADS分类差异无统计学意义(P>0.05)。结论SWE技术对甲状腺结节常规超声C-TIRADS分类能起到明显的优化校正作用。 展开更多
关键词 甲状腺结节 实时剪切波弹性成像 c-tirads分类
暂未订购
超声图像特征与免疫组织化学标志物在预测甲状腺 C-TIRADS4类结节恶性风险因素中的价值 被引量:1
11
作者 马蓉 邵春晖 何柳 《中国实验诊断学》 2025年第5期551-558,共8页
目的 探讨超声图像特征与免疫组织化学(IHC)标志物在预测甲状腺C-TIRADS4类结节恶性风险因素中的价值。方法 选取宝鸡市人民医院2023年9月至2024年9月经超声检查的80例分类为C-TIRADS 4类甲状腺结节,均行超声引导下粗针穿刺活检,并对活... 目的 探讨超声图像特征与免疫组织化学(IHC)标志物在预测甲状腺C-TIRADS4类结节恶性风险因素中的价值。方法 选取宝鸡市人民医院2023年9月至2024年9月经超声检查的80例分类为C-TIRADS 4类甲状腺结节,均行超声引导下粗针穿刺活检,并对活检组织固定、石蜡包埋、切片染色。分析超声图像特征并与IHC标志物NCAM-1、CK19、Galectin-3、HBME-1蛋白表达进行对比分析,比较其在甲状腺C-TIRADS4类结节中的诊断价值。应用二元Logistic回归方程分析超声图像特征与免疫组化标志物诊断甲状腺C-TIRADS4类结节恶性风险的独立危险因素,以P<0.05为差异有统计学意义。结果 80例甲状腺C-TIRADS4类结节中良性组结节32例(结节性甲状腺肿21例、滤泡性腺瘤11例),恶性组结节48例(乳头状癌46例、滤泡癌2例)。低/极低回声、垂直位、边缘模糊/分叶或不规则3种恶性超声图像特征在甲状腺C-TIRADS4类结节良性组与恶性组间比较,差异均有统计学意义(P<0.05)。IHC蛋白标志物NCAM-1、CK19、Galectin-3及HBME-1在甲状腺C-TIRADS4类结节中良性组与恶性组间阳性表达率相比,差异均有统计学意义(χ^(2)=25.871、21.834、31.479、49.375,P<0.05)。超声图像特征中5种恶性征象与IHC 4种标志物在甲状腺C-TIRADS4类结节中的诊断效能比较,HBME-1的诊断效能较高AUC(95%CI)为0.891[95%CI(0.807~0.975)],结节微钙化情况诊断效能较低AUC(95%CI)为0.589[95%CI(0.464~0.713)]。多因素二元Logistic回归分析显示,结节生长方式[OR95%CI:50.646(1.378~1861.545)]、CK19[OR95%CI:0.010(0.000~1.597)]、Galectin-3[OR95%CI:0.011(0.000~0.316)]及HBME-1[OR95%CI:0.003(0.000~0.065)]可作为判断甲状腺C-TIRADS4类结节恶性风险的独立危险因素(P<0.05),结节内部回声、结节边缘、NCAM-1不能作为判断甲状腺C-TIRADS4类结节恶性风险的独立危险因素(P>0.05)。结论 低/极低回声、垂直位生长、边缘不规则/分叶或模糊3个甲状腺结节恶性征象与4种免疫组化标志物NCAM-1、CK19、Galectin-3、HBME-1在甲状腺C-TIRADS4类结节中的表达及鉴别甲状腺结节的性质具有重要临床价值,结节生长方式、CK19、Galectin-3及HBME-1可作为判断甲状腺C-TIRADS4类结节恶性风险的独立危险因素。 展开更多
关键词 甲状腺结节 超声图像特征 免疫组织化学 c-tirads4类 恶性风险 诊断价值
暂未订购
甲状腺结节患者超声C-TIRADS分类状况及其与代谢指标相关性的横断面研究
12
作者 李俊鹏 吕精巧 +1 位作者 胡威利 于潇 《海南医学》 2025年第20期2997-3002,共6页
目的探究甲状腺结节患者超声C-TIRADS分类状况及其与代谢指标的相关性。方法采用横断面研究设计,选取2023年3月至2024年3月期间在新乡医学院第三附属医院接受治疗的262例甲状腺结节患者作为研究对象。所有患者均接受超声检查,同时检测... 目的探究甲状腺结节患者超声C-TIRADS分类状况及其与代谢指标的相关性。方法采用横断面研究设计,选取2023年3月至2024年3月期间在新乡医学院第三附属医院接受治疗的262例甲状腺结节患者作为研究对象。所有患者均接受超声检查,同时检测所有患者的空腹血糖(FBG)、糖化血红蛋白(HbAlc)、总胆固醇(TC)、低密度脂蛋白胆固醇(LDL-C)、高密度脂蛋白胆固醇(HDL-C)、甘油三酯(TG)、促甲状腺激素(TSH)、游离三碘甲状腺原氨酸(FT3)和游离甲状腺素(FT4)等代谢指标。按照C-TIRADS分类将所有患者分为低风险组(C-TIRADS1~3类)和高风险组(C-TIRADS 4~5类),比较两组患者的各项代谢指标,采用多因素Logistic回归分析C-TIRADS高风险分类的影响因素,并采用Pearson相关分析代谢指标与C-TIRADS分类评分的线性相关性。结果262例患者中,C-TIRADS 1类26例,2类79例,3类66例,4类52例,5类39例。根据C-TIRADS分类将患者分为低风险组171例和高风险组91例。低风险组患者的FBG、HbAlc、TSH明显低于高风险组,HDL-C明显高于高风险组,差异均有统计学意义(P<0.05)。多因素Logistic回归分析结果显示,FBG、HbA1c、HDL-C及TSH均是甲状腺结节C-TIRADS高风险分类的独立影响因素(P<0.05)。Pearson相关分析结果显示,TSH、HbA1c、FBG与C-TIRADS分类呈显著正相关(r=0.651、0.470、0.283,P<0.001),而HDL-C与C-TIRADS分类呈显著负相关(r=-0.441,P<0.001)。结论甲状腺结节患者的超声C-TIRADS分类与其代谢指标密切相关,尤其是FBG、HbAlc、HDL-C和TSH水平的变化可以作为评估甲状腺结节恶性程度的重要参考指标,监测和控制患者的代谢状态对于早期识别和管理甲状腺结节具有重要意义。 展开更多
关键词 甲状腺结节 超声检查 c-tirads分类 空腹血糖 血脂代谢 促甲状腺激素
暂未订购
甲状腺超声C-TIRADS分类方法在较大样本人群中的应用探讨
13
作者 汪荣华 《现代医用影像学》 2025年第3期410-414,共5页
目的:验证超声C-TIRADS分类方法在大样本人群中甲状腺癌筛查的实用性和有效性。方法:回顾性分析2021年1月至2023年12月在我院应用2020年C-TIRADS分类方法对2万余例甲状腺病例进行筛查并标准化分类管理的临床资料,总结各分类结节的患者... 目的:验证超声C-TIRADS分类方法在大样本人群中甲状腺癌筛查的实用性和有效性。方法:回顾性分析2021年1月至2023年12月在我院应用2020年C-TIRADS分类方法对2万余例甲状腺病例进行筛查并标准化分类管理的临床资料,总结各分类结节的患者性别与大小分布特征,同时以病理结果为标准对甲状腺结节的良恶性特征进行分析总结,以期不断提高甲状腺结节的超声诊断符合率。结果:人群中53.3%存在甲状腺结节,女性患者居多,正常甲状腺仅占37.3%;甲状腺结节以多发结节为主;恶性结节以小结节(≤1 cm)为主,多为甲状腺乳头状癌,7.3%发生转移;良性结节以大结节(>1 cm)为主,多为结节性甲状腺肿;甲状腺外侵犯征象均出现于恶性结节,绝大多数超声恶性征象在恶性结节中发生率高于良性结节(P<0.05),良性结节患者年龄高于恶性结节患者(P=0.002)。结论:甲状腺结节患者以女性居多;结节常多发,小结节(≤1 cm)更常见;超声能准确识别甲状腺结节一些恶性征象,少部分甲状腺良恶性结节超声表现存在同病异影和交叉,超声C-TIRADS分类法能很好指导临床应用。 展开更多
关键词 甲状腺影像报告和数据系统 甲状腺结节 超声c-tirads
暂未订购
能谱CT联合超声C-TIRADS分级鉴别甲状腺结节良恶性 被引量:1
14
作者 王玉堂 王红霞 +2 位作者 黄娅楠 黄俊霖 姜兴岳 《国际医药卫生导报》 2025年第4期587-590,共4页
目的探讨能谱CT联合超声C-TIRADS分级鉴别甲状腺结节良恶性的价值。方法选取2023年5月至2024年5月滨州医学院附属医院收治的70例甲状腺结节患者进行回顾性分析,其中良性结节26例,恶性结节44例。术前均行超声检查及能谱CT增强扫描。比较... 目的探讨能谱CT联合超声C-TIRADS分级鉴别甲状腺结节良恶性的价值。方法选取2023年5月至2024年5月滨州医学院附属医院收治的70例甲状腺结节患者进行回顾性分析,其中良性结节26例,恶性结节44例。术前均行超声检查及能谱CT增强扫描。比较两组年龄、性别、结节长径、能谱CT参数等资料。通过单因素及多因素分析筛选出能谱CT的独立预测因素,引入超声C-TIRADS分级构建列线图模型。采用Bootstrap法迭代1000次,内部验证模型的稳定性。采用独立样本t检验、Mann-Whitney U检验、χ^(2)检验进行统计分析。结果良性组和恶性组能谱参数[包括动脉期及静脉期碘浓度(iodine concentration,IC)、标准化碘浓度(normal iodine concentration,NIC)、能谱曲线斜率(slope of the energy spectrum curve,λHU)]以及结节长径比较,差异均有统计学意义(均P<0.05)。多因素分析表明,动脉期IC及静脉期NIC是鉴别甲状腺结节良恶性的独立预测因素(均P<0.05)。基于上述变量构建预测模型,该模型曲线下面积(AUC)为0.940。利用超声C-TIRADS分级诊断甲状腺结节良恶性,其AUC为0.823。超声C-TIRADS分级联合能谱CT参数构建列线图,其AUC为0.982。校准曲线显示,列线图校准度表现优秀,Brier评分为0.051。决定曲线分析显示,在广泛阈值概率范围内,列线图均表现出较好的临床净收益。应用Bootstrap法进行1000次迭代,计算平均AUC来对列线图模型进行内部验证,平均AUC为0.961。结论能谱CT预测模型AUC高于超声C-TIRADS分级。联合模型可以提高能谱CT及超声C-TIRADS分级鉴别甲状腺结节良恶性的效能。 展开更多
关键词 甲状腺结节 能谱CT 超声c-tirads分级 诊断
暂未订购
超声造影联合超声弹性成像在校正C-TIRADS甲状腺结节分类中的应用价值
15
作者 杨晓瑞 王华 《临床医学工程》 2025年第6期651-656,共6页
目的探讨超声造影(CEUS)联合超声弹性成像(UE)在校正中国甲状腺影像报告和数据系统(C-TIRADS)甲状腺结节分类中的应用价值。方法回顾性收集2020年1月至2024年3月在洛阳市中心医院行甲状腺常规超声、CEUS以及UE检查并有明确病理结果的65... 目的探讨超声造影(CEUS)联合超声弹性成像(UE)在校正中国甲状腺影像报告和数据系统(C-TIRADS)甲状腺结节分类中的应用价值。方法回顾性收集2020年1月至2024年3月在洛阳市中心医院行甲状腺常规超声、CEUS以及UE检查并有明确病理结果的650例甲状腺结节患者的临床资料及影像资料,其中病理检查结果显示良性结节342个,恶性结节335个。以病理检查结果作为“金标准”,采用常规超声检查进行C-TIRADS分级,并用CEUS联合UE检查对C-TIRADS分级进行校正;比较常规超声、CEUS、UE单独及联合对甲状腺结节良恶性的诊断效能。结果常规超声检查对甲状腺结节的诊断敏感度、特异度、阳性预测值和阴性预测值分别为93.13%、74.56%、78.19%、91.72%;CEUS联合UE检查分别为91.04%、84.21%、85.36%、93.50%;ROC曲线下面积分别为0.868和0.932,差异有统计学意义(P<0.05)。结论CEUS联合UE较常规超声对甲状腺结节分类有较高的诊断准确率,尤其是可以提高C-TIRADS 4a及4b类结节的诊断准确率,并能减少漏诊、误诊,提高甲状腺结节良恶性的诊断效能。 展开更多
关键词 甲状腺结节 c-tirad分级 超声造影 超声弹性成像
暂未订购
Urban tree species classification based on multispectral airborne LiDAR 被引量:1
16
作者 HU Pei-Lun CHEN Yu-Wei +3 位作者 Mohammad Imangholiloo Markus Holopainen WANG Yi-Cheng Juha Hyyppä 《红外与毫米波学报》 北大核心 2025年第2期211-216,共6页
Urban tree species provide various essential ecosystem services in cities,such as regulating urban temperatures,reducing noise,capturing carbon,and mitigating the urban heat island effect.The quality of these services... Urban tree species provide various essential ecosystem services in cities,such as regulating urban temperatures,reducing noise,capturing carbon,and mitigating the urban heat island effect.The quality of these services is influenced by species diversity,tree health,and the distribution and the composition of trees.Traditionally,data on urban trees has been collected through field surveys and manual interpretation of remote sensing images.In this study,we evaluated the effectiveness of multispectral airborne laser scanning(ALS)data in classifying 24 common urban roadside tree species in Espoo,Finland.Tree crown structure information,intensity features,and spectral data were used for classification.Eight different machine learning algorithms were tested,with the extra trees(ET)algorithm performing the best,achieving an overall accuracy of 71.7%using multispectral LiDAR data.This result highlights that integrating structural and spectral information within a single framework can improve the classification accuracy.Future research will focus on identifying the most important features for species classification and developing algorithms with greater efficiency and accuracy. 展开更多
关键词 multispectral airborne LiDAR machine learning tree species classification
在线阅读 下载PDF
细针穿刺细胞学在C-TIRADS 4类甲状腺结节合并桥本甲状腺炎中的诊断价值 被引量:2
17
作者 王萍萍 张永生 +3 位作者 张立平 高萍 崔久栋 张文振 《肿瘤学杂志》 2025年第2期122-127,共6页
[目的]探讨超声引导下细针穿刺细胞学(fine needle aspiration cytology,FNAC)检查在中国甲状腺影像报告和数据系统(Chinese-Thyroid Imaging Reporting and Data System,C-TIRADS)4类甲状腺结节合并桥本甲状腺炎(Hashimoto’s thyroidi... [目的]探讨超声引导下细针穿刺细胞学(fine needle aspiration cytology,FNAC)检查在中国甲状腺影像报告和数据系统(Chinese-Thyroid Imaging Reporting and Data System,C-TIRADS)4类甲状腺结节合并桥本甲状腺炎(Hashimoto’s thyroiditis,HT)中的诊断价值。[方法]选取2020年6月至2023年12月于日照市中心医院行FNAC的甲状腺结节病例1142例(伴HT 579例,不伴HT 563例)。所有患者均行二维超声检查提示甲状腺结节C-TIRADS 4类。比较FNAC对HT(+)组和HT(-)组的诊断效能。[结果]HT(+)组579例结节中,BethesdaⅡ类77例(13.3%),Ⅲ类162例(28.0%),Ⅳ类6例(1.0%),Ⅴ类130例(22.5%),Ⅵ类204例(35.2%)。HT(-)组563例结节中,BethesdaⅡ类82例(14.6%),Ⅲ类101例(17.9%),Ⅳ类11例(2.0%),Ⅴ类121例(21.5%),Ⅵ类248例(44.0%)。HT(+)组甲状腺结节FNAC阳性率显著低于HT(-)组(57.7%vs 65.5%,P=0.006)。HT(+)组FNAC的灵敏度为78.6%,特异度为95.4%,准确率为81.5%;HT(-)组FNAC的灵敏度为87.2%,特异度为98.1%,准确率为88.4%;HT(+)组患者FNAC灵敏度和准确率低于HT(-)组,差异有统计学意义(P=0.001,P=0.002)。[结论]FNAC是甲状腺结节诊断的有效手段,在C-TIRADS 4类甲状腺结节中特异度高,但合并HT降低了诊断的灵敏度和准确率。 展开更多
关键词 甲状腺结节 细针穿刺细胞学 c-tirads 4 桥本甲状腺炎
原文传递
ACR-TIRADS与C-TIRADS在不同大小甲状腺结节良恶性诊断中的效能比较 被引量:1
18
作者 陈军民 陈蕾 +1 位作者 沈海华 杨志根 《影像研究与医学应用》 2025年第17期29-32,共4页
目的:比较美国放射学会甲状腺影像报告及数据系统(ACR-TIRADS)与中华医学会超声分会甲状腺影像报告及数据系统(C-TIRADS)在诊断不同大小甲状腺结节良恶性中的效能,为临床超声诊断提供参考。方法:选取2017年1月—2023年9月在临平区中医... 目的:比较美国放射学会甲状腺影像报告及数据系统(ACR-TIRADS)与中华医学会超声分会甲状腺影像报告及数据系统(C-TIRADS)在诊断不同大小甲状腺结节良恶性中的效能,为临床超声诊断提供参考。方法:选取2017年1月—2023年9月在临平区中医院就诊的436例甲状腺结节患者(共513个结节)为研究对象,均经穿刺细胞学检查或手术病理证实结节性质。按结节直径≤1 cm和>1 cm分组,绘制受试者工作特征(ROC)曲线,比较两种系统的诊断效能。结果:513个结节中,良性239个(46.59%),恶性274个(53.41%);直径≤1 cm结节243个,>1 cm结节270个。在直径≤1 cm结节中,C-TIRADS的曲线下面积(AUC)为0.879、灵敏度0.905、特异度0.778,ACR-TIRADS的AUC为0.864、灵敏度0.746、特异度0.852;在直径>1 cm结节中,C-TIRADS的AUC为0.926、灵敏度0.881、特异度0.882,ACR-TIRADS的AUC为0.937、灵敏度0.881、特异度0.860。两种系统对直径>1 cm结节的AUC、灵敏度及特异度均高于直径≤1 cm结节。结论:ACR-TIRADS与C-TIRADS在诊断不同大小甲状腺结节良恶性中均具有较高效能,且对直径>1 cm甲状腺结节的整体诊断效果更优。 展开更多
关键词 甲状腺结节 c-tirads ACR-TIRADS 超声检查 诊断效能
暂未订购
C-TIRADS与ACR TI-RADS在甲状腺结节中的诊断效能对比
19
作者 刘晁均 刘淑华 《智慧健康》 2025年第14期24-26,共3页
目的 对比分析甲状腺结节超声恶性危险分层中国指南(C-TIRADS)与美国放射学会规范化的甲状腺影像报告和数据系统(ACR TI-RADS)诊断甲状腺结节的效能。方法 以2023年7—12月江阴市人民医院诊治的疑似甲状腺结节患者225例作为研究对象进... 目的 对比分析甲状腺结节超声恶性危险分层中国指南(C-TIRADS)与美国放射学会规范化的甲状腺影像报告和数据系统(ACR TI-RADS)诊断甲状腺结节的效能。方法 以2023年7—12月江阴市人民医院诊治的疑似甲状腺结节患者225例作为研究对象进行分析,对所有患者均进行彩色多普勒超声检查,将影像学结果参照C-TIRADS及ACR TI-RADS进行评估,以病理结果作为金标准,对比两种参考依据诊断甲状腺结节良恶性的效能。结果 病理结果显示,97例确诊为恶性甲状腺结节,128例确诊为良性。通过计算,C-TIRADS诊断甲状腺结节疾病的特异度高于ACR TI-RADS(P<0.05),而ACR TI RADS诊断甲状腺结节疾病的灵敏度高于C-TIRADS(P<0.05)。两项诊断的准确率对比,差异无统计学意义(P>0.05)。结论 临床诊断甲状腺结节疾病可参考C-TIRADS及ACR TI RADS标准,二者均有较高的准确率,但二者灵敏度与特异度间存在差异,应合理选择,以便为临床疾病诊断提供参考。 展开更多
关键词 c-tirads ACR TI-RADS 甲状腺结节 诊断效能
暂未订购
炎症指标与甲状腺结节患者中医证型及结节C-TIRADS分类和性质的相关性研究 被引量:3
20
作者 李天昊 吉春兰 +4 位作者 曾艳平 黄河清 陈元岩 李天翔 郭雄图 《广州中医药大学学报》 2025年第3期552-559,共8页
【目的】分析甲状腺结节患者中性粒细胞与淋巴细胞比值(NLR)、血小板淋巴细胞比值(PLR)、单核细胞与淋巴细胞比值(MLR)、全身免疫炎症指数(SII)等炎症指标与不同中医证型及甲状腺结节超声恶性危险分层中国指南(C-TIRADS)分类和结节性质... 【目的】分析甲状腺结节患者中性粒细胞与淋巴细胞比值(NLR)、血小板淋巴细胞比值(PLR)、单核细胞与淋巴细胞比值(MLR)、全身免疫炎症指数(SII)等炎症指标与不同中医证型及甲状腺结节超声恶性危险分层中国指南(C-TIRADS)分类和结节性质的相关性,为指导中医辨证及治疗提供依据,并为甲状腺结节患者的C-TIRADS分类及结节性质评估提供依据。【方法】回顾性分析2021年1月至2024年1月期间在广州中医药大学附属广州中西医结合医院(即广州市中西医结合医院)普外科住院诊断为甲状腺结节且行甲状腺切除术的140例患者。按照甲状腺结节不同中医证型、C-TIRADS分类、甲状腺结节性质分组,采用χ^(2)检验和秩和检验分析各项临床指标与中医证型及C-TIRADS分类和甲状腺结节性质的关系,采用Spearman相关系数分析临床指标与C-TIRADS分类和甲状腺结节性质的相关性,利用受试者工作特征(ROC)曲线分析NLR、MLR、PLR、SII等对甲状腺结节患者结节性质的预测价值,并以约登指数确定最佳预测临界值。【结果】(1)根据中医辨证分型标准,分为气郁痰阻证72例,痰结血瘀证65例,心肝阴虚证3例(由于心肝阴虚证的病例数太少,故不作分析)。(2)气郁痰阻证患者的游离T3(FT3)、游离T4(FT4)水平高于痰结血瘀证,抗甲状腺过氧化物酶抗体(A-TPO)、抗甲状腺球蛋白抗体(A-TG)、中性粒细胞(NEU)、NLR、SII水平低于痰结血瘀证,差异均有统计学意义(P<0.05或P<0.01)。(3)C-TIRADS3分类的NLR、PLR、SII水平低于C-TIRADS4分类,差异均有统计学意义(P<0.05或P<0.01);而C-TIRADS3分类与C-TIRADS4分类的MLR水平比较,差异无统计学意义(P>0.05)。(4)良性结节患者的NLR、PLR、MLR、SII水平均低于恶性结节患者,差异均有统计学意义(P<0.05或P<0.01)。(5)经Spearman相关性分析,NLR、PLR、SII与患者结节C-TIRADS分类呈正相关性,NLR、PLR、MLR、SII与患者结节性质呈正相关性,差异均有统计学意义(P<0.05或P<0.01)。(6)高风险甲状腺结节患者的NLR、MLR、PLR、SII水平对结节性质有一定的预测价值,曲线下面积(AUC)分别为0.645、0.641、0.604、0.716,差异均有统计学意义(P<0.05或P<0.01)。高风险甲状腺结节患者的NLR、MLR、PLR、SII水平对结节性质的预测,最佳截断值及其对应的敏感度和特异性分别为:2.261(0.551,0.791)、138.108(0.735,0.527)、5.132(0.714,0.495)、493.114(0.776,0.615);约登指数分别为:0.342、0.262、0.209、0.391。【结论】FT3、FT4与甲状腺结节患者气郁痰阻证呈正相关;A-TPO、A-TG、NEU、NLR、SII值与甲状腺结节患者痰结血瘀证呈正相关。NLR、PLR、SII值与甲状腺结节患者不同C-TIRADS分类呈正相关;NLR、PLR、MLR、SII值与恶性甲状腺结节呈正相关。NLR、MLR、PLR、SII对预测甲状腺结节患者甲状腺结节性质效果良好。 展开更多
关键词 甲状腺结节 c-tirads分类 结节性质 中医证型 气郁痰阻证 痰结血瘀证 中性粒细胞与淋巴细胞比值 NLR 血小板淋巴细胞比值 PLR 单核细胞与淋巴细胞比值 MLR 全身免疫炎症指数 SII
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部