期刊文献+
共找到4,444篇文章
< 1 2 223 >
每页显示 20 50 100
Improved SE-UNet network-based semantic segmentation and extraction of hidden geological significance in geological maps
1
作者 Kai Ma Jun-jie Liu +5 位作者 Si-qi Lu Ze-hua Huang Miao Tian Jun-yuan Deng Zhong Xie Qin-jun Qiu 《China Geology》 2025年第4期643-660,共18页
Automatic segmentation and recognition of content and element information in color geological map are of great significance for researchers to analyze the distribution of mineral resources and predict disaster informa... Automatic segmentation and recognition of content and element information in color geological map are of great significance for researchers to analyze the distribution of mineral resources and predict disaster information.This article focuses on color planar raster geological map(geological maps include planar geological maps,columnar maps,and profiles).While existing deep learning approaches are often used to segment general images,their performance is limited due to complex elements,diverse regional features,and complicated backgrounds for color geological map in the domain of geoscience.To address the issue,a color geological map segmentation model is proposed that combines the Felz clustering algorithm and an improved SE-UNet deep learning network(named GeoMSeg).Firstly,a symmetrical encoder-decoder structure backbone network based on UNet is constructed,and the channel attention mechanism SENet has been incorporated to augment the network’s capacity for feature representation,enabling the model to purposefully extract map information.The SE-UNet network is employed for feature extraction from the geological map and obtain coarse segmentation results.Secondly,the Felz clustering algorithm is used for super pixel pre-segmentation of geological maps.The coarse segmentation results are refined and modified based on the super pixel pre-segmentation results to obtain the final segmentation results.This study applies GeoMSeg to the constructed dataset,and the experimental results show that the algorithm proposed in this paper has superior performance compared to other mainstream map segmentation models,with an accuracy of 91.89%and a MIoU of 71.91%. 展开更多
关键词 Geological map UNet model Image segmentation Semantic segmentation Pixel pre-segmentation Clustering algorithm Attention mechanism Deep learning Artificial intelligence Geological survey engineering
在线阅读 下载PDF
Advanced Brain Tumor Segmentation in Magnetic Resonance Imaging via 3D U-Net and Generalized Gaussian Mixture Model-Based Preprocessing
2
作者 Khalil Ibrahim Lairedj Zouaoui Chama +5 位作者 Amina Bagdaoui Samia Larguech Younes Menni Nidhal Becheikh Lioua Kolsi Badr M.Alshammari 《Computer Modeling in Engineering & Sciences》 2025年第8期2419-2443,共25页
Brain tumor segmentation from Magnetic Resonance Imaging(MRI)supports neurologists and radiologists in analyzing tumors and developing personalized treatment plans,making it a crucial yet challenging task.Supervised m... Brain tumor segmentation from Magnetic Resonance Imaging(MRI)supports neurologists and radiologists in analyzing tumors and developing personalized treatment plans,making it a crucial yet challenging task.Supervised models such as 3D U-Net perform well in this domain,but their accuracy significantly improves with appropriate preprocessing.This paper demonstrates the effectiveness of preprocessing in brain tumor segmentation by applying a pre-segmentation step based on the Generalized Gaussian Mixture Model(GGMM)to T1 contrastenhanced MRI scans from the BraTS 2020 dataset.The Expectation-Maximization(EM)algorithm is employed to estimate parameters for four tissue classes,generating a new pre-segmented channel that enhances the training and performance of the 3DU-Net model.The proposed GGMM+3D U-Net framework achieved a Dice coefficient of 0.88 for whole tumor segmentation,outperforming both the standard multiscale 3D U-Net(0.84)and MMU-Net(0.85).It also delivered higher Intersection over Union(IoU)scores compared to models trained without preprocessing or with simpler GMM-based segmentation.These results,supported by qualitative visualizations,suggest that GGMM-based preprocessing should be integrated into brain tumor segmentation pipelines to optimize performance. 展开更多
关键词 Magnetic resonance imaging(MRI) imaging technology GGMM EM algorithm 3D U-Net segmentation
在线阅读 下载PDF
Multi-Level Image Segmentation Combining Chaotic Initialized Chimp Optimization Algorithm and Cauchy Mutation
3
作者 Shujing Li Zhangfei Li +2 位作者 Wenhui Cheng Chenyang Qi Linguo Li 《Computers, Materials & Continua》 SCIE EI 2024年第8期2049-2063,共15页
To enhance the diversity and distribution uniformity of initial population,as well as to avoid local extrema in the Chimp Optimization Algorithm(CHOA),this paper improves the CHOA based on chaos initialization and Cau... To enhance the diversity and distribution uniformity of initial population,as well as to avoid local extrema in the Chimp Optimization Algorithm(CHOA),this paper improves the CHOA based on chaos initialization and Cauchy mutation.First,Sin chaos is introduced to improve the random population initialization scheme of the CHOA,which not only guarantees the diversity of the population,but also enhances the distribution uniformity of the initial population.Next,Cauchy mutation is added to optimize the global search ability of the CHOA in the process of position(threshold)updating to avoid the CHOA falling into local optima.Finally,an improved CHOA was formed through the combination of chaos initialization and Cauchy mutation(CICMCHOA),then taking fuzzy Kapur as the objective function,this paper applied CICMCHOA to natural and medical image segmentation,and compared it with four algorithms,including the improved Satin Bowerbird optimizer(ISBO),Cuckoo Search(ICS),etc.The experimental results deriving from visual and specific indicators demonstrate that CICMCHOA delivers superior segmentation effects in image segmentation. 展开更多
关键词 Image segmentation image thresholding chimp optimization algorithm chaos initialization Cauchy mutation
在线阅读 下载PDF
Enhanced Wolf Pack Algorithm (EWPA) and Dense-kUNet Segmentation for Arterial Calcifications in Mammograms
4
作者 Afnan M.Alhassan 《Computers, Materials & Continua》 SCIE EI 2024年第2期2207-2223,共17页
Breast Arterial Calcification(BAC)is a mammographic decision dissimilar to cancer and commonly observed in elderly women.Thus identifying BAC could provide an expense,and be inaccurate.Recently Deep Learning(DL)method... Breast Arterial Calcification(BAC)is a mammographic decision dissimilar to cancer and commonly observed in elderly women.Thus identifying BAC could provide an expense,and be inaccurate.Recently Deep Learning(DL)methods have been introduced for automatic BAC detection and quantification with increased accuracy.Previously,classification with deep learning had reached higher efficiency,but designing the structure of DL proved to be an extremely challenging task due to overfitting models.It also is not able to capture the patterns and irregularities presented in the images.To solve the overfitting problem,an optimal feature set has been formed by Enhanced Wolf Pack Algorithm(EWPA),and their irregularities are identified by Dense-kUNet segmentation.In this paper,Dense-kUNet for segmentation and optimal feature has been introduced for classification(severe,mild,light)that integrates DenseUNet and kU-Net.Longer bound links exist among adjacent modules,allowing relatively rough data to be sent to the following component and assisting the system in finding higher qualities.The major contribution of the work is to design the best features selected by Enhanced Wolf Pack Algorithm(EWPA),and Modified Support Vector Machine(MSVM)based learning for classification.k-Dense-UNet is introduced which combines the procedure of Dense-UNet and kU-Net for image segmentation.Longer bound associations occur among nearby sections,allowing relatively granular data to be sent to the next subsystem and benefiting the system in recognizing smaller characteristics.The proposed techniques and the performance are tested using several types of analysis techniques 826 filled digitized mammography.The proposed method achieved the highest precision,recall,F-measure,and accuracy of 84.4333%,84.5333%,84.4833%,and 86.8667%when compared to other methods on the Digital Database for Screening Mammography(DDSM). 展开更多
关键词 Breast arterial calcification cardiovascular disease semantic segmentation transfer learning enhanced wolf pack algorithm and modified support vector machine
在线阅读 下载PDF
Double Enhanced Solution Quality Boosted RIME Algorithm with Crisscross Operations for Breast Cancer Image Segmentation
5
作者 Mengjun Sun Yi Chen +3 位作者 Ali Asghar Heidari Lei Liu Huiling Chen Qiuxiang He 《Journal of Bionic Engineering》 CSCD 2024年第6期3151-3178,共28页
The persistently high incidence of breast cancer emphasizes the need for precise detection in its diagnosis.Computer-aided medical systems are designed to provide accurate information and reduce human errors,in which ... The persistently high incidence of breast cancer emphasizes the need for precise detection in its diagnosis.Computer-aided medical systems are designed to provide accurate information and reduce human errors,in which accurate and effective segmentation of medical images plays a pivotal role in improving clinical outcomes.Multilevel Threshold Image Segmentation(MTIS)is widely favored due to its stability and straightforward implementation.Especially when dealing with sophisticated anatomical structures,high-level thresholding is a crucial technique in identifying fine details.To enhance the accuracy of complex breast cancer image segmentation,this paper proposes an improved version of RIME optimizer EECRIME,denoted as the double Enhanced solution quality Crisscross RIME algorithm.The original RIME initially conducts an efficient optimization to target promising solutions.The double-enhanced solution quality(EESQ)mechanism is proposed for thorough exploitation without falling into local optimum.In contrast,the crisscross operations perform a further local exploration of the generated feasible solutions.The performance of EECRIME is verified with basic and advanced algorithms on IEEE CEC2017 benchmark functions.Furthermore,an EECRIME-based MTIS method in combination with Kapur’s entropy is applied to segment breast Infiltrating Ductal Carcinoma(IDC)histology images.The results demonstrate that the developed model significantly surpasses its competitors,establishing it as a practical approach for complex medical image processing. 展开更多
关键词 Rime optimization algorithm Double-enhanced solution quality mechanism Crisscross optimization algorithm Image segmentation Breast cancer
在线阅读 下载PDF
Distributed C-Means Algorithm for Big Data Image Segmentation on a Massively Parallel and Distributed Virtual Machine Based on Cooperative Mobile Agents
6
作者 Fatéma Zahra Benchara Mohamed Youssfi +2 位作者 Omar Bouattane Hassan Ouajji Mohammed Ouadi Bensalah 《Journal of Software Engineering and Applications》 2015年第3期103-113,共11页
The aim of this paper is to present a distributed algorithm for big data classification, and its application for Magnetic Resonance Images (MRI) segmentation. We choose the well-known classification method which is th... The aim of this paper is to present a distributed algorithm for big data classification, and its application for Magnetic Resonance Images (MRI) segmentation. We choose the well-known classification method which is the c-means method. The proposed method is introduced in order to perform a cognitive program which is assigned to be implemented on a parallel and distributed machine based on mobile agents. The main idea of the proposed algorithm is to execute the c-means classification procedure by the Mobile Classification Agents (Team Workers) on different nodes on their data at the same time and provide the results to their Mobile Host Agent (Team Leader) which computes the global results and orchestrates the classification until the convergence condition is achieved and the output segmented images will be provided from the Mobile Classification Agents. The data in our case are the big data MRI image of size (m × n) which is splitted into (m × n) elementary images one per mobile classification agent to perform the classification procedure. The experimental results show that the use of the distributed architecture improves significantly the big data segmentation efficiency. 展开更多
关键词 Multi-Agent System DISTRIBUTED algorithm BIG Data IMAGE segmentation MRI IMAGE c-MEANS algorithm Mobile Agent
在线阅读 下载PDF
Agent Based Segmentation of the MRI Brain Using a Robust C-Means Algorithm
7
作者 Hanane Barrah Abdeljabbar Cherkaoui Driss Sarsri 《Journal of Computer and Communications》 2016年第10期13-21,共9页
In the last decade, the MRI (Magnetic Resonance Imaging) image segmentation has become one of the most active research fields in the medical imaging domain. Because of the fuzzy nature of the MRI images, many research... In the last decade, the MRI (Magnetic Resonance Imaging) image segmentation has become one of the most active research fields in the medical imaging domain. Because of the fuzzy nature of the MRI images, many researchers have adopted the fuzzy clustering approach to segment them. In this work, a fast and robust multi-agent system (MAS) for MRI segmentation of the brain is proposed. This system gets its robustness from a robust c-means algorithm (RFCM) and obtains its fastness from the beneficial properties of agents, such as autonomy, social ability and reactivity. To show the efficiency of the proposed method, we test it on a normal brain brought from the BrainWeb Simulated Brain Database. The experimental results are valuable in both robustness to noise and running times standpoints. 展开更多
关键词 Agents and MAS MR Images Fuzzy Clustering c-Means algorithm Image segmentation
在线阅读 下载PDF
Segmentation algorithm of complex ore images based on templates transformation and reconstruction 被引量:6
8
作者 Guo-ying Zhang Guan-zhou Liu Hong Zhu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2011年第4期385-389,共5页
Lots of noises and heterogeneous objects with various sizes coexist in a complex image,such as an ore image;the classical image thresholding method cannot effectively distinguish between ores.To segment ore objects wi... Lots of noises and heterogeneous objects with various sizes coexist in a complex image,such as an ore image;the classical image thresholding method cannot effectively distinguish between ores.To segment ore objects with various sizes simultaneously,two adaptive windows in the image were chosen for each pixel;the gray value of windows was calculated by Otsu's threshold method.To extract the object skeleton,the definition principle of distance transformation templates was proposed.The ores linked together in a binary image were separated by distance transformation and gray reconstruction.The seed region of each object was picked up from the local maximum gray region of the reconstruction image.Starting from these seed regions,the watershed method was used to segment ore object effectively.The proposed algorithm marks and segments most objects from complex images precisely. 展开更多
关键词 ORES image analysis image segmentation morphological transformation algorithms
在线阅读 下载PDF
Medical Image Segmentation using PCNN based on Multi-feature Grey Wolf Optimizer Bionic Algorithm 被引量:7
9
作者 Xue Wang Zhanshan Li +2 位作者 Heng Kang Yongping Huang Di Gai 《Journal of Bionic Engineering》 SCIE EI CSCD 2021年第3期711-720,共10页
Medical image segmentation is a challenging task especially in multimodality medical image analysis.In this paper,an improved pulse coupled neural network based on multiple hybrid features grey wolf optimizer(MFGWO-PC... Medical image segmentation is a challenging task especially in multimodality medical image analysis.In this paper,an improved pulse coupled neural network based on multiple hybrid features grey wolf optimizer(MFGWO-PCNN)is proposed for multimodality medical image segmentation.Specifically,a two-stage medical image segmentation method based on bionic algorithm is presented,including image fusion and image segmentation.The image fusion stage fuses rich information from different modalities by utilizing a multimodality medical image fusion model based on maximum energy region.In the stage of image segmentation,an improved PCNN model based on MFGWO is proposed,which can adaptively set the parameters of PCNN according to the features of the image.Two modalities of FLAIR and TIC brain MRIs are applied to verify the effectiveness of the proposed MFGWO-PCNN algorithm.The experimental results demonstrate that the proposed method outperforms the other seven algorithms in subjective vision and objective evaluation indicators. 展开更多
关键词 grey wolf optimizer pulse coupled neural network bionic algorithm medical image segmentation
在线阅读 下载PDF
Improved Reptile Search Algorithm by Salp Swarm Algorithm for Medical Image Segmentation 被引量:3
10
作者 Laith Abualigah Mahmoud Habash +4 位作者 Essam Said Hanandeh Ahmad MohdAziz Hussein Mohammad Al Shinwan Raed Abu Zitar Heming Jia 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第4期1766-1790,共25页
This study proposes a novel nature-inspired meta-heuristic optimizer based on the Reptile Search Algorithm combed with Salp Swarm Algorithm for image segmentation using gray-scale multi-level thresholding,called RSA-S... This study proposes a novel nature-inspired meta-heuristic optimizer based on the Reptile Search Algorithm combed with Salp Swarm Algorithm for image segmentation using gray-scale multi-level thresholding,called RSA-SSA.The proposed method introduces a better search space to find the optimal solution at each iteration.However,we proposed RSA-SSA to avoid the searching problem in the same area and determine the optimal multi-level thresholds.The obtained solutions by the proposed method are represented using the image histogram.The proposed RSA-SSA employed Otsu’s variance class function to get the best threshold values at each level.The performance measure for the proposed method is valid by detecting fitness function,structural similarity index,peak signal-to-noise ratio,and Friedman ranking test.Several benchmark images of COVID-19 validate the performance of the proposed RSA-SSA.The results showed that the proposed RSA-SSA outperformed other metaheuristics optimization algorithms published in the literature. 展开更多
关键词 BIOINSPIRED Reptile Search algorithm Salp Swarm algorithm Multi-level thresholding Image segmentation Meta-heuristic algorithm
在线阅读 下载PDF
IDSC-YOLOv8-seg:轻量级梯形渠道水尺分割算法 被引量:1
11
作者 王鹏鹰 靳晟 +1 位作者 李永可 韩博 《计算机技术与发展》 2025年第4期127-134,共8页
水尺分割在水位检测极其重要,针对目前梯形渠道水位识别中对复杂环境下的水尺分割精度低,模型计算量大、难以部署等难题,提出一种轻量化的IDSC-YOLOv8-seg梯形水尺分割算法。首先使用轻量级MobileNet作为特征提取网络,并使用GhostConv... 水尺分割在水位检测极其重要,针对目前梯形渠道水位识别中对复杂环境下的水尺分割精度低,模型计算量大、难以部署等难题,提出一种轻量化的IDSC-YOLOv8-seg梯形水尺分割算法。首先使用轻量级MobileNet作为特征提取网络,并使用GhostConv卷积模块替换特征融合网络中的Conv;其次设计了ISDC-GhostC2f模块,结合了水尺高长宽比的结构特点,充分利用多尺度深度可分离卷积模块的优势,降低了计算成本,提高了推理速度和效率;再引入高效通道注意力机制(ECA),增强对水尺多尺度细节特征的获取能力,以提升模型对复杂环境下水尺的分割能力,并将MPDIoU作为网络损失函数,解决CIoU损失函数的局限性,提升了网络收敛速度和精度;最后使用新的数据增强技术,以提高模型的稳定性和泛化性。结果表明,改进后IDSC-YOLOv8-seg算法平均精度均值mAP@0.5和mAP@0.5:0.95相较于原模型分别提高了1.3%和0.9%,模型的参数量和大小分别降低46.6%和44.1%。综合说明,改进后的模型在精度满足需求的同时明显降低了参数量和模型大小,为后期水位计算提供技术支撑。 展开更多
关键词 水尺分割 实例分割 机器视觉 轻量化 YOLO算法
在线阅读 下载PDF
Image Segmentation of Brain MR Images Using Otsu’s Based Hybrid WCMFO Algorithm 被引量:6
12
作者 A.Renugambal K.Selva Bhuvaneswari 《Computers, Materials & Continua》 SCIE EI 2020年第8期681-700,共20页
In this study,a novel hybrid Water Cycle Moth-Flame Optimization(WCMFO)algorithm is proposed for multilevel thresholding brain image segmentation in Magnetic Resonance(MR)image slices.WCMFO constitutes a hybrid betwee... In this study,a novel hybrid Water Cycle Moth-Flame Optimization(WCMFO)algorithm is proposed for multilevel thresholding brain image segmentation in Magnetic Resonance(MR)image slices.WCMFO constitutes a hybrid between the two techniques,comprising the water cycle and moth-flame optimization algorithms.The optimal thresholds are obtained by maximizing the between class variance(Otsu’s function)of the image.To test the performance of threshold searching process,the proposed algorithm has been evaluated on standard benchmark of ten axial T2-weighted brain MR images for image segmentation.The experimental outcomes infer that it produces better optimal threshold values at a greater and quicker convergence rate.In contrast to other state-of-the-art methods,namely Adaptive Wind Driven Optimization(AWDO),Adaptive Bacterial Foraging(ABF)and Particle Swarm Optimization(PSO),the proposed algorithm has been found to be better at producing the best objective function,Peak Signal-to-Noise Ratio(PSNR),Standard Deviation(STD)and lower computational time values.Further,it was observed thatthe segmented image gives greater detail when the threshold level increases.Moreover,the statistical test result confirms that the best and mean values are almost zero and the average difference between best and mean value 1.86 is obtained through the 30 executions of the proposed algorithm.Thus,these images will lead to better segments of gray,white and cerebrospinal fluid that enable better clinical choices and diagnoses using a proposed algorithm. 展开更多
关键词 Hybrid WCMFO algorithm Otsu’s function multilevel thresholding image segmentation brain MR image
在线阅读 下载PDF
Foreign Fiber Image Segmentation Based on Maximum Entropy and Genetic Algorithm 被引量:3
13
作者 Liping Chen Xiangyang Chen +2 位作者 Sile Wang Wenzhu Yang Sukui Lu 《Journal of Computer and Communications》 2015年第11期1-7,共7页
In machine-vision-based systems for detecting foreign fibers, due to the background of the cotton layer has the absolute advantage in the whole image, while the foreign fiber only account for a very small part, and w... In machine-vision-based systems for detecting foreign fibers, due to the background of the cotton layer has the absolute advantage in the whole image, while the foreign fiber only account for a very small part, and what’s more, the brightness and contrast of the image are all poor. Using the traditional image segmentation method, the segmentation results are very poor. By adopting the maximum entropy and genetic algorithm, the maximum entropy function was used as the fitness function of genetic algorithm. Through continuous optimization, the optimal segmentation threshold is determined. Experimental results prove that the image segmentation of this paper not only fast and accurate, but also has strong adaptability. 展开更多
关键词 FOREIGN Fibers Image segmentation MAXIMUM ENTROPY GENETIC algorithm
在线阅读 下载PDF
An Improved Lung Cancer Segmentation Based on Nature-Inspired Optimization Approaches
14
作者 Shazia Shamas Surya Narayan Panda +4 位作者 Ishu Sharma Kalpna Guleria Aman Singh Ahmad Ali AlZubi Mallak Ahmad AlZubi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1051-1075,共25页
The distinction and precise identification of tumor nodules are crucial for timely lung cancer diagnosis andplanning intervention. This research work addresses the major issues pertaining to the field of medical image... The distinction and precise identification of tumor nodules are crucial for timely lung cancer diagnosis andplanning intervention. This research work addresses the major issues pertaining to the field of medical imageprocessing while focusing on lung cancer Computed Tomography (CT) images. In this context, the paper proposesan improved lung cancer segmentation technique based on the strengths of nature-inspired approaches. Thebetter resolution of CT is exploited to distinguish healthy subjects from those who have lung cancer. In thisprocess, the visual challenges of the K-means are addressed with the integration of four nature-inspired swarmintelligent techniques. The techniques experimented in this paper are K-means with Artificial Bee Colony (ABC),K-means with Cuckoo Search Algorithm (CSA), K-means with Particle Swarm Optimization (PSO), and Kmeanswith Firefly Algorithm (FFA). The testing and evaluation are performed on Early Lung Cancer ActionProgram (ELCAP) database. The simulation analysis is performed using lung cancer images set against metrics:precision, sensitivity, specificity, f-measure, accuracy,Matthews Correlation Coefficient (MCC), Jaccard, and Dice.The detailed evaluation shows that the K-means with Cuckoo Search Algorithm (CSA) significantly improved thequality of lung cancer segmentation in comparison to the other optimization approaches utilized for lung cancerimages. The results exhibit that the proposed approach (K-means with CSA) achieves precision, sensitivity, and Fmeasureof 0.942, 0.964, and 0.953, respectively, and an average accuracy of 93%. The experimental results prove thatK-meanswithABC,K-meanswith PSO,K-meanswith FFA, andK-meanswithCSAhave achieved an improvementof 10.8%, 13.38%, 13.93%, and 15.7%, respectively, for accuracy measure in comparison to K-means segmentationfor lung cancer images. Further, it is highlighted that the proposed K-means with CSA have achieved a significantimprovement in accuracy, hence can be utilized by researchers for improved segmentation processes of medicalimage datasets for identifying the targeted region of interest. 展开更多
关键词 LESION lung cancer segmentation medical imaging META-HEURISTIC Artificial Bee Colony(ABC) Cuckoo Search algorithm(CSA) Particle Swarm Optimization(PSO) Firefly algorithm(FFA) segmentation
在线阅读 下载PDF
An Improved Jellyfish Algorithm for Multilevel Thresholding of Magnetic Resonance Brain Image Segmentations 被引量:5
15
作者 Mohamed Abdel-Basset Reda Mohamed +3 位作者 Mohamed Abouhawwash Ripon K.Chakrabortty Michael J.Ryan Yunyoung Nam 《Computers, Materials & Continua》 SCIE EI 2021年第9期2961-2977,共17页
Image segmentation is vital when analyzing medical images,especially magnetic resonance(MR)images of the brain.Recently,several image segmentation techniques based on multilevel thresholding have been proposed for med... Image segmentation is vital when analyzing medical images,especially magnetic resonance(MR)images of the brain.Recently,several image segmentation techniques based on multilevel thresholding have been proposed for medical image segmentation;however,the algorithms become trapped in local minima and have low convergence speeds,particularly as the number of threshold levels increases.Consequently,in this paper,we develop a new multilevel thresholding image segmentation technique based on the jellyfish search algorithm(JSA)(an optimizer).We modify the JSA to prevent descents into local minima,and we accelerate convergence toward optimal solutions.The improvement is achieved by applying two novel strategies:Rankingbased updating and an adaptive method.Ranking-based updating is used to replace undesirable solutions with other solutions generated by a novel updating scheme that improves the qualities of the removed solutions.We develop a new adaptive strategy to exploit the ability of the JSA to find a best-so-far solution;we allow a small amount of exploration to avoid descents into local minima.The two strategies are integrated with the JSA to produce an improved JSA(IJSA)that optimally thresholds brain MR images.To compare the performances of the IJSA and JSA,seven brain MR images were segmented at threshold levels of 3,4,5,6,7,8,10,15,20,25,and 30.IJSA was compared with several other recent image segmentation algorithms,including the improved and standard marine predator algorithms,the modified salp and standard salp swarm algorithms,the equilibrium optimizer,and the standard JSA in terms of fitness,the Structured Similarity Index Metric(SSIM),the peak signal-to-noise ratio(PSNR),the standard deviation(SD),and the Features Similarity Index Metric(FSIM).The experimental outcomes and the Wilcoxon rank-sum test demonstrate the superiority of the proposed algorithm in terms of the FSIM,the PSNR,the objective values,and the SD;in terms of the SSIM,IJSA was competitive with the others. 展开更多
关键词 Magnetic resonance imaging brain image segmentation artificial jellyfish search algorithm ranking method local minima Otsu method
在线阅读 下载PDF
Fast interactive segmentation algorithm of image sequences based on relative fuzzy connectedness 被引量:1
16
作者 Tian Chunna Gao Xinbo 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第4期750-755,共6页
A fast interactive segmentation algorithm of image-sequences based on relative fuzzy connectedness is presented. In comparison with the original algorithm, the proposed one, with the same accuracy, accelerates the seg... A fast interactive segmentation algorithm of image-sequences based on relative fuzzy connectedness is presented. In comparison with the original algorithm, the proposed one, with the same accuracy, accelerates the segmentation speed by three times for single image. Meanwhile, this fast segmentation algorithm is extended from single object to multiple objects and from single-image to image-sequences. Thus the segmentation of multiple objects from complex hackground and batch segmentation of image-sequences can be achieved. In addition, a post-processing scheme is incorporated in this algorithm, which extracts smooth edge with one-pixel-width for each segmented object. The experimental results illustrate that the proposed algorithm can obtain the object regions of interest from medical image or image-sequences as well as man-made images quickly and reliably with only a little interaction. 展开更多
关键词 fuzzy connectedness interactive image segmentation image-sequences segmentation multiple objects segmentation fast algorithm.
在线阅读 下载PDF
Terrain Rendering LOD Algorithm Based on Improved Restrictive Quadtree Segmentation and Variation Coefficient of Elevation 被引量:2
17
作者 Zhenwu Wang Xiaohua Lu 《Journal of Beijing Institute of Technology》 EI CAS 2018年第4期617-622,共6页
Aiming to deal with the difficult issues of terrain data model simplification and crack disposal,the paper proposed an improved level of detail(LOD)terrain rendering algorithm,in which a variation coefficient of eleva... Aiming to deal with the difficult issues of terrain data model simplification and crack disposal,the paper proposed an improved level of detail(LOD)terrain rendering algorithm,in which a variation coefficient of elevation is introduced to express the undulation of topography.Then the coefficient is used to construct a node evaluation function in the terrain data model simplification step.Furthermore,an edge reduction strategy is combined with the improved restrictive quadtree segmentation to handle the crack problem.The experiment results demonstrated that the proposed method can reduce the amount of rendering triangles and enhance the rendering speed on the premise of ensuring the rendering effect compared with a traditional LOD algorithm. 展开更多
关键词 terrain data model simplification crack disposal level of detail(LOD)terrain rendering algorithm variation coefficient of elevation node evaluation function restrictive quadtree segmentation
在线阅读 下载PDF
Image Segmentation Using an Improved Watershed Algorithm 被引量:2
18
作者 郭礼华 李建华 +1 位作者 杨树堂 陆松年 《Journal of Shanghai Jiaotong university(Science)》 EI 2004年第2期16-19,共4页
As watershed algorithm suffers from over-segmentation problem, this paper presented an efficient method to resolve this problem. First, pre-process of the image using median filter is made to reduce the effect of nois... As watershed algorithm suffers from over-segmentation problem, this paper presented an efficient method to resolve this problem. First, pre-process of the image using median filter is made to reduce the effect of noise. Second, watershed algorithm is employed to provide initial regions. Third, regions are merged according to the information between the region and boundary. In the merger processing based on the region information, an adaptive threshold of the difference between the neighboring regions is used as the region merge criteria, which is based on the human visual character. In the merger processing on the boundary information, the gradient is used to judge the true boundary of the image to avoid merging the foreground with the background regions. Finally, post-process to the regions using mathematical morphology open and close filter is done to smooth object boundaries. The experimental results show that this method is very efficient. 展开更多
关键词 image segmentation region merger watershed algorithm
在线阅读 下载PDF
Interactive Liver Segmentation Algorithm Based on Geodesic Distance and V-Net 被引量:1
19
作者 Kang Jie Ding Jumin +2 位作者 Lei Tao Feng Shujie Liu Gang 《Journal of Shanghai Jiaotong university(Science)》 EI 2022年第2期190-201,共12页
Convolutional neural networks(CNNs)are prone to mis-segmenting image data of the liver when the background is complicated,which results in low segmentation accuracy and unsuitable results for clinical use.To address t... Convolutional neural networks(CNNs)are prone to mis-segmenting image data of the liver when the background is complicated,which results in low segmentation accuracy and unsuitable results for clinical use.To address this shortcoming,an interactive liver segmentation algorithm based on geodesic distance and V-net is proposed.The three-dimensional segmentation network V-net adequately considers the characteristics of the spatial context information to segment liver medical images and obtain preliminary segmentation results.An artificial algorithm based on geodesic distance is used to form artificial hard constraints to modify the image,and the superpixel piece created by the watershed algorithm is introduced as a sample point for operation,which significantly improves the efficiency of segmentation.Results from simulation of the liver tumor segmentation challenge(LiTS)dataset show that this algorithm can effectively refine the results of automatic liver segmentation,reduce user intervention,and enable a fast,interactive liver image segmentation that is convenient for doctors. 展开更多
关键词 geodesic distance interactive segmentation liver segmentation V-net watershed algorithm
原文传递
CT Image Segmentation Method of Composite Material Based on Improved Watershed Algorithm and U-Net Neural Network Model 被引量:1
20
作者 薛永波 刘钊 +1 位作者 李泽阳 朱平 《Journal of Shanghai Jiaotong university(Science)》 EI 2023年第6期783-792,共10页
In the study of the composite materials performance,X-ray computed tomography(XCT)scanning has always been one of the important measures to detect the internal structures.CT image segmentation technology will effectiv... In the study of the composite materials performance,X-ray computed tomography(XCT)scanning has always been one of the important measures to detect the internal structures.CT image segmentation technology will effectively improve the accuracy of the subsequent material feature extraction process,which is of great significance to the study of material performance.This study focuses on the low accuracy problem of image segmentation caused by fiber cross-section adhesion in composite CT images.In the core layer area,area validity is evaluated by morphological indicator and an iterative segmentation strategy is proposed based on the watershed algorithm.In the transition layer area,a U-net neural network model trained by using artificial labels is applied to the prediction of segmentation result.Furthermore,a CT image segmentation method for fiber composite materials based on the improved watershed algorithm and the U-net model is proposed.It is verified by experiments that the method has good adaptability and effectiveness to the CT image segmentation problem of composite materials,and the accuracy of segmentation is significantly improved in comparison with the original method,which ensures the accuracy and robustness of the subsequent fiber feature extraction process. 展开更多
关键词 image segmentation composite material segmentation of adhered objects watershed algorithm U-net neural network
原文传递
上一页 1 2 223 下一页 到第
使用帮助 返回顶部