Urea generation through electrochemical CO_(2) and NO_(3)~-co-reduction reaction(CO_(2)NO_(3)RR)is still limited by either the low selectivity or yield rate of urea.Herein,we report copper carbonate hydroxide(Cu_2(OH)...Urea generation through electrochemical CO_(2) and NO_(3)~-co-reduction reaction(CO_(2)NO_(3)RR)is still limited by either the low selectivity or yield rate of urea.Herein,we report copper carbonate hydroxide(Cu_2(OH)_2CO_(3))as an efficient CO_(2)NO_(3)RR electrocatalyst with an impressive urea Faradaic efficiency of45.2%±2.1%and a high yield rate of 1564.5±145.2μg h~(-1)mg_(cat)~(-1).More importantly,H_(2) evolution is fully inhibited on this electrocatalyst over a wide potential range between-0.3 and-0.8 V versus reversible hydrogen electrode.Our thermodynamic simulation reveals that the first C-N coupling follows a unique pathway on Cu_2(OH)_2CO_(3) by combining the two intermediates,~*COOH and~*NHO.This work demonstrates that high selectivity and yield rate of urea can be simultaneously achieved on simple Cu-based electrocatalysts in CO_(2)NO_(3)RR,and provide guidance for rational design of more advanced catalysts.展开更多
Urea is extensively used in agriculture and chemical industry,and it is produced on an industrial scale from CO_(2)and Haber-Bosch NH_(3)under relatively high temperature and high pressure conditions,which demands hig...Urea is extensively used in agriculture and chemical industry,and it is produced on an industrial scale from CO_(2)and Haber-Bosch NH_(3)under relatively high temperature and high pressure conditions,which demands high energy input and generates masses of carbon footprint.The conversion of CO_(2)and N sources(such as NO_(2)^(−),NO_(3)^(−),and N_(2))through electrocatalytic reactions under ambient conditions is a promising alternative to realize efficient urea synthesis.Of note,the design of electrocatalyst is one of the key factors that can improve the efficiency and selectivity of C-N coupling reactions.Defect engineer-ing is an intriguing strategy for regulating the electronic structure and charge density of electrocatalysts,which endows electrocatalysts with excellent physicochemical properties and optimized adsorption en-ergy of the reaction intermediates to reduce the kinetic barriers.In this minireview,recent advances of defect engineered electrocatalysts in urea electrosynthesis from CO_(2)and various N reactants are firstly introduced.Mechanistic discussions of C-N coupling in these advances are presented,with the aim of directing future investigations on improving the urea yield.Finally,the prospects and challenges of de-fect engineered electrocatalysts for urea synthesis are discussed.This overview is expected to provide in-depth understanding of structure-reactivity relationship and shed light on future electrocatalytic C-N coupling reactions.展开更多
Electrochemical C-C and C-N coupling reactions with the conversion of abundant and inexpensive small molecules,such as CO_(2) and nitrogencontaining species,are considered a promising route for increasing the value of...Electrochemical C-C and C-N coupling reactions with the conversion of abundant and inexpensive small molecules,such as CO_(2) and nitrogencontaining species,are considered a promising route for increasing the value of CO_(2) reduction products.The development of high-performance catalysts is the key to the both electrocatalytic reactions.In this review,we present a systematic summary of the reaction systems for electrocatalytic CO_(2) reduction,along with the coupling mechanisms of C-C and C-N bonds over outstanding electrocatalytic materials recently developed.The key intermediate species and reaction pathways related to the coupling as well as the catalyst-structure relationship will be also discussed,aiming to provide insights and guidance for designing efficient CO_(2) reduction systems.展开更多
The electrocatalytic CO_(2) reduction in aqueous solution mainly involves bond cleavage and formation between C,H and O,and it is highly desirable to expand the bond formation reaction of C with other atoms to obtain ...The electrocatalytic CO_(2) reduction in aqueous solution mainly involves bond cleavage and formation between C,H and O,and it is highly desirable to expand the bond formation reaction of C with other atoms to obtain novel and valuable chemicals.The electrochemical synthesis of N-containing organic chemicals in electrocatalytic CO_(2) reduction via introducing N sources is an effective strategy to expand the product scope,since chemicals con-taining C–N bonds(e.g.amides and amines)are important reactants/products for medicine,agriculture and in-dustry.This article focuses on the research progress of C–N coupling from CO_(2) and inorganic nitrogenous species in aqueous solution.Firstly,the reaction pathways related to the reaction intermediates for urea,formamide,acetamide,methylamine and ethylamine are highlighted.Then,the electrocatalytic performance of different catalysts for these several N-containing products are summarized and classified.Finally,the challenges and op-portunities are analyzed,aiming to provide general insights into future research directions for electrocatalytic C–N coupling.展开更多
Poly(4-butyltriarylamine)s with t-butyldimethylsilyl terminal protecting group (PBTPA-TBS) with various molecular weights were prepared by C-N coupling polymerization. The resulting precursors were postfunctionalized ...Poly(4-butyltriarylamine)s with t-butyldimethylsilyl terminal protecting group (PBTPA-TBS) with various molecular weights were prepared by C-N coupling polymerization. The resulting precursors were postfunctionalized and subse- quently used as macroinitiators for atom transfer radial polymerization (ATRP) of n-butyl acrylate (n-BA) and ethyl acrylate (EA). Both the polymerization processes were controlled and the polymers were characterized by 1H NMR, gel permeation chromatography (GPC) and thermal properties, which confirmed the successful synthesis of all the poly-mers. The microphase separated behaviors of the poly (4-butyltriarylamine)-block-poly (butyl acrylate) (PBTPA-b-PBA) were examined by AFM in the film showing phase separation structures for all the polymers. The photorefractive property of the composite based on PBTPA-b-PBA block copolymer was evaluated by two-beam coupling experiment. A relative high gain coefficient of 42.7 cm?1 was obtained at the electric field of 31 V/?m.展开更多
Urea is widely used as fertilizer and is a key substance supporting global food production. However, the traditional industrial synthesis of urea faces the challenges with high energy consumption and serious environme...Urea is widely used as fertilizer and is a key substance supporting global food production. However, the traditional industrial synthesis of urea faces the challenges with high energy consumption and serious environmental problems. With the increasing global demand for environmental protection and sustainable development, it is much necessary to develop novel and clean methods for the synthesis of urea.Electrocatalysis provides an efficient and renewable synthesis route that can directly produce urea at room temperature and atmospheric pressure by the coupling of CO_(2) and nitrogenous molecules. In this review, we summarized the most recent advances in electrochemical synthesis of urea via CAN coupling systematically, focusing on the coupling of CO_(2) and different nitrogen sources. And the associated coupling mechanism, catalysts optimization, and electrolyzer design are well discussed. Moreover, the challenges and future directions for electrocatalytic CAN coupling are prospected. This review will provide timely and valuable guidance for others and attract more interests to promote the development of electrochemical synthesis of urea or other valuable chemicals containing CAN bond.展开更多
Urea,a critical nitrogen-based feedstock predominantly employed in fertilizer production,can be synthesized via electrocatalytic C-N coupling,which provides an efficient route for efficient nitrogen and carbon fixatio...Urea,a critical nitrogen-based feedstock predominantly employed in fertilizer production,can be synthesized via electrocatalytic C-N coupling,which provides an efficient route for efficient nitrogen and carbon fixation under mild conditions.Nonetheless,electrocatalytic urea synthesis is hindered by intricate intermediate pathways and competing side reactions,leading to low urea selectivity and yield.Therefore,improving the efficiency of electrocatalytic urea synthesis requires efficient catalysts.This review presents an overview of urea detection methodologies,elucidates the C-N coupling mechanisms,and explores catalyst design strategies.Accurate detection of urea detection is particularly vital in low-yield systems;thus,we analyze the advantages and limitations of several detection techniques.Additionally,we investigate the fundamental reaction mechanisms that allow reduction of CO_(2)and various nitrogen species to be reduced simultaneously.A detailed examination of catalyst design strategies aimed at improving electrocatalytic urea production,including heterostructure,atomically dispersed structures,and vacancy engineering,is provided.Finally,we address the emerging challenges that must be tackled as the technology progresses.展开更多
The conversion and utilization of carbon dioxide(CO_(2))is one of the central topics in the energy and environmental research community.The development of electrocatalytic CO_(2) reduction technology is expected to br...The conversion and utilization of carbon dioxide(CO_(2))is one of the central topics in the energy and environmental research community.The development of electrocatalytic CO_(2) reduction technology is expected to bring more economic and environmental benefits to the carbon-neutral policy.Although researchers have conducted extensive and in-depth studies on the electrocatalytic CO_(2) reduction to derive diverse carbonaceous products such as C_(1) and C_(2+),the introduction of inorganic nitrogenous molecules in the electrocatalytic CO_(2) reduction can further expand the production of more valuable C-N bondcontaining chemicals,such as amides,amines,and urea.This review focuses on the research progress in the electrochemical C-N coupling of CO_(2) with diverse nitrogenous small molecules(NH_(3),N_(2),NO,NO_(2)^(-),and NO_(3)^(-))in aqueous solution.The C-N coupling mechanisms and electrocatalytic performance of catalysts towards different products have been discussed in depth from both computational and experimental aspects.On this basis,the research directions and prospects in this field are proposed,aiming to provide valuable insights into future research on electrocatalytic C-N coupling.展开更多
Electrochemical urea synthesis from CO_(2)and NO(EUCN)offers a promising route for sustainable urea production,whereas it still suffers from low C-N coupling efficiency and poor selectivity.Herein,atomically dispersed...Electrochemical urea synthesis from CO_(2)and NO(EUCN)offers a promising route for sustainable urea production,whereas it still suffers from low C-N coupling efficiency and poor selectivity.Herein,atomically dispersed p-block Bi catalyst is explored for highly active and selective EUCN.Theoretical calculations and in situ spectroscopic analyses reveal a unique*CO-mediated C-N coupling mechanism,where isolated Bi sites facilitate CO_(2)reduction for*CO formation and enrichment,while*CO-enriched microenvironment boosts subsequent C-N coupling of*CO and*NO to*CONO,a critical C-N intermediate for urea generation,while simultaneously suppressing the competing side reactions.Notably,by pairing cathodic EUCN with anodic glycerol oxidation in a membrane electrode assembly electrolyzer,we achieve a record-high performance with urea yield rate of 86.5 mmol·h^(-1)·g^(-1)and Faradaic efficiency of 52.1%,as well as the outstanding stability for over 200 h electrolysis.展开更多
The electrocatalytic C-N coupling reaction as a green synthesis approach for C-N bond synthesis via electrochemical processes with catalytic assistance.However,inefficient reactant adsorption onto the catalyst surface...The electrocatalytic C-N coupling reaction as a green synthesis approach for C-N bond synthesis via electrochemical processes with catalytic assistance.However,inefficient reactant adsorption onto the catalyst surface,competing side reactions,and the complexity and diversity of reaction pathways hinder its widespread application.Atomically dispersed catalysts(ADCs),as an emerging class of catalytic materials,possess precisely defined active sites,high catalytic activity,and enhanced selectivity,thereby enabling efficient electrocatalytic C-N coupling to address these challenges.This review discusses current reaction pathways for converting small molecules(CO_(2)as the carbon source,N_(2),NO_(2)^(-),NO_(3)^(-)as the nitrogen source)into high-value organic nitrogen compounds(urea,amides,oximes,and amino acids)utilizing ADCs.It specifically focuses on the critical steps within electrocatalytic C-N coupling facilitated by these catalysts,encompassing reactant adsorption,transformation and selective hydrogenation of C-/N-intermediates,and the C-N coupling reaction itself.Based on these key steps,design principles for ADCs are proposed.Finally,the synthesis strategies for ADCs-vacancy engineering,confinement strategies,and alloying-are examined,alongside the mechanisms by which they enhance catalytic activity and selectivity.展开更多
Photocatalytic urea production from nitrogen(N_(2))and carbon dioxide(CO_(2))is a sustainable and ecofriendly alternative to the Bosch-Meiser route.However,it remains a significant challenge in developing highly effic...Photocatalytic urea production from nitrogen(N_(2))and carbon dioxide(CO_(2))is a sustainable and ecofriendly alternative to the Bosch-Meiser route.However,it remains a significant challenge in developing highly efficient photocatalysts for enhancing C-N coupling to high-yield urea synthesis.Herein,we propose a multi-site photocatalyst concept to address the concern of low yield by simultaneously improving photogenerated carrier separation and reactant activation.As a proof of concept,a well-defined multisite photocatalyst,Ru nanoparticles and Cu single atoms decorated CeO_(2)nanorods(Ru-Cu/CeO_(2)),is developed for efficient urea production.The incorporation of Ru and Cu sites is crucial not only to generate high-density photogenerated electrons,but also to facilitate N_(2)and CO_(2)adsorption and conversion.The in situ formed local nitrogen-rich area at Ru sites increases the encounter possibility with the carbon-containing species generated from Cu sites,substantially promoting C-N coupling.The Ru-Cu/CeO_(2)photocatalyst exhibits an impressive urea yield rate of 16.7μmol g^(-1)h^(-1),which ranks among the best performance reported to date.This work emphasizes the importance of multi-site catalyst design concept in guaranteeing rapid C-N coupling in photocatalytic urea synthesis and beyond.展开更多
Wire arc additive manufacturing(WAAM)has emerged as a promising approach for fabricating large-scale components.However,conventional WAAM still faces challenges in optimizing microstructural evolution,minimizing addit...Wire arc additive manufacturing(WAAM)has emerged as a promising approach for fabricating large-scale components.However,conventional WAAM still faces challenges in optimizing microstructural evolution,minimizing additive-induced defects,and alleviating residual stress and deformation,all of which are critical for enhancing the mechanical performance of the manufactured parts.Integrating interlayer friction stir processing(FSP)into WAAM significantly enhances the quality of deposited materials.However,numerical simulation research focusing on elucidating the associated thermomechanical coupling mechanisms remains insufficient.A comprehensive numerical model was developed to simulate the thermomechanical coupling behavior in friction stir-assisted WAAM.The influence of post-deposition FSP on the coupled thermomechanical response of the WAAM process was analyzed quantitatively.Moreover,the residual stress distribution and deformation behavior under both single-layer and multilayer deposition conditions were investigated.Thermal analysis of different deposition layers in WAAM and friction stir-assisted WAAM was conducted.Results show that subsequent layer deposition induces partial remelting of the previously solidified layer,whereas FSP does not cause such remelting.Furthermore,thermal stress and deformation analysis confirm that interlayer FSP effectively mitigates residual stresses and distortion in WAAM components,thereby improving their structural integrity and mechanical properties.展开更多
Based on the Smit-Suhl formula,we propose a universal approach for solving the magnon-magnon coupling problem in bilayer coupled systems(e.g.,antiferromagnets).This method requires only the energy expression,enabling ...Based on the Smit-Suhl formula,we propose a universal approach for solving the magnon-magnon coupling problem in bilayer coupled systems(e.g.,antiferromagnets).This method requires only the energy expression,enabling the automatic derivation of analytical expressions for the eigenmatrix elements via symbolic computation,eliminating the need for tedious manual calculations.Using this approach,we investigate the impact of magnetic hysteresis on magnon-magnon coupling in a system with interlayer Dzyaloshinskii-Moriya interaction(DMI).The magnetic hysteresis leads to an asymmetric magnetic field dependence of the resonance frequency and alters the number of degeneracy points between the pure optical and acoustic modes.Moreover,it can result in the coupling strength at the gap of the f–H phase diagram being nearly vanishing,contrary to the conventionally expected maximum.These results deepen the understanding of the effect of interlayer DMI on magnon–magnon coupling and the proposed universal method significantly streamlines the solving process of magnon–magnon coupling problems.展开更多
To address the deficiencies in comprehensive surface contamination prevention strategies within China's nitrate-affected regions,this research innovatively proposes the DITAPH model-a systematic framework integrat...To address the deficiencies in comprehensive surface contamination prevention strategies within China's nitrate-affected regions,this research innovatively proposes the DITAPH model-a systematic framework integrating groundwater nitrate vulnerability assessment and Nitrate Vulnerable Zones(NVZs)delineation through optimization of hydrogeological parameters.Based on detailed hydrogeological and hydrochemical investigations,the DITAPH model was applied in the plain areas of Quanzhou to evaluate its applicability.The model selected hydrogeological parameters(depth of groundwater,lithology of the vadose zone,topographic slope,aquifer water yield property),one climatic parameter(precipitation),and two anthropogenic parameters(land use type and population density)as assessment indicators.The results of the groundwater nitrate vulnerability assessment showed that the low,relatively low,relatively high,and high groundwater nitrate vulnerability zones in the study area accounted for 5.96%,35.44%,53.74%and 4.86%of the total area,respectively.Groundwater nitrate vulnerability was most strongly influenced by human activities,followed by groundwater depth and topographic slope.The high vulnerability zone is mainly affected by domestic and industrial wastewater,whereas the relatively high groundwater nitrate vulnerability zone is primarily influenced by agricultural activities.Validation of the DITAPH model revealed a significant positive correlation between the DITAPH index(DI)and nitrate concentration(ρ(NO3−)).The results of the NVZs delineated by the DITAPH model are reliable and can serve as a tool for water resource management planning,guiding the development of targeted measures in the NVZs to prevent groundwater contamination.展开更多
Since the United Nations launched the Sustainable Development Goals(SDGs)in 2015,global implementation has steadily advanced,yet prominent challenges persist.Progress has been uneven across regions and countries,with ...Since the United Nations launched the Sustainable Development Goals(SDGs)in 2015,global implementation has steadily advanced,yet prominent challenges persist.Progress has been uneven across regions and countries,with Tajikistan representing a typical example of such disparities.Based on 81 SDG indicators for Tajikistan from 2001 to 2023,this study applied a three-level coupling network framework:at the microscale,it identified synergies and trade-offs between indicators;at the mesoscale,it examined the strength and direction of linkages within four SDG-related components(society,finance,governance,and environment);and at the global level,it focused on the overall SDG interlinkages.Spearman’s rank correlation,sliding window method,and topological properties were employed to analyze the coupling dynamics of SDGs.Results showed that over 70.00%of associations in the global SDG network were of medium-to-low intensity,alongside extremely strong ones(|r|value approached 1.00,where r is the correlation coefficient).SDG interactions were generally limited,with stable local synergy clusters in core livelihood sectors.Network modularity fluctuated,reflecting a cycle of differentiation,integration,and fragmentation,while coupling efficiency varied with the external environment.Each component exhibited distinct functional characteristics.The social component maintained high connectivity through the“poverty alleviation-education-healthcare”loop.The environmental component shifted toward coordinated eco-economic governance.The governance-related component broke interdepartmental barriers,while the financial component showed weak links between resource-based indicators and consumption/employment indicators.Tajikistan’s SDG coupling evolved through three phases:survival-oriented(2001–2012),policy integration(2013–2018),and shock adaptation(2019–2023).These phases were driven by policy changes,resource industries,governance optimization,and external factors.This study enriches the analytical framework for understanding the dynamic coupling of SDGs in mountainous resource-dependent countries and provides empirical evidence to support similar countries in formulating phase-specific SDG promotion strategies.展开更多
In this study,three specific scenarios of a novel accelerator light source mechanism called steady-state microbunching(SSMB)were studied:longitudinal weak focusing,longitudinal strong focusing,and generalized longitud...In this study,three specific scenarios of a novel accelerator light source mechanism called steady-state microbunching(SSMB)were studied:longitudinal weak focusing,longitudinal strong focusing,and generalized longitudinal strong focusing(GLSF).At present,GLSF is the most promising method for realizing high-power short-wavelength coherent radiation with mild requirements on modulation laser power.Its essence is to exploit the ultrasmall natural vertical emittance of an electron beam in a planar storage ring for efficient microbunching formation,like a partial transverse-longitudinal emittance exchange in the optical laser wavelength range.Based on an in-depth investigation of related beam physics,a solution for a GLSF SSMB storage ring that can deliver 1 kW average-power EUV light is presented.The work in this paper,such as the generalized Courant–Snyder formalism,analysis of theoretical minimum emittances,transverse-longitudinal coupling dynamics,and derivation of the bunching factor and modulation strengths for laser-induced microbunching schemes,is expected to be useful not only for the development of SSMB but also for future accelerator light sources in general that demand increasingly precise electron beam phase space manipulations.展开更多
The electrocatalytic synthesis of C-N coupling compounds from CO_(2) and nitrogenous species not only offers an effective avenue to achieve carbon neutral-ity and reduce environmental pollution,but also establishes a ...The electrocatalytic synthesis of C-N coupling compounds from CO_(2) and nitrogenous species not only offers an effective avenue to achieve carbon neutral-ity and reduce environmental pollution,but also establishes a route to synthesize valuable chemicals,such as urea,amide,and amine.This innovative approach expands the application range and product categories beyond simple carbona-ceous species in electrocatalytic CO_(2) reduction,which is becoming a rapidly advancing field.This review summarizes the research progress in electrocatalytic urea synthesis,using N_(2),NO_(2)^(-),and NO_(3)^(-)as nitrogenous species,and explores emerging trends in the electrosynthesis of amide and amine from CO_(2) and nitro-gen species.Additionally,the future opportunities in this field are highlighted,including electrosynthesis of amino acids and other compounds containing C-N bonds,anodic C-N coupling reactions beyond water oxidation,and the catalytic mechanism of corresponding reactions.This critical review also captures the insights aimed at accelerating the development of electrochemical C-N coupling reactions,confirming the superiority of this electrochemical method over the traditional techniques.展开更多
Electrocatalytic C–N coupling technology offers a promising route for green and sustainable urea synthesis.However,this route faces challenges of low urea yield and Faradaic efficiency due to the high dissociation en...Electrocatalytic C–N coupling technology offers a promising route for green and sustainable urea synthesis.However,this route faces challenges of low urea yield and Faradaic efficiency due to the high dissociation energy of atomic bonds in reactants,complex reaction intermediates,high reaction energy barriers,and competing side reactions.As C–N coupling involves the synergistic action of two or more active sites,it is crucial to develop efficient multi-active-site catalysts to address these challenges.This review analyzes the reaction mechanisms of electrocatalytic C–N coupling for urea synthesis and summarizes effective strategies to achieve multi-active-site catalysts,including heteroatom doping,defect engineering,heterojunctions,and diatomic catalysts.Furthermore,based on this analysis,we propose the universal design principles for high-efficiency multi-activesite catalysts.展开更多
Dual atomic catalysts(DAC),particularly copper(Cu_(2))-based nitrogen(N)doped graphene,show great potential to effectively convert CO_(2)and nitrate(NO_(3)-)into important industrial chemicals such as ethylene,glycol,...Dual atomic catalysts(DAC),particularly copper(Cu_(2))-based nitrogen(N)doped graphene,show great potential to effectively convert CO_(2)and nitrate(NO_(3)-)into important industrial chemicals such as ethylene,glycol,acetamide,and urea through an efficient catalytical process that involves C–C and C–N coupling.However,the origin of the coupling activity remained unclear,which substantially hinders the rational design of Cu-based catalysts for the N-integrated CO_(2)reduction reaction(CO_(2)RR).To address this challenge,this work performed advanced density functional theory calculations incorporating explicit solvation based on a Cu_(2)-based N-doped carbon(Cu_(2)N_(6)C_(10))catalyst for CO_(2)RR.These calculations are aimed to gain insight into the reaction mechanisms for the synthesis of ethylene,acetamide,and urea via coupling in the interfacial reaction micro-environment.Due to the sluggishness of CO_(2),the formation of a solvation electric layer by anions(F^(-),Cl^(-),Br^(-),and I^(-))and cations(Na+,Mg^(2+),K+,and Ca^(2+))leads to electron transfer towards the Cu surface.This process significantly accelerates the reduction of CO_(2).These results reveal that*CO intermediates play a pivotal role in N-integrated CO_(2)RR.Remarkably,the Cu_(2)-based N-doped carbon catalyst examined in this study has demonstrated the most potential for C–N coupling to date.Our findings reveal that through the process of a condensation reaction between*CO and NH_(2)OH for urea synthesis,*NO_(3)-is reduced to*NH_(3),and*CO_(2)to*CCO at dual Cu atom sites.This dual-site reduction facilitates the synthesis of acetamide through a nucleophilic reaction between NH_(3)and the ketene intermediate.Furthermore,we found that the I-and Mg^(2+)ions,influenced by pH,were highly effective for acetamide and ammonia synthesis,except when F-and Ca^(2+)were present.Furthermore,the mechanisms of C–N bond formation were investigated via ab-initio molecular dynamics simulations,and we found that adjusting the micro-environment can change the dominant side reaction,shifting from hydrogen production in acidic conditions to water reduction in alkaline ones.This study introduces a novel approach using ion-H_(2)O cages to significantly enhance the efficiency of C–N coupling reactions.展开更多
Electrocatalytic C—N coupling is an environmentally friendly pathway for reducing CO_(2)emissions,nitrate wastewater treatment,and urea production.CeO_(2)is a commonly used electrocatalyst for urea synthesis,but its ...Electrocatalytic C—N coupling is an environmentally friendly pathway for reducing CO_(2)emissions,nitrate wastewater treatment,and urea production.CeO_(2)is a commonly used electrocatalyst for urea synthesis,but its yield was restricted by the deficiency of active sites and the high barrier for C—N coupling.Herein,we employed transient heating to introduce oxygen vacancies as sites for the deposition of single metal atoms,thereby maximizing the atomic utilization as active sites for urea synthesis.The as-prepared CuFe-V-CeO_(2)electrocatalyst exhibits the outstanding urea yield rate(3553 mg h^(-1)g_(ca)^(t-1).)at-1.5 V versus reversible hydrogen electrode(RHE),surpassing the performance of previously reported electrochemical urea electrocatalysts.Theoretical calculation further revealed the roles of Ce,Cu,and Fe sites in active hydrogen(*H)generation,nitrate treatment,and CO_(2)stabilization,respectively.This work offers a novel and effective pathway for the design of electrocatalysts and developing an efficient C—N coupling system for urea production.展开更多
基金supported by the Research Grants Council(26206115,16304821 and 16309418)the Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(SMSEGL20SC01)+2 种基金the Innovation and Technology Commission(grant no.ITC-CNERC14EG03)of the Hong Kong Special Administrative Regionthe Hong Kong Postdoctoral Fellowship Scheme(HKUST PDFS2021-4S12 and HKUST PDFS2021-6S08)the support from the Shenzhen fundamental research funding(JCYJ20210324115809026,20200925154115001,JCYJ20200109141216566)。
文摘Urea generation through electrochemical CO_(2) and NO_(3)~-co-reduction reaction(CO_(2)NO_(3)RR)is still limited by either the low selectivity or yield rate of urea.Herein,we report copper carbonate hydroxide(Cu_2(OH)_2CO_(3))as an efficient CO_(2)NO_(3)RR electrocatalyst with an impressive urea Faradaic efficiency of45.2%±2.1%and a high yield rate of 1564.5±145.2μg h~(-1)mg_(cat)~(-1).More importantly,H_(2) evolution is fully inhibited on this electrocatalyst over a wide potential range between-0.3 and-0.8 V versus reversible hydrogen electrode.Our thermodynamic simulation reveals that the first C-N coupling follows a unique pathway on Cu_2(OH)_2CO_(3) by combining the two intermediates,~*COOH and~*NHO.This work demonstrates that high selectivity and yield rate of urea can be simultaneously achieved on simple Cu-based electrocatalysts in CO_(2)NO_(3)RR,and provide guidance for rational design of more advanced catalysts.
基金supported by the National Natural Science Foundation of China(Nos.22278094,22209029)Outstanding Youth Project of Guangdong Natural Science Foundation(No.2020B1515020028)+2 种基金Guangdong Natural Science Foundation(No.2022A1515011775)University Innovation Team Scientific Research Project of Guangzhou Education Bureau(No.202235246)China Postdoctoral Science Foundation(No.2023M730760).
文摘Urea is extensively used in agriculture and chemical industry,and it is produced on an industrial scale from CO_(2)and Haber-Bosch NH_(3)under relatively high temperature and high pressure conditions,which demands high energy input and generates masses of carbon footprint.The conversion of CO_(2)and N sources(such as NO_(2)^(−),NO_(3)^(−),and N_(2))through electrocatalytic reactions under ambient conditions is a promising alternative to realize efficient urea synthesis.Of note,the design of electrocatalyst is one of the key factors that can improve the efficiency and selectivity of C-N coupling reactions.Defect engineer-ing is an intriguing strategy for regulating the electronic structure and charge density of electrocatalysts,which endows electrocatalysts with excellent physicochemical properties and optimized adsorption en-ergy of the reaction intermediates to reduce the kinetic barriers.In this minireview,recent advances of defect engineered electrocatalysts in urea electrosynthesis from CO_(2)and various N reactants are firstly introduced.Mechanistic discussions of C-N coupling in these advances are presented,with the aim of directing future investigations on improving the urea yield.Finally,the prospects and challenges of de-fect engineered electrocatalysts for urea synthesis are discussed.This overview is expected to provide in-depth understanding of structure-reactivity relationship and shed light on future electrocatalytic C-N coupling reactions.
基金support from the Tangshan Talent Funding Project(Grant No.A202202007)National Natural Science Foundation of China(Grant Nos.22102136 and 21703065)+2 种基金Natural Science Foundation of Hebei Province(Grant Nos.B2018209267 and E2022209039)Natural Science Foundation of Hubei Province(Grant No.2022CFB1001)Department of Education of Hubei Province(Grant No.Q20221701).
文摘Electrochemical C-C and C-N coupling reactions with the conversion of abundant and inexpensive small molecules,such as CO_(2) and nitrogencontaining species,are considered a promising route for increasing the value of CO_(2) reduction products.The development of high-performance catalysts is the key to the both electrocatalytic reactions.In this review,we present a systematic summary of the reaction systems for electrocatalytic CO_(2) reduction,along with the coupling mechanisms of C-C and C-N bonds over outstanding electrocatalytic materials recently developed.The key intermediate species and reaction pathways related to the coupling as well as the catalyst-structure relationship will be also discussed,aiming to provide insights and guidance for designing efficient CO_(2) reduction systems.
基金financially supported by National Natural Science Foundation of China(22072051,22122202,21972051).
文摘The electrocatalytic CO_(2) reduction in aqueous solution mainly involves bond cleavage and formation between C,H and O,and it is highly desirable to expand the bond formation reaction of C with other atoms to obtain novel and valuable chemicals.The electrochemical synthesis of N-containing organic chemicals in electrocatalytic CO_(2) reduction via introducing N sources is an effective strategy to expand the product scope,since chemicals con-taining C–N bonds(e.g.amides and amines)are important reactants/products for medicine,agriculture and in-dustry.This article focuses on the research progress of C–N coupling from CO_(2) and inorganic nitrogenous species in aqueous solution.Firstly,the reaction pathways related to the reaction intermediates for urea,formamide,acetamide,methylamine and ethylamine are highlighted.Then,the electrocatalytic performance of different catalysts for these several N-containing products are summarized and classified.Finally,the challenges and op-portunities are analyzed,aiming to provide general insights into future research directions for electrocatalytic C–N coupling.
文摘Poly(4-butyltriarylamine)s with t-butyldimethylsilyl terminal protecting group (PBTPA-TBS) with various molecular weights were prepared by C-N coupling polymerization. The resulting precursors were postfunctionalized and subse- quently used as macroinitiators for atom transfer radial polymerization (ATRP) of n-butyl acrylate (n-BA) and ethyl acrylate (EA). Both the polymerization processes were controlled and the polymers were characterized by 1H NMR, gel permeation chromatography (GPC) and thermal properties, which confirmed the successful synthesis of all the poly-mers. The microphase separated behaviors of the poly (4-butyltriarylamine)-block-poly (butyl acrylate) (PBTPA-b-PBA) were examined by AFM in the film showing phase separation structures for all the polymers. The photorefractive property of the composite based on PBTPA-b-PBA block copolymer was evaluated by two-beam coupling experiment. A relative high gain coefficient of 42.7 cm?1 was obtained at the electric field of 31 V/?m.
基金National Natural Science Foundation of China (No. 22202065, 22075092 and U21A20500)。
文摘Urea is widely used as fertilizer and is a key substance supporting global food production. However, the traditional industrial synthesis of urea faces the challenges with high energy consumption and serious environmental problems. With the increasing global demand for environmental protection and sustainable development, it is much necessary to develop novel and clean methods for the synthesis of urea.Electrocatalysis provides an efficient and renewable synthesis route that can directly produce urea at room temperature and atmospheric pressure by the coupling of CO_(2) and nitrogenous molecules. In this review, we summarized the most recent advances in electrochemical synthesis of urea via CAN coupling systematically, focusing on the coupling of CO_(2) and different nitrogen sources. And the associated coupling mechanism, catalysts optimization, and electrolyzer design are well discussed. Moreover, the challenges and future directions for electrocatalytic CAN coupling are prospected. This review will provide timely and valuable guidance for others and attract more interests to promote the development of electrochemical synthesis of urea or other valuable chemicals containing CAN bond.
基金supported by the National Natural Science Foundation of China(NSFC)(Nos.52273058 and 52073124)the Natural Science Foundation of Jiangsu Province(No.BK2022030167)the Fundamental Research Funds for the Central Universities.
文摘Urea,a critical nitrogen-based feedstock predominantly employed in fertilizer production,can be synthesized via electrocatalytic C-N coupling,which provides an efficient route for efficient nitrogen and carbon fixation under mild conditions.Nonetheless,electrocatalytic urea synthesis is hindered by intricate intermediate pathways and competing side reactions,leading to low urea selectivity and yield.Therefore,improving the efficiency of electrocatalytic urea synthesis requires efficient catalysts.This review presents an overview of urea detection methodologies,elucidates the C-N coupling mechanisms,and explores catalyst design strategies.Accurate detection of urea detection is particularly vital in low-yield systems;thus,we analyze the advantages and limitations of several detection techniques.Additionally,we investigate the fundamental reaction mechanisms that allow reduction of CO_(2)and various nitrogen species to be reduced simultaneously.A detailed examination of catalyst design strategies aimed at improving electrocatalytic urea production,including heterostructure,atomically dispersed structures,and vacancy engineering,is provided.Finally,we address the emerging challenges that must be tackled as the technology progresses.
基金supported by the National Key Research and Development Program of China(2021YFA1500702,2022YFE0108000,2023YFA1509103)the National Natural Science Foundation of China(22425207,22321002)+1 种基金the DICP(DICP I202314,DICP I202425)support from the China Postdoctoral Science Foundation(2024M753159).
文摘The conversion and utilization of carbon dioxide(CO_(2))is one of the central topics in the energy and environmental research community.The development of electrocatalytic CO_(2) reduction technology is expected to bring more economic and environmental benefits to the carbon-neutral policy.Although researchers have conducted extensive and in-depth studies on the electrocatalytic CO_(2) reduction to derive diverse carbonaceous products such as C_(1) and C_(2+),the introduction of inorganic nitrogenous molecules in the electrocatalytic CO_(2) reduction can further expand the production of more valuable C-N bondcontaining chemicals,such as amides,amines,and urea.This review focuses on the research progress in the electrochemical C-N coupling of CO_(2) with diverse nitrogenous small molecules(NH_(3),N_(2),NO,NO_(2)^(-),and NO_(3)^(-))in aqueous solution.The C-N coupling mechanisms and electrocatalytic performance of catalysts towards different products have been discussed in depth from both computational and experimental aspects.On this basis,the research directions and prospects in this field are proposed,aiming to provide valuable insights into future research on electrocatalytic C-N coupling.
基金supported by the National Natural Science Foundation of China(No.52561042)Gansu Province Key Talent Project(2025RCXM008).
文摘Electrochemical urea synthesis from CO_(2)and NO(EUCN)offers a promising route for sustainable urea production,whereas it still suffers from low C-N coupling efficiency and poor selectivity.Herein,atomically dispersed p-block Bi catalyst is explored for highly active and selective EUCN.Theoretical calculations and in situ spectroscopic analyses reveal a unique*CO-mediated C-N coupling mechanism,where isolated Bi sites facilitate CO_(2)reduction for*CO formation and enrichment,while*CO-enriched microenvironment boosts subsequent C-N coupling of*CO and*NO to*CONO,a critical C-N intermediate for urea generation,while simultaneously suppressing the competing side reactions.Notably,by pairing cathodic EUCN with anodic glycerol oxidation in a membrane electrode assembly electrolyzer,we achieve a record-high performance with urea yield rate of 86.5 mmol·h^(-1)·g^(-1)and Faradaic efficiency of 52.1%,as well as the outstanding stability for over 200 h electrolysis.
基金supported by the National Natural Science Foundation of China(No.22375019)Postdoctoral Fellowship Program of CPSF under Grant Number GZC20252673.
文摘The electrocatalytic C-N coupling reaction as a green synthesis approach for C-N bond synthesis via electrochemical processes with catalytic assistance.However,inefficient reactant adsorption onto the catalyst surface,competing side reactions,and the complexity and diversity of reaction pathways hinder its widespread application.Atomically dispersed catalysts(ADCs),as an emerging class of catalytic materials,possess precisely defined active sites,high catalytic activity,and enhanced selectivity,thereby enabling efficient electrocatalytic C-N coupling to address these challenges.This review discusses current reaction pathways for converting small molecules(CO_(2)as the carbon source,N_(2),NO_(2)^(-),NO_(3)^(-)as the nitrogen source)into high-value organic nitrogen compounds(urea,amides,oximes,and amino acids)utilizing ADCs.It specifically focuses on the critical steps within electrocatalytic C-N coupling facilitated by these catalysts,encompassing reactant adsorption,transformation and selective hydrogenation of C-/N-intermediates,and the C-N coupling reaction itself.Based on these key steps,design principles for ADCs are proposed.Finally,the synthesis strategies for ADCs-vacancy engineering,confinement strategies,and alloying-are examined,alongside the mechanisms by which they enhance catalytic activity and selectivity.
基金support by the National Natural Science Foundation of China(12222508,12475325,and 22209061)the Youth Innovation Promotion Association CAS(2020454)+2 种基金the National Key R&D Program of China(2019YFA0405601 and2023YFA1506304)the Fundamental Research Funds for the Universities of Inner Mongolia Autonomous Region(JY20250030)the Start-up Fund for Senior Talents in Jiangsu University(21JDG060)。
文摘Photocatalytic urea production from nitrogen(N_(2))and carbon dioxide(CO_(2))is a sustainable and ecofriendly alternative to the Bosch-Meiser route.However,it remains a significant challenge in developing highly efficient photocatalysts for enhancing C-N coupling to high-yield urea synthesis.Herein,we propose a multi-site photocatalyst concept to address the concern of low yield by simultaneously improving photogenerated carrier separation and reactant activation.As a proof of concept,a well-defined multisite photocatalyst,Ru nanoparticles and Cu single atoms decorated CeO_(2)nanorods(Ru-Cu/CeO_(2)),is developed for efficient urea production.The incorporation of Ru and Cu sites is crucial not only to generate high-density photogenerated electrons,but also to facilitate N_(2)and CO_(2)adsorption and conversion.The in situ formed local nitrogen-rich area at Ru sites increases the encounter possibility with the carbon-containing species generated from Cu sites,substantially promoting C-N coupling.The Ru-Cu/CeO_(2)photocatalyst exhibits an impressive urea yield rate of 16.7μmol g^(-1)h^(-1),which ranks among the best performance reported to date.This work emphasizes the importance of multi-site catalyst design concept in guaranteeing rapid C-N coupling in photocatalytic urea synthesis and beyond.
基金National Key Research and Development Program of China(2022YFB4600902)Shandong Provincial Science Foundation for Outstanding Young Scholars(ZR2024YQ020)。
文摘Wire arc additive manufacturing(WAAM)has emerged as a promising approach for fabricating large-scale components.However,conventional WAAM still faces challenges in optimizing microstructural evolution,minimizing additive-induced defects,and alleviating residual stress and deformation,all of which are critical for enhancing the mechanical performance of the manufactured parts.Integrating interlayer friction stir processing(FSP)into WAAM significantly enhances the quality of deposited materials.However,numerical simulation research focusing on elucidating the associated thermomechanical coupling mechanisms remains insufficient.A comprehensive numerical model was developed to simulate the thermomechanical coupling behavior in friction stir-assisted WAAM.The influence of post-deposition FSP on the coupled thermomechanical response of the WAAM process was analyzed quantitatively.Moreover,the residual stress distribution and deformation behavior under both single-layer and multilayer deposition conditions were investigated.Thermal analysis of different deposition layers in WAAM and friction stir-assisted WAAM was conducted.Results show that subsequent layer deposition induces partial remelting of the previously solidified layer,whereas FSP does not cause such remelting.Furthermore,thermal stress and deformation analysis confirm that interlayer FSP effectively mitigates residual stresses and distortion in WAAM components,thereby improving their structural integrity and mechanical properties.
基金supported by the National Key Research and Development Program of China (MOST)(Grant No.2022YFA1402800)the Chinese Academy of Sciences (CAS) Presidents International Fellowship Initiative (PIFI)(Grant No.2025PG0006)+3 种基金the National Natural Science Foundation of China (NSFC)(Grant Nos.51831012,12274437,and 52161160334)the CAS Project for Young Scientists in Basic Research (Grant No.YSBR-084)the CAS Youth Interdisciplinary Teamthe China Postdoctoral Science Foundation (Grant No.2025M773402)。
文摘Based on the Smit-Suhl formula,we propose a universal approach for solving the magnon-magnon coupling problem in bilayer coupled systems(e.g.,antiferromagnets).This method requires only the energy expression,enabling the automatic derivation of analytical expressions for the eigenmatrix elements via symbolic computation,eliminating the need for tedious manual calculations.Using this approach,we investigate the impact of magnetic hysteresis on magnon-magnon coupling in a system with interlayer Dzyaloshinskii-Moriya interaction(DMI).The magnetic hysteresis leads to an asymmetric magnetic field dependence of the resonance frequency and alters the number of degeneracy points between the pure optical and acoustic modes.Moreover,it can result in the coupling strength at the gap of the f–H phase diagram being nearly vanishing,contrary to the conventionally expected maximum.These results deepen the understanding of the effect of interlayer DMI on magnon–magnon coupling and the proposed universal method significantly streamlines the solving process of magnon–magnon coupling problems.
基金supported by the National Key Research and Development Program of China(No.2022YFF1301301)the Natural Science Foundation of Xiamen Municipality(No.3502Z202472047)the Geological Survey Program of China Geological Survey(DD20190303).
文摘To address the deficiencies in comprehensive surface contamination prevention strategies within China's nitrate-affected regions,this research innovatively proposes the DITAPH model-a systematic framework integrating groundwater nitrate vulnerability assessment and Nitrate Vulnerable Zones(NVZs)delineation through optimization of hydrogeological parameters.Based on detailed hydrogeological and hydrochemical investigations,the DITAPH model was applied in the plain areas of Quanzhou to evaluate its applicability.The model selected hydrogeological parameters(depth of groundwater,lithology of the vadose zone,topographic slope,aquifer water yield property),one climatic parameter(precipitation),and two anthropogenic parameters(land use type and population density)as assessment indicators.The results of the groundwater nitrate vulnerability assessment showed that the low,relatively low,relatively high,and high groundwater nitrate vulnerability zones in the study area accounted for 5.96%,35.44%,53.74%and 4.86%of the total area,respectively.Groundwater nitrate vulnerability was most strongly influenced by human activities,followed by groundwater depth and topographic slope.The high vulnerability zone is mainly affected by domestic and industrial wastewater,whereas the relatively high groundwater nitrate vulnerability zone is primarily influenced by agricultural activities.Validation of the DITAPH model revealed a significant positive correlation between the DITAPH index(DI)and nitrate concentration(ρ(NO3−)).The results of the NVZs delineated by the DITAPH model are reliable and can serve as a tool for water resource management planning,guiding the development of targeted measures in the NVZs to prevent groundwater contamination.
文摘Since the United Nations launched the Sustainable Development Goals(SDGs)in 2015,global implementation has steadily advanced,yet prominent challenges persist.Progress has been uneven across regions and countries,with Tajikistan representing a typical example of such disparities.Based on 81 SDG indicators for Tajikistan from 2001 to 2023,this study applied a three-level coupling network framework:at the microscale,it identified synergies and trade-offs between indicators;at the mesoscale,it examined the strength and direction of linkages within four SDG-related components(society,finance,governance,and environment);and at the global level,it focused on the overall SDG interlinkages.Spearman’s rank correlation,sliding window method,and topological properties were employed to analyze the coupling dynamics of SDGs.Results showed that over 70.00%of associations in the global SDG network were of medium-to-low intensity,alongside extremely strong ones(|r|value approached 1.00,where r is the correlation coefficient).SDG interactions were generally limited,with stable local synergy clusters in core livelihood sectors.Network modularity fluctuated,reflecting a cycle of differentiation,integration,and fragmentation,while coupling efficiency varied with the external environment.Each component exhibited distinct functional characteristics.The social component maintained high connectivity through the“poverty alleviation-education-healthcare”loop.The environmental component shifted toward coordinated eco-economic governance.The governance-related component broke interdepartmental barriers,while the financial component showed weak links between resource-based indicators and consumption/employment indicators.Tajikistan’s SDG coupling evolved through three phases:survival-oriented(2001–2012),policy integration(2013–2018),and shock adaptation(2019–2023).These phases were driven by policy changes,resource industries,governance optimization,and external factors.This study enriches the analytical framework for understanding the dynamic coupling of SDGs in mountainous resource-dependent countries and provides empirical evidence to support similar countries in formulating phase-specific SDG promotion strategies.
基金supported by the National Key Research and Development Program of China(No.2022YFA1603401)National Natural Science Foundation of China(Nos.12035010 and 12342501)+1 种基金Beijing Outstanding Young Scientist Program(No.JWZQ20240101006)the Tsinghua University Dushi Program.
文摘In this study,three specific scenarios of a novel accelerator light source mechanism called steady-state microbunching(SSMB)were studied:longitudinal weak focusing,longitudinal strong focusing,and generalized longitudinal strong focusing(GLSF).At present,GLSF is the most promising method for realizing high-power short-wavelength coherent radiation with mild requirements on modulation laser power.Its essence is to exploit the ultrasmall natural vertical emittance of an electron beam in a planar storage ring for efficient microbunching formation,like a partial transverse-longitudinal emittance exchange in the optical laser wavelength range.Based on an in-depth investigation of related beam physics,a solution for a GLSF SSMB storage ring that can deliver 1 kW average-power EUV light is presented.The work in this paper,such as the generalized Courant–Snyder formalism,analysis of theoretical minimum emittances,transverse-longitudinal coupling dynamics,and derivation of the bunching factor and modulation strengths for laser-induced microbunching schemes,is expected to be useful not only for the development of SSMB but also for future accelerator light sources in general that demand increasingly precise electron beam phase space manipulations.
基金National Natural Science Foundation of China,Grant/Award Numbers:42277485,21976141,22272197,22102184,22102136,U22A20392Natural Science Foundation of Hubei Province,Grant/Award Numbers:2022CFB1001,2021CFA034+1 种基金Department of Education of Hubei Province,Grant/Award Numbers:Q20221701,Q20221704Joint Fund of Yulin University and Dalian National Laboratory for Clean Energy,Grant/Award Number:YLU-DNL Fund 2022008。
文摘The electrocatalytic synthesis of C-N coupling compounds from CO_(2) and nitrogenous species not only offers an effective avenue to achieve carbon neutral-ity and reduce environmental pollution,but also establishes a route to synthesize valuable chemicals,such as urea,amide,and amine.This innovative approach expands the application range and product categories beyond simple carbona-ceous species in electrocatalytic CO_(2) reduction,which is becoming a rapidly advancing field.This review summarizes the research progress in electrocatalytic urea synthesis,using N_(2),NO_(2)^(-),and NO_(3)^(-)as nitrogenous species,and explores emerging trends in the electrosynthesis of amide and amine from CO_(2) and nitro-gen species.Additionally,the future opportunities in this field are highlighted,including electrosynthesis of amino acids and other compounds containing C-N bonds,anodic C-N coupling reactions beyond water oxidation,and the catalytic mechanism of corresponding reactions.This critical review also captures the insights aimed at accelerating the development of electrochemical C-N coupling reactions,confirming the superiority of this electrochemical method over the traditional techniques.
基金supported by Foshan Xianhu Laboratory Project(No.XHD2024–31000000–06)Guangdong Basic and Applied Basic Research Foundation(Nos.2024A1515140005,2024B1515120017)National Natural Science Foundation of China(No.22308070).
文摘Electrocatalytic C–N coupling technology offers a promising route for green and sustainable urea synthesis.However,this route faces challenges of low urea yield and Faradaic efficiency due to the high dissociation energy of atomic bonds in reactants,complex reaction intermediates,high reaction energy barriers,and competing side reactions.As C–N coupling involves the synergistic action of two or more active sites,it is crucial to develop efficient multi-active-site catalysts to address these challenges.This review analyzes the reaction mechanisms of electrocatalytic C–N coupling for urea synthesis and summarizes effective strategies to achieve multi-active-site catalysts,including heteroatom doping,defect engineering,heterojunctions,and diatomic catalysts.Furthermore,based on this analysis,we propose the universal design principles for high-efficiency multi-activesite catalysts.
基金National Natural Science Foundation of China(U22B20149,22308376)Outstanding Young Scholars Foundation of China University of Petroleum(Beijing)(2462023BJRC015)Foundation of United Institute for Carbon Neutrality(CNIF20230209)。
文摘Dual atomic catalysts(DAC),particularly copper(Cu_(2))-based nitrogen(N)doped graphene,show great potential to effectively convert CO_(2)and nitrate(NO_(3)-)into important industrial chemicals such as ethylene,glycol,acetamide,and urea through an efficient catalytical process that involves C–C and C–N coupling.However,the origin of the coupling activity remained unclear,which substantially hinders the rational design of Cu-based catalysts for the N-integrated CO_(2)reduction reaction(CO_(2)RR).To address this challenge,this work performed advanced density functional theory calculations incorporating explicit solvation based on a Cu_(2)-based N-doped carbon(Cu_(2)N_(6)C_(10))catalyst for CO_(2)RR.These calculations are aimed to gain insight into the reaction mechanisms for the synthesis of ethylene,acetamide,and urea via coupling in the interfacial reaction micro-environment.Due to the sluggishness of CO_(2),the formation of a solvation electric layer by anions(F^(-),Cl^(-),Br^(-),and I^(-))and cations(Na+,Mg^(2+),K+,and Ca^(2+))leads to electron transfer towards the Cu surface.This process significantly accelerates the reduction of CO_(2).These results reveal that*CO intermediates play a pivotal role in N-integrated CO_(2)RR.Remarkably,the Cu_(2)-based N-doped carbon catalyst examined in this study has demonstrated the most potential for C–N coupling to date.Our findings reveal that through the process of a condensation reaction between*CO and NH_(2)OH for urea synthesis,*NO_(3)-is reduced to*NH_(3),and*CO_(2)to*CCO at dual Cu atom sites.This dual-site reduction facilitates the synthesis of acetamide through a nucleophilic reaction between NH_(3)and the ketene intermediate.Furthermore,we found that the I-and Mg^(2+)ions,influenced by pH,were highly effective for acetamide and ammonia synthesis,except when F-and Ca^(2+)were present.Furthermore,the mechanisms of C–N bond formation were investigated via ab-initio molecular dynamics simulations,and we found that adjusting the micro-environment can change the dominant side reaction,shifting from hydrogen production in acidic conditions to water reduction in alkaline ones.This study introduces a novel approach using ion-H_(2)O cages to significantly enhance the efficiency of C–N coupling reactions.
基金supported by the Hebei Natural Science Foundation(B2024205035)supported by the Fundamental Research Funds for the Central Universities+5 种基金the World-Class Universities(Disciplines)the Characteristic Development Guidance Funds for the Central Universities(1061-B23017010264)supported by the Fundamental Research Funds for the Natural Science Foundation of China(92047201,52102237)the Natural Science Foundation of Jiangsu Province(BK20220006)the National Major Projects of Water Pollution Control and Management Technology(2017ZX07204003)the Postdoctoral Science Foundations of China and Jiangsu Province(2021M690861,2022T150183,2021K065A)。
文摘Electrocatalytic C—N coupling is an environmentally friendly pathway for reducing CO_(2)emissions,nitrate wastewater treatment,and urea production.CeO_(2)is a commonly used electrocatalyst for urea synthesis,but its yield was restricted by the deficiency of active sites and the high barrier for C—N coupling.Herein,we employed transient heating to introduce oxygen vacancies as sites for the deposition of single metal atoms,thereby maximizing the atomic utilization as active sites for urea synthesis.The as-prepared CuFe-V-CeO_(2)electrocatalyst exhibits the outstanding urea yield rate(3553 mg h^(-1)g_(ca)^(t-1).)at-1.5 V versus reversible hydrogen electrode(RHE),surpassing the performance of previously reported electrochemical urea electrocatalysts.Theoretical calculation further revealed the roles of Ce,Cu,and Fe sites in active hydrogen(*H)generation,nitrate treatment,and CO_(2)stabilization,respectively.This work offers a novel and effective pathway for the design of electrocatalysts and developing an efficient C—N coupling system for urea production.