Light-driven CO_(2) reduction reaction(CO_(2)RR)to value-added ethylene(C2H4)holds significant promise for addressing energy and environmental challenges.While the high energy barriers for*CO intermediates hydrogenati...Light-driven CO_(2) reduction reaction(CO_(2)RR)to value-added ethylene(C2H4)holds significant promise for addressing energy and environmental challenges.While the high energy barriers for*CO intermediates hydrogenation and C–C coupling limit the C_(2)H_(4)generation.Herein,CuxP/g-C_(3)N_(4) heterojunction prepared by an in-situ phosphating technique,achieved collaborative photocatalytic CO_(2) and H2O,producing CO and C_(2)H_(4)as the main products.Notably,the selectivity of C_(2)H_(4)produced by CuxP/g-C_(3)N_(4) attained to 64.25%,which was 9.85 times that of CuxP(6.52%).Detailed time-resolution photoluminescence spectra,femtosecond transient absorption spectroscopy tests and density functional theory(DFT)calculation validate the ultra-fast interfacial electron transfer mechanism in CuxP/g-C_(3)N_(4) heterojunction.Successive*H on P sites caused by adsorbed H2O splitting with moderate hydrogenation ability enables the multi-step hydrogenation during CO_(2)RR process over CuxP/g-C_(3)N_(4).With the aid of mediated asymmetric Cu and P dual sites by g-C_(3)N_(4) nanosheet,the produced*CHO shows an energetically favorable for C–C coupling.The coupling formed*CHOCHO further accepts photoexcited efficient e–and*H to deeply produce C_(2)H_(4)according to the C^(2+)intermediates,which has been detected by in-situ diffuse reflectance infrared Fourier transform spectroscopy and interpreted by DFT calculation.The novel insight mechanism offers an essential understanding for the development of CuxP-based heterojunctions for photocatalytic CO_(2) to C^(2+)value-added fuels.展开更多
To improve the compactness and properties of C/C-SiC-ZrC composites produced by precursor infiltration and pyrolysis(PIP)method,the low-temperature reactive melt infiltration(RMI)process was used to seal the composite...To improve the compactness and properties of C/C-SiC-ZrC composites produced by precursor infiltration and pyrolysis(PIP)method,the low-temperature reactive melt infiltration(RMI)process was used to seal the composites using Zr_(2)Cu as the filler.The microstructure,mechanical properties,and ablation properties of the Zr_(2)Cu packed composites were analyzed.Results show that during Zr_(2)Cu impregnation,the melt efficiently fills the large pores of the composites and is converted to ZrCu due to a partial reaction of zirconium with carbon.This results in an increase in composite density from 1.91 g/cm^(3)to 2.24 g/cm^(3)and a reduction in open porosity by 27.35%.Additionally,the flexural strength of Zr_(2)Cu packed C/C-SiC-ZrC composites is improved from 122.78±8.09 MPa to 135.53±5.40 MPa.After plasma ablation for 20 s,the modified composites demonstrate superior ablative resistance compared to PIP C/C-SiC-ZrC,with mass ablation and linear ablation rates of 2.77×10^(−3)g/s and 2.60×10^(−3)mm/s,respectively.The“selftranspiration”effect of the low-melting point copper-containing phase absorbs the heat of the plasma flame,further reducing the ablation temperature and promoting the formation of refined ZrO_(2)particles within the SiO_(2)melting layer.This provides more stable erosion protection for Zr_(2)Cu packed C/C-SiC-ZrC composites.展开更多
A thoroughly mechanistic understanding of the electrochemical CO reduction reaction(eCORR)at the interface is significant for guiding the design of high-performance electrocatalysts.However,unintentionally ignored fac...A thoroughly mechanistic understanding of the electrochemical CO reduction reaction(eCORR)at the interface is significant for guiding the design of high-performance electrocatalysts.However,unintentionally ignored factors or unreasonable settings during mechanism simulations will result in false positive results between theory and experiment.Herein,we computationally identified the dynamic site preference change of CO adsorption with potentials on Cu(100),which was a previously unnoticed factor but significant to potential-dependent mechanistic studies.Combined with the different lateral interactions among adsorbates,we proposed a new C–C coupling mechanism on Cu(100),better explaining the product distribution at different potentials in experimental eCORR.At low potentials(from–0.4 to–0.6 V_(RHE)),the CO forms dominant adsorption on the bridge site,which couples with another attractively aggregated CO to form a C–C bond.At medium potentials(from–0.6 to–0.8 VRHE),the hollow-bound CO becomes dominant but tends to isolate with another adsorbate due to the repulsion,thereby blocking the coupling process.At high potentials(above–0.8 VRHE),the CHO intermediate is produced from the electroreduction of hollow-CO and favors the attraction with another bridge-CO to trigger C–C coupling,making CHO the major common intermediate for C–C bond formation and methane production.We anticipate that our computationally identified dynamic change in site preference of adsorbates with potentials will bring new opportunities for a better understanding of the potential-dependent electrochemical processes.展开更多
Lignin is the only largest renewable aromatic resource in nature.Currently,most lignin is underutilized for low-value applications due to the complex structure and recalcitrant chemical properties.Over the past decade...Lignin is the only largest renewable aromatic resource in nature.Currently,most lignin is underutilized for low-value applications due to the complex structure and recalcitrant chemical properties.Over the past decades,extensive research has been devoted to valorizing lignin into aromatic N-heterocycles in the presence of nitrogen sources.It overcomes the element limitation,expands the products portfolio and would play a momentous role in value-added biorefinery concept.In this review,the latest research progress in the synthesis of N-heterocyclic compounds from lignin,lignin model compounds,and lignin-derived monomers(phenols,aromatic alcohols,aldehydes,ketones,and ethers)is presented.According to the structural characteristics of the products,these achievements are classified by the construction of five-,six-,and seven-membered N-heterocyclic compounds through one-step,multi-step,or one-pot multi-step reactions.Furthermore,the tailor-designed routes and catalytic systems,along with the reaction mechanisms/pathways involved are entirely discussed to elucidate the challenges regarding the structural complexity of lignin,the incompatible catalysis for C–O cleavage and C–N formation,as well as the nitrogen-heterocyclic ring construction.The prospects,future research efforts and process developments for the refining of lignin into aromatic N-heterocyclic compounds are outlined in terms of economy,environmental friendliness,and safety so as to draw some guidelines for lignin valorization.展开更多
Photothermal catalytic CO_(2) conversion provides an effective solution targeting carbon neutrality by synergistic utilization of photon and heat.However,the C-C coupling initiated by photothermal catalysis is still a...Photothermal catalytic CO_(2) conversion provides an effective solution targeting carbon neutrality by synergistic utilization of photon and heat.However,the C-C coupling initiated by photothermal catalysis is still a big challenge.Herein,a three-dimensional(3D)hierarchical W_(18)O_(49)/WTe_(2) hollow nanosphere is constructed through in-situ embodying of oxygen vacancy and tellurium on the scaffold of WO_(3).The light absorption towards near-infrared spectral region and CO_(2) adsorption are enhanced by the formation of half-metal WTe_(2) and the unique hierarchical hollow architecture.Combining with the generation of oxygen vacancy with strengthened CO_(2) capture,the photothermal effect on the samples can be sufficiently exploited for activating the CO_(2) molecules.In particular,the close contact between W_(18)O_(49)and WTe_(2) largely promotes the photoinduced charge separation and mass transfer,and thus the~*CHO intermediate formation and fixedness are facilitated.As a result,the C-C coupling can be evoked between tungsten and tellurium atoms on WTe_(2).The ethylene production by optimized W_(18)O_(49)/WTe_(2) reaches 147.6μmol g^(-1)with the selectivity of 80%.The in-situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS)and density functional theory(DFT)calculations are performed to unveil the presence and significance of aldehyde intermediate groups in C-C coupling.The half-metallic WTe_(2) cocatalyst proposes a new approach for efficient CO_(2) conversion with solar energy,and may especially create a new platform for the generation of multi-carbon products.展开更多
High-density carbon/carbon(C/C)composite plays a critical role in the aerospace industry owing to excellent mechanical properties and resistance to ablation.However,traditional manufacturing relies on pitch precursor ...High-density carbon/carbon(C/C)composite plays a critical role in the aerospace industry owing to excellent mechanical properties and resistance to ablation.However,traditional manufacturing relies on pitch precursor and hot isostatic pressure impregnation and carbonization(HIPIC)technology,which is time-consuming and expensive.In this study,we report an innovative method utilizing polyarylacetylene(PAA)resin and ultra-high pressure impregnation and carbonization(UHPIC)technology.The extremely high char yield of PAA resin(85 wt.%)and high isotropic pressure of UHPIC(over 200 MPa)promote the densification of the composite.As a result,we achieve a high-density(1.90 g/cm^(3))C/C composite with a high degree of graphitization(81%).This composite exhibits impressive properties,including flexural strength of 146 MPa,compressive strength of 187 MPa,and thermal conductivity of 147 W/(m K).When exposed to oxyacetylene flame at 3000 K for 100 s,it displays minimal linear ablation,with a rate of 1.27×10^(-2)mm/s.This study demonstrates the exceptional graphitizable characteristic of PAA resin,setting it apart from conventional resins.Our time-saving and cost-effective approach holds significant promise for aerospace applications,particularly in harsh aerodynamic heating environments.展开更多
Phosphate-coating was prepared for C/C composite using liquid-impregnation and different heat-treatment. The results show that the mass-loss rate of sample A with 1-2 ℃/min slow-cooling rate technology is 47%after ox...Phosphate-coating was prepared for C/C composite using liquid-impregnation and different heat-treatment. The results show that the mass-loss rate of sample A with 1-2 ℃/min slow-cooling rate technology is 47%after oxidation at 700 ℃ for 20 h, while that of sample B with air-fast-cooling one is only 0.98%. SEM images reveal that the coating of sample A is full of micro-holes, micro-cracks and many piece-like crystal particles, while that of sample B is integrated and compacted in glassy state with a few of micro-cracks. The coating of sample A is almost exhausted only in 8 h oxidized-test at 700 ℃, while that of sample B remains integrated after 8 h test at 700 ℃ and becomes loose due to much small pores generated after 20 h test at 700 ℃.展开更多
C/C composites with banded structure pyrocarbon were fabricated by fast chemical vapor infiltration(CVI),with C3H6 as carbon source,N2 as carrier gas,and three-dimensional(3D) 12K PAN-based carbon fabric with high...C/C composites with banded structure pyrocarbon were fabricated by fast chemical vapor infiltration(CVI),with C3H6 as carbon source,N2 as carrier gas,and three-dimensional(3D) 12K PAN-based carbon fabric with high density of 0.94 g/cm3 as preform.Experimental results indicated that the fracture characteristics of C/C composites were closely related to the frequency of high-temperature treatment(HTT) at the break of CVI process.According to the load?displacement curves,C/C composites showed a pseudoplastic fracture after twice of HTT.After three times of HTT,load?displacement curves tended to be stable with a decreasing bending strength at 177.5 MPa.Delamination failure and intrastratal fiber fracture were observed at the cross-section of C/C composites by scanning electronic microscope.Because the content of pyrocarbon and fibers has a different distribution in layers,the C/C composites show different fracture characteristics at various regions,which leads to good toughness and bending strength.展开更多
C/C-ZrC-SiC composites with different ZrC-SiC contents were fabricated by precursor infiltration and pyrolysis. The effect of ceramic content on the microstructure and ablation resistance was investigated. Both the C/...C/C-ZrC-SiC composites with different ZrC-SiC contents were fabricated by precursor infiltration and pyrolysis. The effect of ceramic content on the microstructure and ablation resistance was investigated. Both the C/C-SiC and C/C-ZrC-SiC composites exhibited good ablation resistance under the plasma flame above 2300℃. Withtheincreaseof ZrC content, a continuous oxide layer and a solid Zr-Si-O mesophase were formed during the ablation. And the structure of the formed oxides layer closely linked with the contents of ZrC-SiC ceramics. The solid ZrO2-ZrC and Zr-Si-O mesophase could increase the viscosity of SiO2 moderately and improve the anti-scouring ability. The continuous SiO2-ZrO2-ZrC-SiC layer would serve as a thermal and oxygen barrier for preventing the substratefrom further ablation. The C/C-ZrC-SiC composites with 27.2%ZrC and 7.56%SiC shows superior ablation resistance, and the mass and linear ablation rates are-3.51 mg/s and-1.88 μm/s, respectively.展开更多
SiC nanowires were prepared on C/C composite surface without catalyst by chemical vapor deposition(CVD) using CH3 SiCl3 as precursor.SEM images of the CVD-product reveal that some long nanowires have grown to tens o...SiC nanowires were prepared on C/C composite surface without catalyst by chemical vapor deposition(CVD) using CH3 SiCl3 as precursor.SEM images of the CVD-product reveal that some long nanowires have grown to tens of micrometers with some gathered as a ball.Some short nanowires agglomerate like chestnut shell with many thorns accompanied by some deposited nano-particles.XRD,Raman-spectrum and FTIR patterns indicate that the product is a typical β-SiC.TEM images show that the nanowires have a wide diameter range from 10 to 100 nm,and some thin nanowires are bonded to the thick one by amorphous CVD-SiC.A SiC branch generates from an amorphous section of a thick one with an angle of 70° between them,which is consistent with the [111] axis stacking angle of the crystal.SAED and fast Fourier transform(FFT) patterns reveal that the nanowires can grow along with different axes,and the bamboo-nodes section is full of stacking faults and twin crystal.The twisted SiC lattice planes reveal that the screw dislocation growth is the main mechanism for the CVD-SiC nanowires.展开更多
A SiC/ZrSiO4?SiO2 (SZS) coating was successfully fabricated on the carbon/carbon (C/C) composites by pack cementation, slurry painting and sintering to improve the anti-oxidation property and thermal shock r...A SiC/ZrSiO4?SiO2 (SZS) coating was successfully fabricated on the carbon/carbon (C/C) composites by pack cementation, slurry painting and sintering to improve the anti-oxidation property and thermal shock resistance. The anti-oxidation properties under different oxygen partial pressures (OPP) and thermal shock resistance of the SZS coating were investigated. The results show that the SZS coated sample under low OPP, corresponding to the ambient air, during isothermal oxidation was 0.54% in mass gain after 111 h oxidation at 1500 ° C and less than 0.03% in mass loss after 50 h oxidation in high OPP, corresponding to the air flow rate of 36 L/h. Additionally, the residual compressive strengths (RCS) of the SZS coated samples after oxidation for 50 h in high OPP and 80 h in low OPP remain about 70% and 72.5% of those of original C/C samples, respectively. Moreover, the mass loss of SZS coated samples subjected to the thermal cycle from 1500 ° C in high OPP to boiling water for 30 times was merely 1.61%.展开更多
C/C-ZrC composites were prepared by precursor infiltration and pyrolysis using the organic zirconium as precursor.The conversion mechanisms of the precursors such as the thermal behavior,structural evolution,phase com...C/C-ZrC composites were prepared by precursor infiltration and pyrolysis using the organic zirconium as precursor.The conversion mechanisms of the precursors such as the thermal behavior,structural evolution,phase composition,microstructure,composition of the precursors and products were analyzed by thermal gravimetric analyzer,Fourier transform infrared spectrometer,X-ray diffraction and scanning electron microscope.The results indicate that the ZrC precursor transforms to inorganic ZrO2 from room temperature to 1200 ℃,then reduces to ZrC at 1600 ℃ through the carbothermal reduction reaction.The microstructure of the C/C-ZrC composites was also investigated.The composites exhibit an interesting structure,a coating composed of ZrC ceramic covers the exterior of the composite,and the ZrC ceramic is embedded in the pores of the matrix inside the composite.展开更多
The oilseed cake, vetch, rapeseed straw, wheat straw and corn straw were buried in tobacco-planted soil. The decomposition rates, the variation of active organic C and N contents in the residues and the relationship b...The oilseed cake, vetch, rapeseed straw, wheat straw and corn straw were buried in tobacco-planted soil. The decomposition rates, the variation of active organic C and N contents in the residues and the relationship between active organic C and N contents and decomposition rate were investigated. The results showed the decomposition rates of different organic materials were all high in the early period and then low in the late period. Among the organic materials, the decomposition rates ranked as oilseed cake 〉 vetch 〉 wheat straw and rapeseed straw 〉 corn straw. The decomposition rate was positively related to total N content (P〈0.01), but was negatively related to the active organic C/N ratio (P〈0.01). However, there was no significant relationship between decomposition ratio and active organic C content. With the proceeding of decomposition, the active organic C content and the total N content in rapeseed straw, vetch, wheat straw and corn straw all trended to increase, but the active organic C/N ratio trended to decrease. However, the variation of active organic C content, total N content and active organic C/N ratio in oilseed cake was on the contrary.展开更多
Laminated carbon fiber clothes were infiltrated to prepare carbon fiber reinforced pyrolytic carbon (C/C) using isothermal chemical vapor infiltration (CVI). The bending fatigue behavior of the infiltrated C/C com...Laminated carbon fiber clothes were infiltrated to prepare carbon fiber reinforced pyrolytic carbon (C/C) using isothermal chemical vapor infiltration (CVI). The bending fatigue behavior of the infiltrated C/C composites was tested under two different stress levels. The residual strength and modulus of all fatigued samples were tested to investigate the effect of maximum stress level on fatigue behavior of C/C composites. The microstructure and damage mechanism were also investigated. The results showed that the residual strength and modulus of fatigued samples were improved. High stress level is more effective to increase the modulus. And for the increase of flexural strength, high stress level is more effective only in low cycles. The fatigue loading weakens the bonding between the matrix and fiber, and then affects the damage propagation pathway, and increases the energy consumption. So the properties of C/C composites are improved.展开更多
A new method for preparation of TaC coating on C/C composite material is reported. The amorphous ethylate tantalum jellied as the precursor is prepared and spread densely on the surface of the C/C composite material s...A new method for preparation of TaC coating on C/C composite material is reported. The amorphous ethylate tantalum jellied as the precursor is prepared and spread densely on the surface of the C/C composite material so as to form a multilayer film. In a graphitization furnace the multilayer film is transformed into TaC coating at various temperatures. Ethylate tantalum film is characterized by FT-IR (Fourier transform infrared) spectra, XRD (X-ray diffraction) and SEM (scanning electron microscopy) and TaC coating is characterized by XRD and SEM. At 1200℃ the coating contained TaC and Ta2O5, and at above 1400℃ only TaC is formed. The coating formed at 1600℃ is a continuous stratum structure, and that formed at 1600℃ is a porous net structure. Analysis on thermodynamics and formation mechanism of TaC indicates that, after ethylate tantalum is decomposed, Ta2O5 is first produced and then transformed into Ta2C, and newly formed Ta2C is transformed into TaC by the sufficient C at last.展开更多
Hexagonal boron nitride(h-BN) powders were introduced into carbon fiber preform by powder addition and subsequent combined with chemical vapor infiltration(CVI) for densification to prepare carbon fiber reinforced/car...Hexagonal boron nitride(h-BN) powders were introduced into carbon fiber preform by powder addition and subsequent combined with chemical vapor infiltration(CVI) for densification to prepare carbon fiber reinforced/carbon and boron nitride dual matrix composites(C/C-BN). Microstructures and mechanical properties of C/C composites with three different volume contents of h-BN powders were investigated in comparison to pure C/C composites. Results indicated that the introduction of h-BN powders into C/C composites significantly reduced the size of Py C and the anisotropy of thermal contraction in matrix,leading to a gradual disappearance of ring defects as the h-BN content increased. In addition, an enhanced interfacial bonding between fiber and matrix obtained due to higher-textured Py C and rougher fiber surface. Thereby, the flexural strengths and modulus of as-prepared composites decreased firstly and then increased, while the impact toughness presented a decreasing tendency as the content of BN powders increased. Furthermore, with the increasing of h-BN content, anisotropies of compressive properties were weakened, and the compressive strength of C/C-BN composites were always higher than that of pure C/C composit. However, when C/C composites modified by 13.5 vol% content of h-BN, excessive loose BN aggregates appeared in C/C-BN composites, leading to a relatively slight reduction of compressive strength.展开更多
Using natural gas as carbon source, 2D needle felt as preform, 2D-C/C composites were prepared by thermal gradient chemical vapor infiltration. Their microstructures were observed under polarized light microscope (PL...Using natural gas as carbon source, 2D needle felt as preform, 2D-C/C composites were prepared by thermal gradient chemical vapor infiltration. Their microstructures were observed under polarized light microscope (PLM) and scanning electron microscope (SEM), and the flexural behaviors before and after heat-treatment were studied with a universal mechanical testing machine. The fracture mechanism of the composites was discussed in detail. The results show that, carbon matrix exhibits pure smooth laminar (SL) characteristic including numerous wrinkled layered structures and some inter-laminar micro-cracks. With the decreasing density, the strength of the composites decreases and the toughness increases slightly; after 2500 °C heat-treatment, the inter-laminar micro-cracks in matrix increase, the strength decreases, and the toughness obviously increases. The fracture mode of the composites changes from brittle to pseudo-plastic characteristic due to more crack deflections in SL matrix.展开更多
Catalytic hydrogenation of CO_(2) using renewable hydrogen not only reduces greenhouse gas emissions,but also provides industrial chemicals.Herein,a Co-Fe bimetallic catalyst was developed by a facile reactive ball-mi...Catalytic hydrogenation of CO_(2) using renewable hydrogen not only reduces greenhouse gas emissions,but also provides industrial chemicals.Herein,a Co-Fe bimetallic catalyst was developed by a facile reactive ball-milling method for highly active and selective hydrogenation of CO_(2) to value-added hydrocarbons.When reacted at 320℃,1.0 MPa and 9600 mL h^(-1) g_(cat)^(-1),the selectivity to light olefin(C_(2)^(=)-C_(4)^(=)) and C_(5)+ species achieves 57.3% and 22.3%,respectively,at a CO_(2) co nversion of 31.4%,which is superior to previous Fe-based catalysts.The CO_(2) activation can be promoted by the CoFe phase formed by reactive ball milling of the Fe-Co_(3)O_(4) mixture,and the in-situ Co_(2)C and Fe_(5)C_(2) formed during hydrogenation are beneficial for the C-C coupling reaction.The initial C-C coupling is related to the combination of CO species with the surface carbon of Fe/Co carbides,and the sustained C-C coupling is maintained by self-recovery of defective carbides.This new strategy contributes to the development of efficient catalysts for the hydrogenation of CO_(2) to value-added hydrocarbons.展开更多
Objective: To study the expression of vascular endothelial growth factor C (VEGF-C) in gastric carcinoma and its relationship with lymph node metastasis. Methods: The expression of VEGF-C mRNA in 5 gastric carcinoma c...Objective: To study the expression of vascular endothelial growth factor C (VEGF-C) in gastric carcinoma and its relationship with lymph node metastasis. Methods: The expression of VEGF-C mRNA in 5 gastric carcinoma cell lines was detected by reverse transcription-polymerase chain reaction (RT-PCR). Simultaneously, the expression of VEGF-C protein in gastric carcinoma tissues, which were obtained from 63 patients who underwent radical gastrectomy, was detected by immunohistochemistry. Results: Three of the 5 gastric carcinoma cell lines, MKN-45, SGC-7901 and AGS, expressed VEGF-C mRNA. VEGF-C protein was expressed in 52.4% (33/63) of patients. VEGF-C protein expression was more frequently found in tumors with lymph node metastasis than in those without (P<0.01). VEGF-C protein expression was also closely related to lymphatic invasion (P<0.01) and TNM stage (P<0.01). However, there was no significant correlation between VEGF-C expression and the age, gender, tumor size, tumor location, Lauren classification, depth of invasion, and vascular invasion. Conclusion: The expression of VEGF-C is closely related to lymph node metastasis of gastric carcinoma, and lymphangiogenesis might be a new target for treatment of gastric carcinoma.展开更多
Elevated atmospheric CO2 can influence soil C dynamics in agroecosystems. The effects of free-air CO2 enrichment (FACE) and N fertilization on soil organic C (Corg), dissolved organic C (DOC), microbial biomass...Elevated atmospheric CO2 can influence soil C dynamics in agroecosystems. The effects of free-air CO2 enrichment (FACE) and N fertilization on soil organic C (Corg), dissolved organic C (DOC), microbial biomass C (Cmic) and soil basal respiration (SBR) were investigated in a Chinese wheat field after expose to elevated CO2 for four full years. The results indicated that elevated CO2 has stimulative effects on soil C concentrations regardless of N fertilization. Following the elevated CO2, the concentrations of Corg and SBR were increased at wheat jointing stage, and those of DOC and Cmic were enhanced obviously across the wheat jointing stage and the fallow period after wheat harvest. On the other hand, N fertilization did not significantly affect the content of soil C. Significant correlations were found among DOC, Cmic, and SBR in this study.展开更多
文摘Light-driven CO_(2) reduction reaction(CO_(2)RR)to value-added ethylene(C2H4)holds significant promise for addressing energy and environmental challenges.While the high energy barriers for*CO intermediates hydrogenation and C–C coupling limit the C_(2)H_(4)generation.Herein,CuxP/g-C_(3)N_(4) heterojunction prepared by an in-situ phosphating technique,achieved collaborative photocatalytic CO_(2) and H2O,producing CO and C_(2)H_(4)as the main products.Notably,the selectivity of C_(2)H_(4)produced by CuxP/g-C_(3)N_(4) attained to 64.25%,which was 9.85 times that of CuxP(6.52%).Detailed time-resolution photoluminescence spectra,femtosecond transient absorption spectroscopy tests and density functional theory(DFT)calculation validate the ultra-fast interfacial electron transfer mechanism in CuxP/g-C_(3)N_(4) heterojunction.Successive*H on P sites caused by adsorbed H2O splitting with moderate hydrogenation ability enables the multi-step hydrogenation during CO_(2)RR process over CuxP/g-C_(3)N_(4).With the aid of mediated asymmetric Cu and P dual sites by g-C_(3)N_(4) nanosheet,the produced*CHO shows an energetically favorable for C–C coupling.The coupling formed*CHOCHO further accepts photoexcited efficient e–and*H to deeply produce C_(2)H_(4)according to the C^(2+)intermediates,which has been detected by in-situ diffuse reflectance infrared Fourier transform spectroscopy and interpreted by DFT calculation.The novel insight mechanism offers an essential understanding for the development of CuxP-based heterojunctions for photocatalytic CO_(2) to C^(2+)value-added fuels.
基金Open Fund of Zhijian Laboratory,Rocket Force University of Engineering(2024-ZJSYS-KF02-09)National Natural Science Foundation of China(51902028,52272034)+1 种基金Key Research and Development Program of Shaanxi(2023JBGS-15)Fundamental Research Funds for the Central Universities(Changan University,300102313202,300102312406)。
文摘To improve the compactness and properties of C/C-SiC-ZrC composites produced by precursor infiltration and pyrolysis(PIP)method,the low-temperature reactive melt infiltration(RMI)process was used to seal the composites using Zr_(2)Cu as the filler.The microstructure,mechanical properties,and ablation properties of the Zr_(2)Cu packed composites were analyzed.Results show that during Zr_(2)Cu impregnation,the melt efficiently fills the large pores of the composites and is converted to ZrCu due to a partial reaction of zirconium with carbon.This results in an increase in composite density from 1.91 g/cm^(3)to 2.24 g/cm^(3)and a reduction in open porosity by 27.35%.Additionally,the flexural strength of Zr_(2)Cu packed C/C-SiC-ZrC composites is improved from 122.78±8.09 MPa to 135.53±5.40 MPa.After plasma ablation for 20 s,the modified composites demonstrate superior ablative resistance compared to PIP C/C-SiC-ZrC,with mass ablation and linear ablation rates of 2.77×10^(−3)g/s and 2.60×10^(−3)mm/s,respectively.The“selftranspiration”effect of the low-melting point copper-containing phase absorbs the heat of the plasma flame,further reducing the ablation temperature and promoting the formation of refined ZrO_(2)particles within the SiO_(2)melting layer.This provides more stable erosion protection for Zr_(2)Cu packed C/C-SiC-ZrC composites.
文摘A thoroughly mechanistic understanding of the electrochemical CO reduction reaction(eCORR)at the interface is significant for guiding the design of high-performance electrocatalysts.However,unintentionally ignored factors or unreasonable settings during mechanism simulations will result in false positive results between theory and experiment.Herein,we computationally identified the dynamic site preference change of CO adsorption with potentials on Cu(100),which was a previously unnoticed factor but significant to potential-dependent mechanistic studies.Combined with the different lateral interactions among adsorbates,we proposed a new C–C coupling mechanism on Cu(100),better explaining the product distribution at different potentials in experimental eCORR.At low potentials(from–0.4 to–0.6 V_(RHE)),the CO forms dominant adsorption on the bridge site,which couples with another attractively aggregated CO to form a C–C bond.At medium potentials(from–0.6 to–0.8 VRHE),the hollow-bound CO becomes dominant but tends to isolate with another adsorbate due to the repulsion,thereby blocking the coupling process.At high potentials(above–0.8 VRHE),the CHO intermediate is produced from the electroreduction of hollow-CO and favors the attraction with another bridge-CO to trigger C–C coupling,making CHO the major common intermediate for C–C bond formation and methane production.We anticipate that our computationally identified dynamic change in site preference of adsorbates with potentials will bring new opportunities for a better understanding of the potential-dependent electrochemical processes.
文摘Lignin is the only largest renewable aromatic resource in nature.Currently,most lignin is underutilized for low-value applications due to the complex structure and recalcitrant chemical properties.Over the past decades,extensive research has been devoted to valorizing lignin into aromatic N-heterocycles in the presence of nitrogen sources.It overcomes the element limitation,expands the products portfolio and would play a momentous role in value-added biorefinery concept.In this review,the latest research progress in the synthesis of N-heterocyclic compounds from lignin,lignin model compounds,and lignin-derived monomers(phenols,aromatic alcohols,aldehydes,ketones,and ethers)is presented.According to the structural characteristics of the products,these achievements are classified by the construction of five-,six-,and seven-membered N-heterocyclic compounds through one-step,multi-step,or one-pot multi-step reactions.Furthermore,the tailor-designed routes and catalytic systems,along with the reaction mechanisms/pathways involved are entirely discussed to elucidate the challenges regarding the structural complexity of lignin,the incompatible catalysis for C–O cleavage and C–N formation,as well as the nitrogen-heterocyclic ring construction.The prospects,future research efforts and process developments for the refining of lignin into aromatic N-heterocyclic compounds are outlined in terms of economy,environmental friendliness,and safety so as to draw some guidelines for lignin valorization.
基金the National Natural Science Foundation of China(51303083)the National Natural Science Foundation of China for Excellent Young Scholars(51922050)+1 种基金the Natural Science Foundation of Jiangsu Province(BK20191293)the Fundamental Research Funds for the Central Universities(30920021123)。
文摘Photothermal catalytic CO_(2) conversion provides an effective solution targeting carbon neutrality by synergistic utilization of photon and heat.However,the C-C coupling initiated by photothermal catalysis is still a big challenge.Herein,a three-dimensional(3D)hierarchical W_(18)O_(49)/WTe_(2) hollow nanosphere is constructed through in-situ embodying of oxygen vacancy and tellurium on the scaffold of WO_(3).The light absorption towards near-infrared spectral region and CO_(2) adsorption are enhanced by the formation of half-metal WTe_(2) and the unique hierarchical hollow architecture.Combining with the generation of oxygen vacancy with strengthened CO_(2) capture,the photothermal effect on the samples can be sufficiently exploited for activating the CO_(2) molecules.In particular,the close contact between W_(18)O_(49)and WTe_(2) largely promotes the photoinduced charge separation and mass transfer,and thus the~*CHO intermediate formation and fixedness are facilitated.As a result,the C-C coupling can be evoked between tungsten and tellurium atoms on WTe_(2).The ethylene production by optimized W_(18)O_(49)/WTe_(2) reaches 147.6μmol g^(-1)with the selectivity of 80%.The in-situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS)and density functional theory(DFT)calculations are performed to unveil the presence and significance of aldehyde intermediate groups in C-C coupling.The half-metallic WTe_(2) cocatalyst proposes a new approach for efficient CO_(2) conversion with solar energy,and may especially create a new platform for the generation of multi-carbon products.
基金supported by the Major Program of National Natural Science Foundation of China(No.52293372).
文摘High-density carbon/carbon(C/C)composite plays a critical role in the aerospace industry owing to excellent mechanical properties and resistance to ablation.However,traditional manufacturing relies on pitch precursor and hot isostatic pressure impregnation and carbonization(HIPIC)technology,which is time-consuming and expensive.In this study,we report an innovative method utilizing polyarylacetylene(PAA)resin and ultra-high pressure impregnation and carbonization(UHPIC)technology.The extremely high char yield of PAA resin(85 wt.%)and high isotropic pressure of UHPIC(over 200 MPa)promote the densification of the composite.As a result,we achieve a high-density(1.90 g/cm^(3))C/C composite with a high degree of graphitization(81%).This composite exhibits impressive properties,including flexural strength of 146 MPa,compressive strength of 187 MPa,and thermal conductivity of 147 W/(m K).When exposed to oxyacetylene flame at 3000 K for 100 s,it displays minimal linear ablation,with a rate of 1.27×10^(-2)mm/s.This study demonstrates the exceptional graphitizable characteristic of PAA resin,setting it apart from conventional resins.Our time-saving and cost-effective approach holds significant promise for aerospace applications,particularly in harsh aerodynamic heating environments.
基金Projects(09JJ4027)supported by the Natural Science Foundation of Hunan Province,ChinaProject(201206375003)supported by China Scholarship Council
文摘Phosphate-coating was prepared for C/C composite using liquid-impregnation and different heat-treatment. The results show that the mass-loss rate of sample A with 1-2 ℃/min slow-cooling rate technology is 47%after oxidation at 700 ℃ for 20 h, while that of sample B with air-fast-cooling one is only 0.98%. SEM images reveal that the coating of sample A is full of micro-holes, micro-cracks and many piece-like crystal particles, while that of sample B is integrated and compacted in glassy state with a few of micro-cracks. The coating of sample A is almost exhausted only in 8 h oxidized-test at 700 ℃, while that of sample B remains integrated after 8 h test at 700 ℃ and becomes loose due to much small pores generated after 20 h test at 700 ℃.
基金Project (50802115) supported by the National Natural Science Foundation of ChinaProject (2011CB605801) supported by the National Basic Research Program of China
文摘C/C composites with banded structure pyrocarbon were fabricated by fast chemical vapor infiltration(CVI),with C3H6 as carbon source,N2 as carrier gas,and three-dimensional(3D) 12K PAN-based carbon fabric with high density of 0.94 g/cm3 as preform.Experimental results indicated that the fracture characteristics of C/C composites were closely related to the frequency of high-temperature treatment(HTT) at the break of CVI process.According to the load?displacement curves,C/C composites showed a pseudoplastic fracture after twice of HTT.After three times of HTT,load?displacement curves tended to be stable with a decreasing bending strength at 177.5 MPa.Delamination failure and intrastratal fiber fracture were observed at the cross-section of C/C composites by scanning electronic microscope.Because the content of pyrocarbon and fibers has a different distribution in layers,the C/C composites show different fracture characteristics at various regions,which leads to good toughness and bending strength.
基金Project(2011CB605801)supported by the National Basic Research Program of ChinaProject(51304249)supported by the National Natural Science Foundation of China+1 种基金Project(2013BAE04B02)supported by the National Key Technology Support Program of ChinaProject(14JJ3023)supported by the Hunan Provincial Science Foundation of China
文摘C/C-ZrC-SiC composites with different ZrC-SiC contents were fabricated by precursor infiltration and pyrolysis. The effect of ceramic content on the microstructure and ablation resistance was investigated. Both the C/C-SiC and C/C-ZrC-SiC composites exhibited good ablation resistance under the plasma flame above 2300℃. Withtheincreaseof ZrC content, a continuous oxide layer and a solid Zr-Si-O mesophase were formed during the ablation. And the structure of the formed oxides layer closely linked with the contents of ZrC-SiC ceramics. The solid ZrO2-ZrC and Zr-Si-O mesophase could increase the viscosity of SiO2 moderately and improve the anti-scouring ability. The continuous SiO2-ZrO2-ZrC-SiC layer would serve as a thermal and oxygen barrier for preventing the substratefrom further ablation. The C/C-ZrC-SiC composites with 27.2%ZrC and 7.56%SiC shows superior ablation resistance, and the mass and linear ablation rates are-3.51 mg/s and-1.88 μm/s, respectively.
基金Project(201206375003)supported by the China Scholarship Council
文摘SiC nanowires were prepared on C/C composite surface without catalyst by chemical vapor deposition(CVD) using CH3 SiCl3 as precursor.SEM images of the CVD-product reveal that some long nanowires have grown to tens of micrometers with some gathered as a ball.Some short nanowires agglomerate like chestnut shell with many thorns accompanied by some deposited nano-particles.XRD,Raman-spectrum and FTIR patterns indicate that the product is a typical β-SiC.TEM images show that the nanowires have a wide diameter range from 10 to 100 nm,and some thin nanowires are bonded to the thick one by amorphous CVD-SiC.A SiC branch generates from an amorphous section of a thick one with an angle of 70° between them,which is consistent with the [111] axis stacking angle of the crystal.SAED and fast Fourier transform(FFT) patterns reveal that the nanowires can grow along with different axes,and the bamboo-nodes section is full of stacking faults and twin crystal.The twisted SiC lattice planes reveal that the screw dislocation growth is the main mechanism for the CVD-SiC nanowires.
基金Project supported by the Nonferrous Metal Oriented Advanced Structural Materials and Manufacturing Cooperative Innovation Center,ChinaProject(51205417)supported by the National Natural Science Foundation of China
文摘A SiC/ZrSiO4?SiO2 (SZS) coating was successfully fabricated on the carbon/carbon (C/C) composites by pack cementation, slurry painting and sintering to improve the anti-oxidation property and thermal shock resistance. The anti-oxidation properties under different oxygen partial pressures (OPP) and thermal shock resistance of the SZS coating were investigated. The results show that the SZS coated sample under low OPP, corresponding to the ambient air, during isothermal oxidation was 0.54% in mass gain after 111 h oxidation at 1500 ° C and less than 0.03% in mass loss after 50 h oxidation in high OPP, corresponding to the air flow rate of 36 L/h. Additionally, the residual compressive strengths (RCS) of the SZS coated samples after oxidation for 50 h in high OPP and 80 h in low OPP remain about 70% and 72.5% of those of original C/C samples, respectively. Moreover, the mass loss of SZS coated samples subjected to the thermal cycle from 1500 ° C in high OPP to boiling water for 30 times was merely 1.61%.
基金Project (2011CB605801) supported by the National Basic Research Program of ChinaProject (CX2012B042) supported by the Graduated Students' Scientific Research Innovation Project in Hunan Province of China
文摘C/C-ZrC composites were prepared by precursor infiltration and pyrolysis using the organic zirconium as precursor.The conversion mechanisms of the precursors such as the thermal behavior,structural evolution,phase composition,microstructure,composition of the precursors and products were analyzed by thermal gravimetric analyzer,Fourier transform infrared spectrometer,X-ray diffraction and scanning electron microscope.The results indicate that the ZrC precursor transforms to inorganic ZrO2 from room temperature to 1200 ℃,then reduces to ZrC at 1600 ℃ through the carbothermal reduction reaction.The microstructure of the C/C-ZrC composites was also investigated.The composites exhibit an interesting structure,a coating composed of ZrC ceramic covers the exterior of the composite,and the ZrC ceramic is embedded in the pores of the matrix inside the composite.
基金Supported by National Key Technology Research and Development Program(2012BAD40B02Yunnan Provincial Tobacco Company Plan Project(2012YN48)~~
文摘The oilseed cake, vetch, rapeseed straw, wheat straw and corn straw were buried in tobacco-planted soil. The decomposition rates, the variation of active organic C and N contents in the residues and the relationship between active organic C and N contents and decomposition rate were investigated. The results showed the decomposition rates of different organic materials were all high in the early period and then low in the late period. Among the organic materials, the decomposition rates ranked as oilseed cake 〉 vetch 〉 wheat straw and rapeseed straw 〉 corn straw. The decomposition rate was positively related to total N content (P〈0.01), but was negatively related to the active organic C/N ratio (P〈0.01). However, there was no significant relationship between decomposition ratio and active organic C content. With the proceeding of decomposition, the active organic C content and the total N content in rapeseed straw, vetch, wheat straw and corn straw all trended to increase, but the active organic C/N ratio trended to decrease. However, the variation of active organic C content, total N content and active organic C/N ratio in oilseed cake was on the contrary.
基金Projects(50832004,51105132)supported by the National Natural Science Foundation of ChinaProject(B08040)supported by Program of Introducing Talents of Discipline to Universities,China
文摘Laminated carbon fiber clothes were infiltrated to prepare carbon fiber reinforced pyrolytic carbon (C/C) using isothermal chemical vapor infiltration (CVI). The bending fatigue behavior of the infiltrated C/C composites was tested under two different stress levels. The residual strength and modulus of all fatigued samples were tested to investigate the effect of maximum stress level on fatigue behavior of C/C composites. The microstructure and damage mechanism were also investigated. The results showed that the residual strength and modulus of fatigued samples were improved. High stress level is more effective to increase the modulus. And for the increase of flexural strength, high stress level is more effective only in low cycles. The fatigue loading weakens the bonding between the matrix and fiber, and then affects the damage propagation pathway, and increases the energy consumption. So the properties of C/C composites are improved.
文摘A new method for preparation of TaC coating on C/C composite material is reported. The amorphous ethylate tantalum jellied as the precursor is prepared and spread densely on the surface of the C/C composite material so as to form a multilayer film. In a graphitization furnace the multilayer film is transformed into TaC coating at various temperatures. Ethylate tantalum film is characterized by FT-IR (Fourier transform infrared) spectra, XRD (X-ray diffraction) and SEM (scanning electron microscopy) and TaC coating is characterized by XRD and SEM. At 1200℃ the coating contained TaC and Ta2O5, and at above 1400℃ only TaC is formed. The coating formed at 1600℃ is a continuous stratum structure, and that formed at 1600℃ is a porous net structure. Analysis on thermodynamics and formation mechanism of TaC indicates that, after ethylate tantalum is decomposed, Ta2O5 is first produced and then transformed into Ta2C, and newly formed Ta2C is transformed into TaC by the sufficient C at last.
基金the financial supports from the Natural Science Foundation of Hunan Province (Grant No. 2019JJ50768)National Natural Science Foundation of China (Grant No. 51575536)+1 种基金the National High Technology Research and Development Program (Grant No. 2015AA033503)Graduate degree thesis Innovation Foundation of Central South University (Grant No. 2018ZZTS414)
文摘Hexagonal boron nitride(h-BN) powders were introduced into carbon fiber preform by powder addition and subsequent combined with chemical vapor infiltration(CVI) for densification to prepare carbon fiber reinforced/carbon and boron nitride dual matrix composites(C/C-BN). Microstructures and mechanical properties of C/C composites with three different volume contents of h-BN powders were investigated in comparison to pure C/C composites. Results indicated that the introduction of h-BN powders into C/C composites significantly reduced the size of Py C and the anisotropy of thermal contraction in matrix,leading to a gradual disappearance of ring defects as the h-BN content increased. In addition, an enhanced interfacial bonding between fiber and matrix obtained due to higher-textured Py C and rougher fiber surface. Thereby, the flexural strengths and modulus of as-prepared composites decreased firstly and then increased, while the impact toughness presented a decreasing tendency as the content of BN powders increased. Furthermore, with the increasing of h-BN content, anisotropies of compressive properties were weakened, and the compressive strength of C/C-BN composites were always higher than that of pure C/C composit. However, when C/C composites modified by 13.5 vol% content of h-BN, excessive loose BN aggregates appeared in C/C-BN composites, leading to a relatively slight reduction of compressive strength.
基金Projects(51221001,51202193)supported by the National Natural Science Foundation of ChinaProject(B08040)supported by Program of Introducing Talents of Discipline to Universities,China
文摘Using natural gas as carbon source, 2D needle felt as preform, 2D-C/C composites were prepared by thermal gradient chemical vapor infiltration. Their microstructures were observed under polarized light microscope (PLM) and scanning electron microscope (SEM), and the flexural behaviors before and after heat-treatment were studied with a universal mechanical testing machine. The fracture mechanism of the composites was discussed in detail. The results show that, carbon matrix exhibits pure smooth laminar (SL) characteristic including numerous wrinkled layered structures and some inter-laminar micro-cracks. With the decreasing density, the strength of the composites decreases and the toughness increases slightly; after 2500 °C heat-treatment, the inter-laminar micro-cracks in matrix increase, the strength decreases, and the toughness obviously increases. The fracture mode of the composites changes from brittle to pseudo-plastic characteristic due to more crack deflections in SL matrix.
基金supported by the National Natural Science Foundation of China (22008098, 21978156, 42002040)the Program for Innovative Research Team (in Science and Technology) in University of Henan Province (21IRTSTHN004)+1 种基金the Program for Science & Technology Innovation Talents in Universities of Henan Province (22HASTIT008)the Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering (2022-K34)。
文摘Catalytic hydrogenation of CO_(2) using renewable hydrogen not only reduces greenhouse gas emissions,but also provides industrial chemicals.Herein,a Co-Fe bimetallic catalyst was developed by a facile reactive ball-milling method for highly active and selective hydrogenation of CO_(2) to value-added hydrocarbons.When reacted at 320℃,1.0 MPa and 9600 mL h^(-1) g_(cat)^(-1),the selectivity to light olefin(C_(2)^(=)-C_(4)^(=)) and C_(5)+ species achieves 57.3% and 22.3%,respectively,at a CO_(2) co nversion of 31.4%,which is superior to previous Fe-based catalysts.The CO_(2) activation can be promoted by the CoFe phase formed by reactive ball milling of the Fe-Co_(3)O_(4) mixture,and the in-situ Co_(2)C and Fe_(5)C_(2) formed during hydrogenation are beneficial for the C-C coupling reaction.The initial C-C coupling is related to the combination of CO species with the surface carbon of Fe/Co carbides,and the sustained C-C coupling is maintained by self-recovery of defective carbides.This new strategy contributes to the development of efficient catalysts for the hydrogenation of CO_(2) to value-added hydrocarbons.
文摘Objective: To study the expression of vascular endothelial growth factor C (VEGF-C) in gastric carcinoma and its relationship with lymph node metastasis. Methods: The expression of VEGF-C mRNA in 5 gastric carcinoma cell lines was detected by reverse transcription-polymerase chain reaction (RT-PCR). Simultaneously, the expression of VEGF-C protein in gastric carcinoma tissues, which were obtained from 63 patients who underwent radical gastrectomy, was detected by immunohistochemistry. Results: Three of the 5 gastric carcinoma cell lines, MKN-45, SGC-7901 and AGS, expressed VEGF-C mRNA. VEGF-C protein was expressed in 52.4% (33/63) of patients. VEGF-C protein expression was more frequently found in tumors with lymph node metastasis than in those without (P<0.01). VEGF-C protein expression was also closely related to lymphatic invasion (P<0.01) and TNM stage (P<0.01). However, there was no significant correlation between VEGF-C expression and the age, gender, tumor size, tumor location, Lauren classification, depth of invasion, and vascular invasion. Conclusion: The expression of VEGF-C is closely related to lymph node metastasis of gastric carcinoma, and lymphangiogenesis might be a new target for treatment of gastric carcinoma.
基金supported by the National Natural Science Foundation of China(No.30770400,40231003)the Knowledge Innovation Program of Chinese Academy of Sciences(No.KZCX2-408)
文摘Elevated atmospheric CO2 can influence soil C dynamics in agroecosystems. The effects of free-air CO2 enrichment (FACE) and N fertilization on soil organic C (Corg), dissolved organic C (DOC), microbial biomass C (Cmic) and soil basal respiration (SBR) were investigated in a Chinese wheat field after expose to elevated CO2 for four full years. The results indicated that elevated CO2 has stimulative effects on soil C concentrations regardless of N fertilization. Following the elevated CO2, the concentrations of Corg and SBR were increased at wheat jointing stage, and those of DOC and Cmic were enhanced obviously across the wheat jointing stage and the fallow period after wheat harvest. On the other hand, N fertilization did not significantly affect the content of soil C. Significant correlations were found among DOC, Cmic, and SBR in this study.