期刊文献+
共找到282,658篇文章
< 1 2 250 >
每页显示 20 50 100
一类四元数Sylvester共轭张量方程的CGLS算法及其应用
1
作者 胡晶晶 柯艺芬 马昌凤 《工程数学学报》 北大核心 2026年第1期15-37,共23页
提出张量形式的共轭梯度最小二乘算法求解一类四元数Sylvester共轭张量方程。证明在不计舍入误差的情况下,所提方法可在有限迭代步内获得张量方程组的最小二乘解。进一步,通过选择特殊类型的初始张量,可获得方程组的唯一极小Frobenius... 提出张量形式的共轭梯度最小二乘算法求解一类四元数Sylvester共轭张量方程。证明在不计舍入误差的情况下,所提方法可在有限迭代步内获得张量方程组的最小二乘解。进一步,通过选择特殊类型的初始张量,可获得方程组的唯一极小Frobenius范数最小二乘解。数值实验验证了该算法在彩色视频恢复中的可行性和有效性。 展开更多
关键词 四元数Sylvester张量方程 cgLS算法 彩色视频
在线阅读 下载PDF
Neural Network Algorithm Based on LVQ for Myocardial Infarction Detection and Localization Using Multi-Lead ECG Data
2
作者 Kassymbek Ozhikenov Zhadyra Alimbayeva +2 位作者 Chingiz Alimbayev Aiman Ozhikenova Yeldos Altay 《Computers, Materials & Continua》 2025年第3期5257-5284,共28页
Myocardial infarction(MI)is one of the leading causes of death globally among cardiovascular diseases,necessitating modern and accurate diagnostics for cardiac patient conditions.Among the available functional diagnos... Myocardial infarction(MI)is one of the leading causes of death globally among cardiovascular diseases,necessitating modern and accurate diagnostics for cardiac patient conditions.Among the available functional diagnostic methods,electrocardiography(ECG)is particularly well-known for its ability to detect MI.However,confirming its accuracy—particularly in identifying the localization of myocardial damage—often presents challenges in practice.This study,therefore,proposes a new approach based on machine learning models for the analysis of 12-lead ECG data to accurately identify the localization of MI.In particular,the learning vector quantization(LVQ)algorithm was applied,considering the contribution of each ECG lead in the 12-channel system,which obtained an accuracy of 87%in localizing damaged myocardium.The developed model was tested on verified data from the PTB database,including 445 ECG recordings from both healthy individuals and MI-diagnosed patients.The results demonstrated that the 12-lead ECG system allows for a comprehensive understanding of cardiac activities in myocardial infarction patients,serving as an essential tool for the diagnosis of myocardial conditions and localizing their damage.A comprehensive comparison was performed,including CNN,SVM,and Logistic Regression,to evaluate the proposed LVQ model.The results demonstrate that the LVQ model achieves competitive performance in diagnostic tasks while maintaining computational efficiency,making it suitable for resource-constrained environments.This study also applies a carefully designed data pre-processing flow,including class balancing and noise removal,which improves the reliability and reproducibility of the results.These aspects highlight the potential application of the LVQ model in cardiac diagnostics,opening up prospects for its use along with more complex neural network architectures. 展开更多
关键词 ELEcTROcARDIOGRAPHY 12-lead electrocardiogram myocardial infarction heart disease learning vector quantization algorithm machine learning
在线阅读 下载PDF
基于TV-CGAN算法的接地网腐蚀检测
3
作者 张安安 吉朝海 +3 位作者 张亮 马文博 黄元峰 刘建生 《电子测量与仪器学报》 北大核心 2025年第9期254-265,共12页
接地网作为保障电力系统安全的重要设备,其腐蚀状态检测的研究具有重大意义。电阻抗成像技术作为接地网腐蚀成像的重要方法之一,因其逆问题求解时的病态性导致重构效果偏差较大,为改善其成像质量及准确度提出了一种TV-CGAN(total variat... 接地网作为保障电力系统安全的重要设备,其腐蚀状态检测的研究具有重大意义。电阻抗成像技术作为接地网腐蚀成像的重要方法之一,因其逆问题求解时的病态性导致重构效果偏差较大,为改善其成像质量及准确度提出了一种TV-CGAN(total variation-conditional generative adversarial Network)算法以检测其腐蚀状态。首先,建立了接地网正问题模型求解出边界电压,再用全变差正则化算法(total variation,TV)进行逆问题求解,得出初步接地网电导率分布图像。然后,利用了条件生成对抗网络算法,将TV法得出的图像进行二次成像,其生成器为引入卷积注意力模块的U-Net结构,判别器为PatchGAN卷积结构。将方法应用于接地网腐蚀状态检测中,重建后图像结构相似度结果为0.9078,峰值信噪比值为16.9356,其腐蚀位置判断准确率为96.35%,腐蚀程度判断误差为8.61%。结果表明该方法有效改善了逆问题求解时的病态性问题,提升了接地网腐蚀成像的质量,并提高了接地网腐蚀检测的准确度。 展开更多
关键词 接地网 电阻抗成像 生成对抗网络 全变差正则化算法 腐蚀检测
原文传递
Method for Estimating the State of Health of Lithium-ion Batteries Based on Differential Thermal Voltammetry and Sparrow Search Algorithm-Elman Neural Network 被引量:1
4
作者 Yu Zhang Daoyu Zhang TiezhouWu 《Energy Engineering》 EI 2025年第1期203-220,共18页
Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,curr... Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,current SOH estimation methods often overlook the valuable temperature information that can effectively characterize battery aging during capacity degradation.Additionally,the Elman neural network,which is commonly employed for SOH estimation,exhibits several drawbacks,including slow training speed,a tendency to become trapped in local minima,and the initialization of weights and thresholds using pseudo-random numbers,leading to unstable model performance.To address these issues,this study addresses the challenge of precise and effective SOH detection by proposing a method for estimating the SOH of lithium-ion batteries based on differential thermal voltammetry(DTV)and an SSA-Elman neural network.Firstly,two health features(HFs)considering temperature factors and battery voltage are extracted fromthe differential thermal voltammetry curves and incremental capacity curves.Next,the Sparrow Search Algorithm(SSA)is employed to optimize the initial weights and thresholds of the Elman neural network,forming the SSA-Elman neural network model.To validate the performance,various neural networks,including the proposed SSA-Elman network,are tested using the Oxford battery aging dataset.The experimental results demonstrate that the method developed in this study achieves superior accuracy and robustness,with a mean absolute error(MAE)of less than 0.9%and a rootmean square error(RMSE)below 1.4%. 展开更多
关键词 Lithium-ion battery state of health differential thermal voltammetry Sparrow Search algorithm
在线阅读 下载PDF
Robustness Optimization Algorithm with Multi-Granularity Integration for Scale-Free Networks Against Malicious Attacks 被引量:1
5
作者 ZHANG Yiheng LI Jinhai 《昆明理工大学学报(自然科学版)》 北大核心 2025年第1期54-71,共18页
Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently... Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms. 展开更多
关键词 complex network model MULTI-GRANULARITY scale-free networks ROBUSTNESS algorithm integration
原文传递
Preconditioned BiCGSTAB algorithm and its applications to eddy current solutions 被引量:1
6
作者 朱发熙 余海涛 胡敏强 《Journal of Southeast University(English Edition)》 EI CAS 2009年第3期362-366,共5页
A new favorable iterative algorithm named as PBiCGSTAB (preconditioned bi-conjugate gradient stabilized) algorithm is presented for solving large sparse complex systems. Based on the orthogonal list, the special tec... A new favorable iterative algorithm named as PBiCGSTAB (preconditioned bi-conjugate gradient stabilized) algorithm is presented for solving large sparse complex systems. Based on the orthogonal list, the special technique of only storing non-zero elements is carried out. The incomplete LU factorization without fill-ins is adopted to reduce the condition number of the coefficient matrix. The BiCGSTAB algorithm is extended from the real system to the complex system and it is used to solve the preconditioned complex linear equations. The locked-rotor state of a single-sided linear induction machine is simulated by the software programmed with the finite element method and the PBiCGSTAB algorithm. Then the results are compared with those from the commercial software ANSYS, showing the validation of the proposed software. The iterative steps required for the proposed algorithm are reduced to about one-third, when compared to the BiCG method, therefore the algorithm is fast. 展开更多
关键词 preconditioned bi-conjugate gradient stabilized BicgSTAB algorithm incomplete LU decomposition orthogonal list finite dement method(FEM) eddy current
在线阅读 下载PDF
Short-TermWind Power Forecast Based on STL-IAOA-iTransformer Algorithm:A Case Study in Northwest China 被引量:2
7
作者 Zhaowei Yang Bo Yang +5 位作者 Wenqi Liu Miwei Li Jiarong Wang Lin Jiang Yiyan Sang Zhenning Pan 《Energy Engineering》 2025年第2期405-430,共26页
Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,th... Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,there remains a research gap in leveraging swarm intelligence algorithms to optimize the hyperparameters of the Transformer model for wind power prediction.To improve the accuracy of short-term wind power forecast,this paper proposes a hybrid short-term wind power forecast approach named STL-IAOA-iTransformer,which is based on seasonal and trend decomposition using LOESS(STL)and iTransformer model optimized by improved arithmetic optimization algorithm(IAOA).First,to fully extract the power data features,STL is used to decompose the original data into components with less redundant information.The extracted components as well as the weather data are then input into iTransformer for short-term wind power forecast.The final predicted short-term wind power curve is obtained by combining the predicted components.To improve the model accuracy,IAOA is employed to optimize the hyperparameters of iTransformer.The proposed approach is validated using real-generation data from different seasons and different power stations inNorthwest China,and ablation experiments have been conducted.Furthermore,to validate the superiority of the proposed approach under different wind characteristics,real power generation data fromsouthwestChina are utilized for experiments.Thecomparative results with the other six state-of-the-art prediction models in experiments show that the proposed model well fits the true value of generation series and achieves high prediction accuracy. 展开更多
关键词 Short-termwind power forecast improved arithmetic optimization algorithm iTransformer algorithm SimuNPS
在线阅读 下载PDF
A LODBO algorithm for multi-UAV search and rescue path planning in disaster areas 被引量:1
8
作者 Liman Yang Xiangyu Zhang +2 位作者 Zhiping Li Lei Li Yan Shi 《Chinese Journal of Aeronautics》 2025年第2期200-213,共14页
In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms... In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms to solve the problem of multi-UAV path planning.The Dung Beetle Optimization(DBO)algorithm has been widely applied due to its diverse search patterns in the above algorithms.However,the update strategies for the rolling and thieving dung beetles of the DBO algorithm are overly simplistic,potentially leading to an inability to fully explore the search space and a tendency to converge to local optima,thereby not guaranteeing the discovery of the optimal path.To address these issues,we propose an improved DBO algorithm guided by the Landmark Operator(LODBO).Specifically,we first use tent mapping to update the population strategy,which enables the algorithm to generate initial solutions with enhanced diversity within the search space.Second,we expand the search range of the rolling ball dung beetle by using the landmark factor.Finally,by using the adaptive factor that changes with the number of iterations.,we improve the global search ability of the stealing dung beetle,making it more likely to escape from local optima.To verify the effectiveness of the proposed method,extensive simulation experiments are conducted,and the result shows that the LODBO algorithm can obtain the optimal path using the shortest time compared with the Genetic Algorithm(GA),the Gray Wolf Optimizer(GWO),the Whale Optimization Algorithm(WOA)and the original DBO algorithm in the disaster search and rescue task set. 展开更多
关键词 Unmanned aerial vehicle Path planning Meta heuristic algorithm DBO algorithm NP-hard problems
原文传递
Research on Euclidean Algorithm and Reection on Its Teaching
9
作者 ZHANG Shaohua 《应用数学》 北大核心 2025年第1期308-310,共3页
In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and t... In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and the greatest common divisor.We further provided several suggestions for teaching. 展开更多
关键词 Euclid's algorithm Division algorithm Bezout's equation
在线阅读 下载PDF
ACGA Algorithm of Solving Weapon - Target Assignment Problem 被引量:2
10
作者 Jiuyong Zhang Xiaojing Wang +1 位作者 Chuanqing Xu Dehui Yuan 《Open Journal of Applied Sciences》 2012年第4期74-77,共4页
Weapon Target Assignment is not only an important issue to use firepower, but also an important operational decision-making problem. As new intelligent algorithms, Genetic algorithm and ant colony algorithm are applie... Weapon Target Assignment is not only an important issue to use firepower, but also an important operational decision-making problem. As new intelligent algorithms, Genetic algorithm and ant colony algorithm are applied to solve Weapons-Target Assignment Problem. This paper introduces the Weapon-Target Assignment (WTA) and the mathematical model, and proposes ACGA algorithm which is the integration of genetic algorithm and ant colony algorithm then use ACGA algorithm to solve the Weapon-Target Assignment Problem. Calculations show that: when ACGA algorithm is used to solve Weapon – Target Assignment Problem, it has fast convergence and high accuracy. 展开更多
关键词 WEAPON -Target ASSIGNMENT ANT cOLONY algorithm GENETIc algorithm integration
在线阅读 下载PDF
DDoS Attack Autonomous Detection Model Based on Multi-Strategy Integrate Zebra Optimization Algorithm
11
作者 Chunhui Li Xiaoying Wang +2 位作者 Qingjie Zhang Jiaye Liang Aijing Zhang 《Computers, Materials & Continua》 SCIE EI 2025年第1期645-674,共30页
Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convol... Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convolutional Neural Networks(CNN)combined with LSTM,and so on are built by simple stacking,which has the problems of feature loss,low efficiency,and low accuracy.Therefore,this paper proposes an autonomous detectionmodel for Distributed Denial of Service attacks,Multi-Scale Convolutional Neural Network-Bidirectional Gated Recurrent Units-Single Headed Attention(MSCNN-BiGRU-SHA),which is based on a Multistrategy Integrated Zebra Optimization Algorithm(MI-ZOA).The model undergoes training and testing with the CICDDoS2019 dataset,and its performance is evaluated on a new GINKS2023 dataset.The hyperparameters for Conv_filter and GRU_unit are optimized using the Multi-strategy Integrated Zebra Optimization Algorithm(MIZOA).The experimental results show that the test accuracy of the MSCNN-BiGRU-SHA model based on the MIZOA proposed in this paper is as high as 0.9971 in the CICDDoS 2019 dataset.The evaluation accuracy of the new dataset GINKS2023 created in this paper is 0.9386.Compared to the MSCNN-BiGRU-SHA model based on the Zebra Optimization Algorithm(ZOA),the detection accuracy on the GINKS2023 dataset has improved by 5.81%,precisionhas increasedby 1.35%,the recallhas improvedby 9%,and theF1scorehas increasedby 5.55%.Compared to the MSCNN-BiGRU-SHA models developed using Grid Search,Random Search,and Bayesian Optimization,the MSCNN-BiGRU-SHA model optimized with the MI-ZOA exhibits better performance in terms of accuracy,precision,recall,and F1 score. 展开更多
关键词 Distributed denial of service attack intrusion detection deep learning zebra optimization algorithm multi-strategy integrated zebra optimization algorithm
在线阅读 下载PDF
Bearing capacity prediction of open caissons in two-layered clays using five tree-based machine learning algorithms 被引量:1
12
作者 Rungroad Suppakul Kongtawan Sangjinda +3 位作者 Wittaya Jitchaijaroen Natakorn Phuksuksakul Suraparb Keawsawasvong Peem Nuaklong 《Intelligent Geoengineering》 2025年第2期55-65,共11页
Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered so... Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered soils remains a complex challenge.This study presents a novel application of five ensemble machine(ML)algorithms-random forest(RF),gradient boosting machine(GBM),extreme gradient boosting(XGBoost),adaptive boosting(AdaBoost),and categorical boosting(CatBoost)-to predict the undrained bearing capacity factor(Nc)of circular open caissons embedded in two-layered clay on the basis of results from finite element limit analysis(FELA).The input dataset consists of 1188 numerical simulations using the Tresca failure criterion,varying in geometrical and soil parameters.The FELA was performed via OptumG2 software with adaptive meshing techniques and verified against existing benchmark studies.The ML models were trained on 70% of the dataset and tested on the remaining 30%.Their performance was evaluated using six statistical metrics:coefficient of determination(R²),mean absolute error(MAE),root mean squared error(RMSE),index of scatter(IOS),RMSE-to-standard deviation ratio(RSR),and variance explained factor(VAF).The results indicate that all the models achieved high accuracy,with R²values exceeding 97.6%and RMSE values below 0.02.Among them,AdaBoost and CatBoost consistently outperformed the other methods across both the training and testing datasets,demonstrating superior generalizability and robustness.The proposed ML framework offers an efficient,accurate,and data-driven alternative to traditional methods for estimating caisson capacity in stratified soils.This approach can aid in reducing computational costs while improving reliability in the early stages of foundation design. 展开更多
关键词 Two-layered clay Open caisson Tree-based algorithms FELA Machine learning
在线阅读 下载PDF
Real-Time Patient-Specific ECG Arrhythmia Detection by Quantum Genetic Algorithm of Least Squares Twin SVM 被引量:4
13
作者 Duan Li Ruizheng Shi +2 位作者 Ni Yao Fubao Zhu Ke Wang 《Journal of Beijing Institute of Technology》 EI CAS 2020年第1期29-37,共9页
The automatic detection of cardiac arrhythmias through remote monitoring is still a challenging task since electrocardiograms(ECGs)are easily contaminated by physiological artifacts and external noises,and these morph... The automatic detection of cardiac arrhythmias through remote monitoring is still a challenging task since electrocardiograms(ECGs)are easily contaminated by physiological artifacts and external noises,and these morphological characteristics show significant variations for different patients.A fast patient-specific arrhythmia diagnosis classifier scheme is proposed,in which a wavelet adaptive threshold denoising is combined with quantum genetic algorithm(QAG)based on least squares twin support vector machine(LSTSVM).The wavelet adaptive threshold denoising is employed for noise reduction,and then morphological features combined with the timing interval features are extracted to evaluate the classifier.For each patient,an individual and fast classifier will be trained by common and patient-specific training data.Following the recommendations of the Association for the Advancements of Medical Instrumentation(AAMI),experimental results over the MIT-BIH arrhythmia benchmark database demonstrated that our proposed method achieved the average detection accuracy of 98.22%,99.65%and 99.41%for the abnormal,ventricular ectopic beats(VEBs)and supra-VEBs(SVEBs),respectively.Besides the detection accuracy,sensitivity and specificity,our proposed method consumes the less CPU running time compared with the other representative state of the art methods.It can be ported to Android based embedded system,henceforth suitable for a wearable device. 展开更多
关键词 WEARABLE Ecg monitoring systems PATIENT-SPEcIFIc ARRHYTHMIA classification quantum genetic algorithm least SQUARES TWIN SVM
在线阅读 下载PDF
Path Planning for Thermal Power Plant Fan Inspection Robot Based on Improved A^(*)Algorithm 被引量:1
14
作者 Wei Zhang Tingfeng Zhang 《Journal of Electronic Research and Application》 2025年第1期233-239,共7页
To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The... To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The inspection robot utilizes multiple sensors to monitor key parameters of the fans,such as vibration,noise,and bearing temperature,and upload the data to the monitoring center.The robot’s inspection path employs the improved A^(*)algorithm,incorporating obstacle penalty terms,path reconstruction,and smoothing optimization techniques,thereby achieving optimal path planning for the inspection robot in complex environments.Simulation results demonstrate that the improved A^(*)algorithm significantly outperforms the traditional A^(*)algorithm in terms of total path distance,smoothness,and detour rate,effectively improving the execution efficiency of inspection tasks. 展开更多
关键词 Power plant fans Inspection robot Path planning Improved A^(*)algorithm
在线阅读 下载PDF
Rapid pathologic grading-based diagnosis of esophageal squamous cell carcinoma via Raman spectroscopy and a deep learning algorithm 被引量:1
15
作者 Xin-Ying Yu Jian Chen +2 位作者 Lian-Yu Li Feng-En Chen Qiang He 《World Journal of Gastroenterology》 2025年第14期32-46,共15页
BACKGROUND Esophageal squamous cell carcinoma is a major histological subtype of esophageal cancer.Many molecular genetic changes are associated with its occurrence.Raman spectroscopy has become a new method for the e... BACKGROUND Esophageal squamous cell carcinoma is a major histological subtype of esophageal cancer.Many molecular genetic changes are associated with its occurrence.Raman spectroscopy has become a new method for the early diagnosis of tumors because it can reflect the structures of substances and their changes at the molecular level.AIM To detect alterations in Raman spectral information across different stages of esophageal neoplasia.METHODS Different grades of esophageal lesions were collected,and a total of 360 groups of Raman spectrum data were collected.A 1D-transformer network model was proposed to handle the task of classifying the spectral data of esophageal squamous cell carcinoma.In addition,a deep learning model was applied to visualize the Raman spectral data and interpret their molecular characteristics.RESULTS A comparison among Raman spectral data with different pathological grades and a visual analysis revealed that the Raman peaks with significant differences were concentrated mainly at 1095 cm^(-1)(DNA,symmetric PO,and stretching vibration),1132 cm^(-1)(cytochrome c),1171 cm^(-1)(acetoacetate),1216 cm^(-1)(amide III),and 1315 cm^(-1)(glycerol).A comparison among the training results of different models revealed that the 1Dtransformer network performed best.A 93.30%accuracy value,a 96.65%specificity value,a 93.30%sensitivity value,and a 93.17%F1 score were achieved.CONCLUSION Raman spectroscopy revealed significantly different waveforms for the different stages of esophageal neoplasia.The combination of Raman spectroscopy and deep learning methods could significantly improve the accuracy of classification. 展开更多
关键词 Raman spectroscopy Esophageal neoplasia Early diagnosis Deep learning algorithm Rapid pathologic grading
暂未订购
An Algorithm for Cloud-based Web Service Combination Optimization Through Plant Growth Simulation
16
作者 Li Qiang Qin Huawei +1 位作者 Qiao Bingqin Wu Ruifang 《系统仿真学报》 北大核心 2025年第2期462-473,共12页
In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-base... In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-based web services and the constraints of system resources.Then,a light-induced plant growth simulation algorithm was established.The performance of the algorithm was compared through several plant types,and the best plant model was selected as the setting for the system.Experimental results show that when the number of test cloud-based web services reaches 2048,the model being 2.14 times faster than PSO,2.8 times faster than the ant colony algorithm,2.9 times faster than the bee colony algorithm,and a remarkable 8.38 times faster than the genetic algorithm. 展开更多
关键词 cloud-based service scheduling algorithm resource constraint load optimization cloud computing plant growth simulation algorithm
原文传递
基于Space P和K-means的货运航司航线网络特征分析研究
17
作者 罗凤娥 卫昌波 +1 位作者 韩晓彤 郭玲玉 《现代电子技术》 北大核心 2026年第1期102-107,共6页
针对航空货运行业的迅速扩张,航空货运网络结构变得更加复杂,文中通过Space P建模方法构建了货运航空公司航线网络模型,并运用K-means聚类算法对网络进行了深入分析。选取度、平均路径长度、聚类系数和中间度等关键网络特性指标对航线... 针对航空货运行业的迅速扩张,航空货运网络结构变得更加复杂,文中通过Space P建模方法构建了货运航空公司航线网络模型,并运用K-means聚类算法对网络进行了深入分析。选取度、平均路径长度、聚类系数和中间度等关键网络特性指标对航线网络进行层次化分类,揭示了网络的复杂特征和层次结构。通过仿真实验评估了网络的小世界特性,并利用轮廓系数得到不同K值下的聚类结果,进而确定最优聚类结果。同时,模拟了航线网络在遭受攻击时的鲁棒性,实验结果表明:在航线网络较为脆弱的情况下,该方法为货运航司航线网络的优化和抗风险能力的提升提供了重要参考。 展开更多
关键词 航空货运 Space P 航线网络 复杂网络 聚类算法 网络特征
在线阅读 下载PDF
Improved algorithm of multi-mainlobe interference suppression under uncorrelated and coherent conditions 被引量:1
18
作者 CAI Miaohong CHENG Qiang +1 位作者 MENG Jinli ZHAO Dehua 《Journal of Southeast University(English Edition)》 2025年第1期84-90,共7页
A new method based on the iterative adaptive algorithm(IAA)and blocking matrix preprocessing(BMP)is proposed to study the suppression of multi-mainlobe interference.The algorithm is applied to precisely estimate the s... A new method based on the iterative adaptive algorithm(IAA)and blocking matrix preprocessing(BMP)is proposed to study the suppression of multi-mainlobe interference.The algorithm is applied to precisely estimate the spatial spectrum and the directions of arrival(DOA)of interferences to overcome the drawbacks associated with conventional adaptive beamforming(ABF)methods.The mainlobe interferences are identified by calculating the correlation coefficients between direction steering vectors(SVs)and rejected by the BMP pretreatment.Then,IAA is subsequently employed to reconstruct a sidelobe interference-plus-noise covariance matrix for the preferable ABF and residual interference suppression.Simulation results demonstrate the excellence of the proposed method over normal methods based on BMP and eigen-projection matrix perprocessing(EMP)under both uncorrelated and coherent circumstances. 展开更多
关键词 mainlobe interference suppression adaptive beamforming spatial spectral estimation iterative adaptive algorithm blocking matrix preprocessing
在线阅读 下载PDF
基于改进动麦优化模糊C-均值的WSN分簇信誉路由算法
19
作者 韩冰青 温锦笑 《计算机应用研究》 北大核心 2026年第1期240-246,共7页
针对无线传感器网络中分簇不均、节点能耗高及路由安全性低等问题,提出一种基于改进动麦优化模糊C-means的WSN分簇信誉路由算法(IFCAOR)。首先利用改进的动麦算法优化模糊C-means算法的初始聚类中心,提高网络分簇效果。其次,在簇首选举... 针对无线传感器网络中分簇不均、节点能耗高及路由安全性低等问题,提出一种基于改进动麦优化模糊C-means的WSN分簇信誉路由算法(IFCAOR)。首先利用改进的动麦算法优化模糊C-means算法的初始聚类中心,提高网络分簇效果。其次,在簇首选举阶段,综合节点能量、距离等因素,动态选择簇首,实现负载均衡。最后,在数据传输阶段,采用单多跳轮询机制,并结合中继节点的负载、信誉值和路径衰减等构建路由适应度函数,利用改进动麦算法规划高效安全的传输路由,降低节点能耗并提高路由安全性。仿真结果表明,IFCAOR算法的网络生命周期较LEACH、IFCRA和HMABFOA分别提升93%、49.6%和34.3%,IFCAOR算法能有效平衡网络负载,延长网络生命周期。 展开更多
关键词 无线传感器网络 模糊c-均值 动麦优化算法 分簇路由 能耗均衡
在线阅读 下载PDF
Intelligent sequential multi-impulse collision avoidance method for non-cooperative spacecraft based on an improved search tree algorithm 被引量:1
20
作者 Xuyang CAO Xin NING +4 位作者 Zheng WANG Suyi LIU Fei CHENG Wenlong LI Xiaobin LIAN 《Chinese Journal of Aeronautics》 2025年第4期378-393,共16页
The problem of collision avoidance for non-cooperative targets has received significant attention from researchers in recent years.Non-cooperative targets exhibit uncertain states and unpredictable behaviors,making co... The problem of collision avoidance for non-cooperative targets has received significant attention from researchers in recent years.Non-cooperative targets exhibit uncertain states and unpredictable behaviors,making collision avoidance significantly more challenging than that for space debris.Much existing research focuses on the continuous thrust model,whereas the impulsive maneuver model is more appropriate for long-duration and long-distance avoidance missions.Additionally,it is important to minimize the impact on the original mission while avoiding noncooperative targets.On the other hand,the existing avoidance algorithms are computationally complex and time-consuming especially with the limited computing capability of the on-board computer,posing challenges for practical engineering applications.To conquer these difficulties,this paper makes the following key contributions:(A)a turn-based(sequential decision-making)limited-area impulsive collision avoidance model considering the time delay of precision orbit determination is established for the first time;(B)a novel Selection Probability Learning Adaptive Search-depth Search Tree(SPL-ASST)algorithm is proposed for non-cooperative target avoidance,which improves the decision-making efficiency by introducing an adaptive-search-depth mechanism and a neural network into the traditional Monte Carlo Tree Search(MCTS).Numerical simulations confirm the effectiveness and efficiency of the proposed method. 展开更多
关键词 Non-cooperative target collision avoidance Limited motion area Impulsive maneuver model Search tree algorithm Neural networks
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部