Cardiovascular disease prediction is a significant area of research in healthcare management systems(HMS).We will only be able to reduce the number of deaths if we anticipate cardiac problems in advance.The existing h...Cardiovascular disease prediction is a significant area of research in healthcare management systems(HMS).We will only be able to reduce the number of deaths if we anticipate cardiac problems in advance.The existing heart disease detection systems using machine learning have not yet produced sufficient results due to the reliance on available data.We present Clustered Butterfly Optimization Techniques(RoughK-means+BOA)as a new hybrid method for predicting heart disease.This method comprises two phases:clustering data using Roughk-means(RKM)and data analysis using the butterfly optimization algorithm(BOA).The benchmark dataset from the UCI repository is used for our experiments.The experiments are divided into three sets:the first set involves the RKM clustering technique,the next set evaluates the classification outcomes,and the last set validates the performance of the proposed hybrid model.The proposed RoughK-means+BOA has achieved a reasonable accuracy of 97.03 and a minimal error rate of 2.97.This result is comparatively better than other combinations of optimization techniques.In addition,this approach effectively enhances data segmentation,optimization,and classification performance.展开更多
Though the Butterfly Bptimization Algorithm(BOA)has already proved its effectiveness as a robust optimization algorithm,it has certain disadvantages.So,a new variant of BOA,namely mLBOA,is proposed here to improve its...Though the Butterfly Bptimization Algorithm(BOA)has already proved its effectiveness as a robust optimization algorithm,it has certain disadvantages.So,a new variant of BOA,namely mLBOA,is proposed here to improve its performance.The proposed algorithm employs a self-adaptive parameter setting,Lagrange interpolation formula,and a new local search strategy embedded with Levy flight search to enhance its searching ability to make a better trade-off between exploration and exploitation.Also,the fragrance generation scheme of BOA is modified,which leads for exploring the domain effectively for better searching.To evaluate the performance,it has been applied to solve the IEEE CEC 2017 benchmark suite.The results have been compared to that of six state-of-the-art algorithms and five BOA variants.Moreover,various statistical tests,such as the Friedman rank test,Wilcoxon rank test,convergence analysis,and complexity analysis,have been conducted to justify the rank,significance,and complexity of the proposed mLBOA.Finally,the mLBOA has been applied to solve three real-world engineering design problems.From all the analyses,it has been found that the proposed mLBOA is a competitive algorithm compared to other popular state-of-the-art algorithms and BOA variants.展开更多
Cloud computing technology provides flexible,on-demand,and completely controlled computing resources and services are highly desirable.Despite this,with its distributed and dynamic nature and shortcomings in virtualiz...Cloud computing technology provides flexible,on-demand,and completely controlled computing resources and services are highly desirable.Despite this,with its distributed and dynamic nature and shortcomings in virtualization deployment,the cloud environment is exposed to a wide variety of cyber-attacks and security difficulties.The Intrusion Detection System(IDS)is a specialized security tool that network professionals use for the safety and security of the networks against attacks launched from various sources.DDoS attacks are becoming more frequent and powerful,and their attack pathways are continually changing,which requiring the development of new detection methods.Here the purpose of the study is to improve detection accuracy.Feature Selection(FS)is critical.At the same time,the IDS’s computational problem is limited by focusing on the most relevant elements,and its performance and accuracy increase.In this research work,the suggested Adaptive butterfly optimization algorithm(ABOA)framework is used to assess the effectiveness of a reduced feature subset during the feature selection phase,that was motivated by this motive Candidates.Accurate classification is not compromised by using an ABOA technique.The design of Deep Neural Networks(DNN)has simplified the categorization of network traffic into normal and DDoS threat traffic.DNN’s parameters can be finetuned to detect DDoS attacks better using specially built algorithms.Reduced reconstruction error,no exploding or vanishing gradients,and reduced network are all benefits of the changes outlined in this paper.When it comes to performance criteria like accuracy,precision,recall,and F1-Score are the performance measures that show the suggested architecture outperforms the other existing approaches.Hence the proposed ABOA+DNN is an excellent method for obtaining accurate predictions,with an improved accuracy rate of 99.05%compared to other existing approaches.展开更多
This paper presents a Butterfly Optimization Algorithm(BOA)with a wind-driven mechanism for avoiding natural enemies known as WDBOA.To further balance the basic BOA algorithm's exploration and exploitation capabil...This paper presents a Butterfly Optimization Algorithm(BOA)with a wind-driven mechanism for avoiding natural enemies known as WDBOA.To further balance the basic BOA algorithm's exploration and exploitation capabilities,the butterfly actions were divided into downwind and upwind states.The algorithm of exploration ability was improved with the wind,while the algorithm of exploitation ability was improved against the wind.Also,a mechanism of avoiding natural enemies based on Lévy flight was introduced for the purpose of enhancing its global searching ability.Aiming at improving the explorative performance at the initial stages and later stages,the fragrance generation method was modified.To evaluate the effectiveness of the suggested algorithm,a comparative study was done with six classical metaheuristic algorithms and three BOA variant optimization techniques on 18 benchmark functions.Further,the performance of the suggested technique in addressing some complicated problems in various dimensions was evaluated using CEC 2017 and CEC 2020.Finally,the WDBOA algorithm is used proportional-integral-derivative(PID)controller parameter optimization.Experimental results demonstrate that the WDBOA based PID controller has better control performance in comparison with other PID controllers tuned by the Genetic Algorithm(GA),Flower Pollination Algorithm(FPA),Cuckoo Search(CS)and BOA.展开更多
Since the introduction of the Internet of Things(IoT),several researchers have been exploring its productivity to utilize and organize the spectrum assets.Cognitive radio(CR)technology is characterized as the best asp...Since the introduction of the Internet of Things(IoT),several researchers have been exploring its productivity to utilize and organize the spectrum assets.Cognitive radio(CR)technology is characterized as the best aspirant for wireless communications to augment IoT competencies.In the CR networks,secondary users(SUs)opportunistically get access to the primary users(PUs)spectrum through spectrum sensing.The multipath issues in the wireless channel can fluster the sensing ability of the individual SUs.Therefore,several cooperative SUs are engaged in cooperative spectrum sensing(CSS)to ensure reliable sensing results.In CSS,security is still a major concern for the researchers to safeguard the fusion center(FC)against abnormal sensing reports initiated by the malicious users(MUs).In this paper,butterfly optimization algorithm(BOA)-based soft decision method is proposed to find an optimized weighting coefficient vector correlated to the SUs sensing notifications.The coefficient vector is utilized in the soft decision rule at the FC before making any global decision.The effectiveness of the proposed scheme is compared for a variety of parameters with existing schemes through simulation results.The results confirmed the supremacy of the proposed BOA scheme in both the normal SUs’environment and when lower and higher SNRs information is carried by the different categories of MUs.展开更多
基金supported by the Research Incentive Grant 23200 of Zayed University,United Arab Emirates.
文摘Cardiovascular disease prediction is a significant area of research in healthcare management systems(HMS).We will only be able to reduce the number of deaths if we anticipate cardiac problems in advance.The existing heart disease detection systems using machine learning have not yet produced sufficient results due to the reliance on available data.We present Clustered Butterfly Optimization Techniques(RoughK-means+BOA)as a new hybrid method for predicting heart disease.This method comprises two phases:clustering data using Roughk-means(RKM)and data analysis using the butterfly optimization algorithm(BOA).The benchmark dataset from the UCI repository is used for our experiments.The experiments are divided into three sets:the first set involves the RKM clustering technique,the next set evaluates the classification outcomes,and the last set validates the performance of the proposed hybrid model.The proposed RoughK-means+BOA has achieved a reasonable accuracy of 97.03 and a minimal error rate of 2.97.This result is comparatively better than other combinations of optimization techniques.In addition,this approach effectively enhances data segmentation,optimization,and classification performance.
文摘Though the Butterfly Bptimization Algorithm(BOA)has already proved its effectiveness as a robust optimization algorithm,it has certain disadvantages.So,a new variant of BOA,namely mLBOA,is proposed here to improve its performance.The proposed algorithm employs a self-adaptive parameter setting,Lagrange interpolation formula,and a new local search strategy embedded with Levy flight search to enhance its searching ability to make a better trade-off between exploration and exploitation.Also,the fragrance generation scheme of BOA is modified,which leads for exploring the domain effectively for better searching.To evaluate the performance,it has been applied to solve the IEEE CEC 2017 benchmark suite.The results have been compared to that of six state-of-the-art algorithms and five BOA variants.Moreover,various statistical tests,such as the Friedman rank test,Wilcoxon rank test,convergence analysis,and complexity analysis,have been conducted to justify the rank,significance,and complexity of the proposed mLBOA.Finally,the mLBOA has been applied to solve three real-world engineering design problems.From all the analyses,it has been found that the proposed mLBOA is a competitive algorithm compared to other popular state-of-the-art algorithms and BOA variants.
文摘Cloud computing technology provides flexible,on-demand,and completely controlled computing resources and services are highly desirable.Despite this,with its distributed and dynamic nature and shortcomings in virtualization deployment,the cloud environment is exposed to a wide variety of cyber-attacks and security difficulties.The Intrusion Detection System(IDS)is a specialized security tool that network professionals use for the safety and security of the networks against attacks launched from various sources.DDoS attacks are becoming more frequent and powerful,and their attack pathways are continually changing,which requiring the development of new detection methods.Here the purpose of the study is to improve detection accuracy.Feature Selection(FS)is critical.At the same time,the IDS’s computational problem is limited by focusing on the most relevant elements,and its performance and accuracy increase.In this research work,the suggested Adaptive butterfly optimization algorithm(ABOA)framework is used to assess the effectiveness of a reduced feature subset during the feature selection phase,that was motivated by this motive Candidates.Accurate classification is not compromised by using an ABOA technique.The design of Deep Neural Networks(DNN)has simplified the categorization of network traffic into normal and DDoS threat traffic.DNN’s parameters can be finetuned to detect DDoS attacks better using specially built algorithms.Reduced reconstruction error,no exploding or vanishing gradients,and reduced network are all benefits of the changes outlined in this paper.When it comes to performance criteria like accuracy,precision,recall,and F1-Score are the performance measures that show the suggested architecture outperforms the other existing approaches.Hence the proposed ABOA+DNN is an excellent method for obtaining accurate predictions,with an improved accuracy rate of 99.05%compared to other existing approaches.
基金This work was supported by National Natural Science Foundation of China under Grant U21A20464,62066005Project of the Guangxi Science and Technology under Grant No.ZL23014016.
文摘This paper presents a Butterfly Optimization Algorithm(BOA)with a wind-driven mechanism for avoiding natural enemies known as WDBOA.To further balance the basic BOA algorithm's exploration and exploitation capabilities,the butterfly actions were divided into downwind and upwind states.The algorithm of exploration ability was improved with the wind,while the algorithm of exploitation ability was improved against the wind.Also,a mechanism of avoiding natural enemies based on Lévy flight was introduced for the purpose of enhancing its global searching ability.Aiming at improving the explorative performance at the initial stages and later stages,the fragrance generation method was modified.To evaluate the effectiveness of the suggested algorithm,a comparative study was done with six classical metaheuristic algorithms and three BOA variant optimization techniques on 18 benchmark functions.Further,the performance of the suggested technique in addressing some complicated problems in various dimensions was evaluated using CEC 2017 and CEC 2020.Finally,the WDBOA algorithm is used proportional-integral-derivative(PID)controller parameter optimization.Experimental results demonstrate that the WDBOA based PID controller has better control performance in comparison with other PID controllers tuned by the Genetic Algorithm(GA),Flower Pollination Algorithm(FPA),Cuckoo Search(CS)and BOA.
基金This work was supported in part by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2016R1C1B1014069)in part by the National Research Foundation of Korea(NRF)funded by the Korea government(MIST)(No.2021R1A2C1013150).
文摘Since the introduction of the Internet of Things(IoT),several researchers have been exploring its productivity to utilize and organize the spectrum assets.Cognitive radio(CR)technology is characterized as the best aspirant for wireless communications to augment IoT competencies.In the CR networks,secondary users(SUs)opportunistically get access to the primary users(PUs)spectrum through spectrum sensing.The multipath issues in the wireless channel can fluster the sensing ability of the individual SUs.Therefore,several cooperative SUs are engaged in cooperative spectrum sensing(CSS)to ensure reliable sensing results.In CSS,security is still a major concern for the researchers to safeguard the fusion center(FC)against abnormal sensing reports initiated by the malicious users(MUs).In this paper,butterfly optimization algorithm(BOA)-based soft decision method is proposed to find an optimized weighting coefficient vector correlated to the SUs sensing notifications.The coefficient vector is utilized in the soft decision rule at the FC before making any global decision.The effectiveness of the proposed scheme is compared for a variety of parameters with existing schemes through simulation results.The results confirmed the supremacy of the proposed BOA scheme in both the normal SUs’environment and when lower and higher SNRs information is carried by the different categories of MUs.