According to the principle of thermal activation process, the energy state of a material under the action of stress is a function of local stress. A generalized Butler-Volmer relationship for the electrode reaction on...According to the principle of thermal activation process, the energy state of a material under the action of stress is a function of local stress. A generalized Butler-Volmer relationship for the electrode reaction on the surface of a curved electrode is derived,which takes account of the effects of local stress and the radius of mean curvature. From this relationship, the overpotential is found to be proportional to hydrostatic stress and the activation volume under the condition of open circuit. The conditions for the deposition of the material made solely from solute atoms and the formation of surface pits and porous structures are obtained,using the generalized Butler-Volmer relationship.展开更多
To investigate the influences of co-flowand counter-flowmodes of reactant flowarrangement on a proton exchange membrane fuel cell(PEMFC)during start-up,unsteady physical and mathematical models fully coupling the flow...To investigate the influences of co-flowand counter-flowmodes of reactant flowarrangement on a proton exchange membrane fuel cell(PEMFC)during start-up,unsteady physical and mathematical models fully coupling the flow,heat,and electrochemical reactions in a PEMFC are established.The continuity equation and momentum equation are solved by handling pressure-velocity coupling using the SIMPLE algorithm.The electrochemical reaction rates in the catalyst layers(CLs)of the cathode and anode are calculated using the Butler-Volmer equation.The multiphase mixture model describes the multiphase transport process of gas mixtures and liquid water in the fuel cell.After validation,the influences of co-flow and counter-flow modes on the PEMFC performance are investigated,including the evolution of the current density,flow field,temperature field,and reactant concentration field during start-up,as well as the steady distribution of the current density,reactant concentration,andmembrane water content when the start-up stabilizes.Co-flow and counter-flow modes influence the current density distribution and temperature distribution.On the one hand,the co-flow mode accelerates the start-up process of the PEMFC and leads to a more evenly distributed current density than the counter-flow mode.On the other hand,the temperature difference between the inlet and outlet sections of the cell is up to 10.1℃ under the co-flow mode,much larger than the 5.0℃ observed in the counter-flow mode.Accordingly,the counter-flowmode results in a more evenly distributed temperature and a lower maximum temperature than the co-flow case.Therefore,in the flow field design of a PEMFC,the reactant flow arrangements can be considered to weigh between better heat management and higher current density distribution of the cell.展开更多
Earlier research determined that lithium-ion capacitor (LIC) cycle life degradation can be accelerated by elevated temperature. LIC cycle life degradation can be described by an Arrhenius equation. This study performe...Earlier research determined that lithium-ion capacitor (LIC) cycle life degradation can be accelerated by elevated temperature. LIC cycle life degradation can be described by an Arrhenius equation. This study performed cycle life testing at a constant temperature but varied cycle current. The results were described by an Arrhenius equation relying upon the number of cycles and a constant, which was determined by cycle current. Using mathematical derivations and experimental results, the researchers quantified the effects of activation energy and temperature upon this constant. Because cell temperature is nearly constant during cycles, it was deduced that elevated cycle current decreases activation energy. This lower activation energy then accelerates degradation. Thus this research demonstrates that cycle current ages LICs through its effects on their activation energies.展开更多
An earlier study manipulated the Butler-Volmer equation to effectively model a lithium-ion capacitor’s (LIC) energy storage as a function of its constituent components and charge current. However, this model had seve...An earlier study manipulated the Butler-Volmer equation to effectively model a lithium-ion capacitor’s (LIC) energy storage as a function of its constituent components and charge current. However, this model had several shortcomings: computed temperature values were too low, voltage was inaccurate, and the model required Warburg impedance values that were two orders of magnitude higher than experimental results. This study began by analyzing the model’s temperature and voltage computations in order to justify output values. Ultimately, these justifications failed. Therefore, in situ temperature rise was measured during charge cycles. Experimental results indicated that temperature increases minimally during a charge cycle (<1%). At high current densities (≥150 A<span style="white-space:nowrap;">·</span>kg<sup>-1</sup>) temperature increase is negligible. After it was found that LIC temperature change is minimal during a charge cycle, the model accurately computed LIC voltage during the charge cycle and computed Warburg impedance that agreed with values derived from earlier experimental studies, even falling within the measurements’ precision error.展开更多
A new model of porous electrodes based on the Gibbs free energy is developed, in which lithium-ion(Liion) diffusion, diffusion-induced stress(DIS), Butler–Volmer(BV) reaction kinetics, and size polydispersity of elec...A new model of porous electrodes based on the Gibbs free energy is developed, in which lithium-ion(Liion) diffusion, diffusion-induced stress(DIS), Butler–Volmer(BV) reaction kinetics, and size polydispersity of electrode particles are considered. The influence of BV reaction kinetics and concentration-dependent exchange current density(ECD) on concentration profile and DIS evolution are numerically investigated. BV reaction kinetics leads to a decrease in Li-ion concentration and DIS. In addition, concentrationdependent ECD results in a decrease in Li-ion concentration and an increase in DIS. Size polydispersity of electrode particles significantly affects the concentration profile and DIS.Optimal macroscopic state of charge(SOC) should consider the influence of the microscopic SOC values and mass fractions of differently sized particles.展开更多
Although hydrazine(N2 H4) oxidation in an electrochemical environment has been of great interest for years,its intrinsic electron transfer kinetics remain uncertain.We report that the phenomenological Butler-Volmer(BV...Although hydrazine(N2 H4) oxidation in an electrochemical environment has been of great interest for years,its intrinsic electron transfer kinetics remain uncertain.We report that the phenomenological Butler-Volmer(BV) theory is not appropriate for interpreting the process of hydrazine oxidation for which an astonishingly wide range of transfer coefficients,Tafel slopes and diffusion coefficient have been previously reported.Rather Tafel analysis for voltammetry recorded at Glassy Carbon(GC)electrodes reveals a strong potential dependence of the anodic transfer coefficient,consistent with the symmetric Marcus-Hush(sMH) theory.According to the relationship β=λ+FEf^0/2λ-F/2λ E,the reorganization energy(0.35±0.07 eV) and an approximate formal potential of the rate-determining first electron transfer were successfully extracted from the voltammetric responses.展开更多
We study galvanic currents on a heterogeneous surface. In electrochemistry, the oxidation-reduction reaction producing the current is commonly modeled by a nonlinear elliptic boundary value problem. The boundary condi...We study galvanic currents on a heterogeneous surface. In electrochemistry, the oxidation-reduction reaction producing the current is commonly modeled by a nonlinear elliptic boundary value problem. The boundary condition is of exponential type with periodically varying parameters. We construct an approximation by first homogenizing the problem, and then linearizing about the homogenized solution. This approximation is far more accurate than both previous approximations or direct linearization. We establish convergence estimates for both the two and three-dimensional case and provide two-dimensional numerical experiments.展开更多
文摘According to the principle of thermal activation process, the energy state of a material under the action of stress is a function of local stress. A generalized Butler-Volmer relationship for the electrode reaction on the surface of a curved electrode is derived,which takes account of the effects of local stress and the radius of mean curvature. From this relationship, the overpotential is found to be proportional to hydrostatic stress and the activation volume under the condition of open circuit. The conditions for the deposition of the material made solely from solute atoms and the formation of surface pits and porous structures are obtained,using the generalized Butler-Volmer relationship.
基金supported by the Projects of Talents Recruitment of Guangdong University of Petrochemical Technology(No.2018rc14)Maoming City Science and Technology Plan Project(Nos.210427094551264 and 220415004552411).
文摘To investigate the influences of co-flowand counter-flowmodes of reactant flowarrangement on a proton exchange membrane fuel cell(PEMFC)during start-up,unsteady physical and mathematical models fully coupling the flow,heat,and electrochemical reactions in a PEMFC are established.The continuity equation and momentum equation are solved by handling pressure-velocity coupling using the SIMPLE algorithm.The electrochemical reaction rates in the catalyst layers(CLs)of the cathode and anode are calculated using the Butler-Volmer equation.The multiphase mixture model describes the multiphase transport process of gas mixtures and liquid water in the fuel cell.After validation,the influences of co-flow and counter-flow modes on the PEMFC performance are investigated,including the evolution of the current density,flow field,temperature field,and reactant concentration field during start-up,as well as the steady distribution of the current density,reactant concentration,andmembrane water content when the start-up stabilizes.Co-flow and counter-flow modes influence the current density distribution and temperature distribution.On the one hand,the co-flow mode accelerates the start-up process of the PEMFC and leads to a more evenly distributed current density than the counter-flow mode.On the other hand,the temperature difference between the inlet and outlet sections of the cell is up to 10.1℃ under the co-flow mode,much larger than the 5.0℃ observed in the counter-flow mode.Accordingly,the counter-flowmode results in a more evenly distributed temperature and a lower maximum temperature than the co-flow case.Therefore,in the flow field design of a PEMFC,the reactant flow arrangements can be considered to weigh between better heat management and higher current density distribution of the cell.
文摘Earlier research determined that lithium-ion capacitor (LIC) cycle life degradation can be accelerated by elevated temperature. LIC cycle life degradation can be described by an Arrhenius equation. This study performed cycle life testing at a constant temperature but varied cycle current. The results were described by an Arrhenius equation relying upon the number of cycles and a constant, which was determined by cycle current. Using mathematical derivations and experimental results, the researchers quantified the effects of activation energy and temperature upon this constant. Because cell temperature is nearly constant during cycles, it was deduced that elevated cycle current decreases activation energy. This lower activation energy then accelerates degradation. Thus this research demonstrates that cycle current ages LICs through its effects on their activation energies.
文摘An earlier study manipulated the Butler-Volmer equation to effectively model a lithium-ion capacitor’s (LIC) energy storage as a function of its constituent components and charge current. However, this model had several shortcomings: computed temperature values were too low, voltage was inaccurate, and the model required Warburg impedance values that were two orders of magnitude higher than experimental results. This study began by analyzing the model’s temperature and voltage computations in order to justify output values. Ultimately, these justifications failed. Therefore, in situ temperature rise was measured during charge cycles. Experimental results indicated that temperature increases minimally during a charge cycle (<1%). At high current densities (≥150 A<span style="white-space:nowrap;">·</span>kg<sup>-1</sup>) temperature increase is negligible. After it was found that LIC temperature change is minimal during a charge cycle, the model accurately computed LIC voltage during the charge cycle and computed Warburg impedance that agreed with values derived from earlier experimental studies, even falling within the measurements’ precision error.
基金financial support by the National Natural Science Foundation of China (Grants 11472165, 11332005)
文摘A new model of porous electrodes based on the Gibbs free energy is developed, in which lithium-ion(Liion) diffusion, diffusion-induced stress(DIS), Butler–Volmer(BV) reaction kinetics, and size polydispersity of electrode particles are considered. The influence of BV reaction kinetics and concentration-dependent exchange current density(ECD) on concentration profile and DIS evolution are numerically investigated. BV reaction kinetics leads to a decrease in Li-ion concentration and DIS. In addition, concentrationdependent ECD results in a decrease in Li-ion concentration and an increase in DIS. Size polydispersity of electrode particles significantly affects the concentration profile and DIS.Optimal macroscopic state of charge(SOC) should consider the influence of the microscopic SOC values and mass fractions of differently sized particles.
文摘Although hydrazine(N2 H4) oxidation in an electrochemical environment has been of great interest for years,its intrinsic electron transfer kinetics remain uncertain.We report that the phenomenological Butler-Volmer(BV) theory is not appropriate for interpreting the process of hydrazine oxidation for which an astonishingly wide range of transfer coefficients,Tafel slopes and diffusion coefficient have been previously reported.Rather Tafel analysis for voltammetry recorded at Glassy Carbon(GC)electrodes reveals a strong potential dependence of the anodic transfer coefficient,consistent with the symmetric Marcus-Hush(sMH) theory.According to the relationship β=λ+FEf^0/2λ-F/2λ E,the reorganization energy(0.35±0.07 eV) and an approximate formal potential of the rate-determining first electron transfer were successfully extracted from the voltammetric responses.
基金Acknowledgments. This research is partially supported by the National Science Foundation Grants DMS#0619080 and DMS#0605021.
文摘We study galvanic currents on a heterogeneous surface. In electrochemistry, the oxidation-reduction reaction producing the current is commonly modeled by a nonlinear elliptic boundary value problem. The boundary condition is of exponential type with periodically varying parameters. We construct an approximation by first homogenizing the problem, and then linearizing about the homogenized solution. This approximation is far more accurate than both previous approximations or direct linearization. We establish convergence estimates for both the two and three-dimensional case and provide two-dimensional numerical experiments.