Efficient production of butanediols from biomass-derived feedstocks under mild reaction conditions is still of challenge.Here,we reported a highly efficient Pd-WO_(x) catalyst which was facilely synthesized by a simpl...Efficient production of butanediols from biomass-derived feedstocks under mild reaction conditions is still of challenge.Here,we reported a highly efficient Pd-WO_(x) catalyst which was facilely synthesized by a simple‘one pot’solvothermal method for the selective conversion of glucose and lignocellulosic biomass to butanediols with remarkable activity.The optimized process achieved an impressive 56.5%yield of butanediols at 180◦C within 8 h under a low hydrogen pressure of 0.6 MPa,surpassing most reported catalysts.Comprehensive characterization(H_(2)-TPR,XPS,NH3-TPD,etc.)revealed that Pd-WO_(x) not only enhanced H_(2) adsorption and activation but also possessed a higher density of acidic sites to promote selective cleavage of C-C bond in glucose structure,thereby significantly improving the efficiency of sustainable butanediols production.Furthermore,the catalyst demonstrated excellent stability over five reaction cycles.This work provides a viable and efficient strategy for sustainable biomass valorization to produce valuable butanediols.展开更多
The decarbonization of the chemical industry and a shift toward circular economies because of high global CO_(2) emissions make CO_(2) an attractive feedstock for manufacturing chemicals.Moreover,H_(2) is a low-cost a...The decarbonization of the chemical industry and a shift toward circular economies because of high global CO_(2) emissions make CO_(2) an attractive feedstock for manufacturing chemicals.Moreover,H_(2) is a low-cost and carbon-free reductant because technologies such as solar-driven electrolysis and supercritical water(scH_(2)O) gasification enable sustainable production of molecular hydrogen(H_(2)).We review the recent advances in engineering Ralsto-nia eutropha,the representative species of“Knallgas”bacteria,for utilizing CO_(2) and H_(2) to autotrophically produce 2,3-butanediol(2,3-BDO).This assessment is focused on state-of-the-art approaches for splitting H_(2) to supply en-ergy in the form of ATP and NADH to power cellular reactions and employing the Calvin-Benson-Bassham cycle for CO_(2) fixation.Major challenges and opportunities for application and future perspectives are discussed in the context of developing other promising CO_(2) and H_(2)-utilizing microorganisms,exemplified by Zymomonas mobilis.展开更多
基金financial support from State Key Laboratory of Coal Mine Disaster Dynamics and Control(2011DA105287-MS202203)Chongqing Human Resources and Social Security Bureau Project(cx2024049)Natural Science Foundation of Chongqing(CSTB2022NSCQ-MSX0458).
文摘Efficient production of butanediols from biomass-derived feedstocks under mild reaction conditions is still of challenge.Here,we reported a highly efficient Pd-WO_(x) catalyst which was facilely synthesized by a simple‘one pot’solvothermal method for the selective conversion of glucose and lignocellulosic biomass to butanediols with remarkable activity.The optimized process achieved an impressive 56.5%yield of butanediols at 180◦C within 8 h under a low hydrogen pressure of 0.6 MPa,surpassing most reported catalysts.Comprehensive characterization(H_(2)-TPR,XPS,NH3-TPD,etc.)revealed that Pd-WO_(x) not only enhanced H_(2) adsorption and activation but also possessed a higher density of acidic sites to promote selective cleavage of C-C bond in glucose structure,thereby significantly improving the efficiency of sustainable butanediols production.Furthermore,the catalyst demonstrated excellent stability over five reaction cycles.This work provides a viable and efficient strategy for sustainable biomass valorization to produce valuable butanediols.
基金This work was authored by Alliance for Sustainable Energy,LLC,the Manager and Operator of the National Renewable Energy Laboratory for the U.S.Department of Energy(DOE)under Contract No.DE-AC36-08GO28308Funding provided by U.S.Department of Energy Office of Energy Efficiency and Renewable Energy,Bioenergy Technologies Of-fice(BETO)Funding for YJB was provided by the Center for Bioenergy Innovation(CBI),a U.S.Department of Energy Bioenergy Research Cen-ter supported by the Office of Biological and Environmental Research in the DOE Office of Science.
文摘The decarbonization of the chemical industry and a shift toward circular economies because of high global CO_(2) emissions make CO_(2) an attractive feedstock for manufacturing chemicals.Moreover,H_(2) is a low-cost and carbon-free reductant because technologies such as solar-driven electrolysis and supercritical water(scH_(2)O) gasification enable sustainable production of molecular hydrogen(H_(2)).We review the recent advances in engineering Ralsto-nia eutropha,the representative species of“Knallgas”bacteria,for utilizing CO_(2) and H_(2) to autotrophically produce 2,3-butanediol(2,3-BDO).This assessment is focused on state-of-the-art approaches for splitting H_(2) to supply en-ergy in the form of ATP and NADH to power cellular reactions and employing the Calvin-Benson-Bassham cycle for CO_(2) fixation.Major challenges and opportunities for application and future perspectives are discussed in the context of developing other promising CO_(2) and H_(2)-utilizing microorganisms,exemplified by Zymomonas mobilis.