期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
不同数量碳纤维布条带约束煤样的轴压蠕变特性细观模拟研究 被引量:1
1
作者 李庆文 高翔 +3 位作者 谭正林 张帅帅 徐康康 才诗婷 《高压物理学报》 北大核心 2025年第2期50-62,共13页
为探究不同数量碳纤维增强复合材料(carbon fiber reinforced polymer,CFRP)条带对轴压煤样蠕变力学特性的影响,耦合PFC3D软件与FLAC3D软件,结合伯格斯(Burger’s)模型与平行黏结(Linearpbond)模型,建立混合接触的细观数值模型。根据未... 为探究不同数量碳纤维增强复合材料(carbon fiber reinforced polymer,CFRP)条带对轴压煤样蠕变力学特性的影响,耦合PFC3D软件与FLAC3D软件,结合伯格斯(Burger’s)模型与平行黏结(Linearpbond)模型,建立混合接触的细观数值模型。根据未约束煤与6条带CFRP约束煤样单轴压缩蠕变室内试验,验证了数值模型的可靠性。研究了2~7条带CFRP约束煤样在单轴压缩蠕变下的力学特性及能量演化。研究表明:随着条带数的增加,煤样在初始阶段的轴向应变整体呈现增大趋势,加速蠕变阶段轴向应变明显增大;混合接触模型内部接触的最大力整体呈现增大趋势;伯格斯模型接触数量与平行黏结模型接触数量的比值约为1∶9时,数值模拟模型能够反映出煤样蠕变的力学特性;增加CFRP条带数,煤样的径向变形受到限制,产生的剪切微裂纹增多,煤样内部的剪切破坏更加严重,煤样的破坏形态由张拉破坏逐渐向剪切破坏转变;随着碳纤维布条带数量的增加,煤样的总能量、弹性能、耗散能均增加,在煤样发生蠕变失稳前,弹性能的变化与总能量的变化较为相似。 展开更多
关键词 碳纤维增强复合材料 条带数 单轴压缩蠕变 伯格斯模型 PFC^(3D)-FLAC^(3D)耦合
在线阅读 下载PDF
求解Burgers方程的高精度紧致Pade'逼近格式 被引量:4
2
作者 开依沙尔.热合曼 努尔买买提.黑力力 《河南师范大学学报(自然科学版)》 CAS 北大核心 2014年第4期6-12,共7页
对一维Burgers方程提出了精度为O(τ3+h4)的紧致Pade'逼近格式,首先利用Hopf-Cole变换,将一维Burgers方程转化为线性扩散方程,然后对空间变量四阶紧致格式进行离散,时间变量利用pade逼近格式得到求解Burgers方程的时间三阶空间四阶... 对一维Burgers方程提出了精度为O(τ3+h4)的紧致Pade'逼近格式,首先利用Hopf-Cole变换,将一维Burgers方程转化为线性扩散方程,然后对空间变量四阶紧致格式进行离散,时间变量利用pade逼近格式得到求解Burgers方程的时间三阶空间四阶精度的隐式差分格式,并对稳定性进行分析,数值结果与Crank-Nicholson格式、Douglass格式和Haar wavelet格式进行比较,数值结果不同时刻和空间,不同雷诺数与准确值进行比较,发现所提格式很好的解决了Burgers方程的数值计算. 展开更多
关键词 burgerS方程 Hopf-Cole变换 雷诺数 紧致差分格式 Pade'逼近
在线阅读 下载PDF
A Conservative Model for Nonlinear Dynamics in a Stratified, Rotating Fluid
3
作者 Nicolas Filatoff Xavier Carton 《Open Journal of Marine Science》 2018年第2期253-275,共23页
We present a set of equations describing the nonlinear dynamics of flows constrained by environmental rotation and stratification (Rossby numbers Ro∈[0.1,0.5] and Burger numbers of order unity). The fluid is assumed ... We present a set of equations describing the nonlinear dynamics of flows constrained by environmental rotation and stratification (Rossby numbers Ro∈[0.1,0.5] and Burger numbers of order unity). The fluid is assumed incompressible, adiabatic, inviscid and in hydrostatic balance. This set of equations is derived from the Navier Stokes equations (with the above properties), using a Rossby number expansion with second order truncation. The resulting model has the following properties: 1) it can represent motions with moderate Rossby numbers and a Burger number of order unity;2) it filters inertia-gravity waves by assuming that the divergence of horizontal velocity remains small;3) it is written in terms of a single function of space and time (pressure, generalized streamfunction or Bernoulli function);4) it conserves total (Ertel) vorticity in a Lagrangian form, and its quadratic norm (potential enstrophy) at the model order in Rossby number;5) it also conserves total energy at the same order if the work of pressure forces vanishes when integrated over the fluid domain. The layerwise version of the model is finally presented, written in terms of pressure. Integral properties (energy, enstrophy) are conserved by these layerwise equations. The model equations agree with the generalized geostrophy equations in the appropriate parameter regime. Application to vortex dynamics are mentioned. 展开更多
关键词 INCOMPRESSIBLE and STRATIFIED Fluids Intermediate MODEL ROSSBY number burger number Conservation Properties Energy Potential VORTICITY
在线阅读 下载PDF
An O(k<sup>2</sup>+kh<sup>2</sup>+h<sup>2</sup>) Accurate Two-level Implicit Cubic Spline Method for One Space Dimensional Quasi-linear Parabolic Equations
4
作者 Ranjan Kumar Mohanty Vijay Dahiya 《American Journal of Computational Mathematics》 2011年第1期11-17,共7页
In this piece of work, using three spatial grid points, we discuss a new two-level implicit cubic spline method of O(k2 + kh2 + h4) for the solution of quasi-linear parabolic equation , 0 0 subject to appropriate init... In this piece of work, using three spatial grid points, we discuss a new two-level implicit cubic spline method of O(k2 + kh2 + h4) for the solution of quasi-linear parabolic equation , 0 0 subject to appropriate initial and Dirichlet boundary conditions, where h > 0, k > 0 are grid sizes in space and time-directions, respectively. The cubic spline approximation produces at each time level a spline function which may be used to obtain the solution at any point in the range of the space variable. The proposed cubic spline method is applicable to parabolic equations having singularity. The stability analysis for diffusion- convection equation shows the unconditionally stable character of the cubic spline method. The numerical tests are performed and comparative results are provided to illustrate the usefulness of the proposed method. 展开更多
关键词 QUASI-LINEAR Parabolic EQUATION IMPLICIT METHOD Cubic Spline Approximation Diffusion-Convection EQUATION Singular EQUATION burgers’ EQUATION Reynolds number
在线阅读 下载PDF
HIGH-ORDER I-STABLE CENTERED DIFFERENCE SCHEMES FOR VISCOUS COMPRESSIBLE FLOWS
5
作者 WeizhuBao ShiJin 《Journal of Computational Mathematics》 SCIE CSCD 2003年第1期101-112,共12页
In this paper we present high-order I-stable centered difference schemes for the numerical simulation of viscous compressible flows. Here I-stability refers to time discretizations whose linear stability regions conta... In this paper we present high-order I-stable centered difference schemes for the numerical simulation of viscous compressible flows. Here I-stability refers to time discretizations whose linear stability regions contain part of the imaginary axis. This class of schemes has a numerical stability independent of the cell-Reynolds number Re, thus allows one to simulate high Reynolds number flows with relatively larger Re, or coarser grids for a fixed Re. On the other hand, Re cannot be arbitrarily large if one tries to obtain adequate numerical resolution of the viscous behavior. We investigate the behavior of high-order I-stable schemes for Burgers' equation and the compressible Navier-Stokes equations. We demonstrate that, for the second order scheme, Re ≤ 3 is an appropriate constraint for numerical resolution of the viscous profile, while for the fourth-order schemes the constraint can be relaxed to Re ≤ 6.0ur study indicates that the fourth order scheme is preferable: better accuracy, higher resolution, and larger cell-Reynolds numbers. 展开更多
关键词 I-stable Viscous compressible flow burgers' equation Cell-Reynolds number constraint.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部