The quest for sustainable energy solutions has intensified the need for efficient water electrolysis techniques,pivotal for hydrogen production.However,developing effective bifunctional electrocatalysts capable of dri...The quest for sustainable energy solutions has intensified the need for efficient water electrolysis techniques,pivotal for hydrogen production.However,developing effective bifunctional electrocatalysts capable of driving the hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)remains a formidable challenge.Addressing this,we introduce a novel built-in electric field(BEF)strategy to synthesize NiCoP–Co nanoarrays directly on Ti_(3)C_(2)T_(x) MXene substrates(NiCoP–Co/MXene).This approach leverages a significant work function difference(ΔΦ),propelling these nanoarrays as adept bifunctional electrocatalysts for comprehensive water splitting.MXene,in this process,plays a dual role.It acts as a conductive support,enhancing the catalyst’s overall conductivity,and facilitates an effective charge transport pathway,ensuring efficient charge transfer.Our study reveals that the BEF induces an electric field at the interface,prompting charge transfer from Co to NiCoP.This transfer modulates asymmetric charge distributions,which intricately control intermediates’adsorption and desorption dynamics.Such regulation is crucial for enhancing the reaction kinetics of both HER and OER.Furthermore,under oxidative conditions,the NiCoP–Co/MXene catalyst undergoes a structural metamorphosis into Ni(Co)oxides/hydroxides/MXene,increasing OER performance.This research demonstrates the BEF’s role in fine-tuning interfacial charge redistribution and underscores its potential in crafting more sophisticated electrocatalytic designs.The insights gained here could pave the way for the next generation of electrocatalysis,with far-reaching implications for energy conversion and storage technologies.展开更多
The rational configuration of built-in electric field(IEF)in heterogeneous materials can significantly optimize the band structure to accelerate the separation of photogenerated charge carriers.However,the strength mo...The rational configuration of built-in electric field(IEF)in heterogeneous materials can significantly optimize the band structure to accelerate the separation of photogenerated charge carriers.However,the strength modulation of IEF formed by various materials has an uncertain enhancing effect on the separation of photogenerated carriers.Herein,a mesoporous MIL-125(Ti)@BiOCl S-scheme heterojunction with controllable IEF is prepared by green photoreduction reaction to investigate the relationship between IEF,microstructure,and photocatalytic activity.Moreover,the corresponding results demonstrate the MIL-125(Ti)@BiOCl effectively regulates the IEF strength through controlling the concentration of ligand defects,thereby optimizing the band structure and improving the efficiency of photogenerated charge separation.The optimized IEF significantly enhances the photocatalytic degradation performance of mesoporous MIL-125(Ti)-3@BiOCl towards tetracycline,with a k value of 0.07 min^(–1),which are approximately 5.5 and 4.7 times greater than that of BiOCl(0.0127 min^(–1))and MIL-125(Ti)-3(0.015 min^(–1)).These findings provide a new pathway for regulating IEF within MOF-based heterojunctions,and offer new insights into the intrinsic correlations between defect structure,IEF,and photocatalytic activity.展开更多
Solvated zinc ions are prone to undergo desolvation at the electrode/electrolyte interfaces,and unstable H_(2)O molecules within the solvated sheaths tend to trigger hydrogen evolution reaction(HER),further accelerati...Solvated zinc ions are prone to undergo desolvation at the electrode/electrolyte interfaces,and unstable H_(2)O molecules within the solvated sheaths tend to trigger hydrogen evolution reaction(HER),further accelerating interfaces decay.Herein,we propose for the first time a novel strategy to enhance the interfacial stabilities by insitu dynamic reconstruction of weakly solvated Zn2þduring the desolvation processes at heterointerfaces.Theoretical calculations indicate that,due to built-in electric field effects(BEFs),the plating/stripping mechanism shifts from[Zn(H_(2)O)_(6)]_(2)þto[Zn(H_(2)O)_(5)(SO_(4))^(2-)]_(2)þwithout additional electrolyte additives,reducing the solvation ability of H_(2)O,enhancing the competitive coordination of SO_(4)^(2-),essentially eliminating the undesirable side effects of anodes.Hence,symmetric cells can operate stably for 3000 h(51.7-times increase in cycle life),and the full cells can operate stably for 5000 cycles(51.5-times increase in cycle life).This study provides valuable insights into the critical design of weakly solvated Zn^(2+) þand desolvation processes at heterointerfaces.展开更多
Constructing heterostructures and facilitating surface reconstruction are effective ways to obtain excellent catalysts for the oxygen evolution reaction(OER).Surface reconstruction is a dynamic process that is affecte...Constructing heterostructures and facilitating surface reconstruction are effective ways to obtain excellent catalysts for the oxygen evolution reaction(OER).Surface reconstruction is a dynamic process that is affected by the built-in electric field of the heterostructure.In this study,P/N co-doped carbon-coated NiCo/Ni-CoO heterostructure was prepared by in situ acid etching,aniline polymerization,and pyrolysis.This method can form a tightly connected heterogeneous interface.It was found that introducing P-O bonds in the carbon shell can increase its work function,thereby enhancing the built-in electric field between the carbon shell and the core catalyst.Detailed characterizations confirm that the P-O bridge at the heterogeneous interface can provide an electron flow highway from the core to the shell.The generated carbon defects generated by P leaching during surface reconstruction also have strong electronabsorbing capacity.These effects promote the conversion of Co^(2+)to Co^(3+),thereby providing more highly active sites.The resulting catalyst shows significantly enhanced activity and stability.This study demonstrates the promoting effect of the built-in electric field on the surface reconstruction of the catalyst and emphasizes the importance of the construction of tightly connected heterogeneous interface,which is instructive for the design of excellent OER catalysts.展开更多
Rational design of defected carbons adjacent to nitrogen(N)dopants is a fascinating but challenging approach for enhancing the catalytic performance of N-doped carbon.Meanwhile,the combined effect of heteroatom doping...Rational design of defected carbons adjacent to nitrogen(N)dopants is a fascinating but challenging approach for enhancing the catalytic performance of N-doped carbon.Meanwhile,the combined effect of heteroatom doping and defect engineering can efficiently increase the oxygen reduction reaction(ORR)ability of inactive carbons through charge redistribution.Herein,we report that an enhanced built-in electric field caused by the combined effect of N-doping and carbon defects in the twodimensional(2D)mesoporous N-doped carbon nano flakes(NCNF)is a promising technique for improving ORR performance.As a result,the NCNF exhibits more promising ORR activity than Pt/C and similar performance with reported robust catalysts.Comprehensive experimental and theoretical investigations suggest that topologically defected carbon adjacent to the graphitic valley nitrogen is a real active site,rendering optimal energy for the adsorption of ORR intermediates and lowering the total energy barrier for ORR.Also,NCNF-based Zn-air batteries exhibited an excellent power density and specific capacity of~121.10 mW cm^(-2)and~679.86 mA h g_(Zn)^(-1),respectively.This study not only offers new insights into defected carbons with graphitic valley N for ORR but also proposes novel catalyst design principles and provides a solid grasp of the built-in electric field effect on the ORR performance of defective catalysts.展开更多
Bifunctional Ir catalysts for proton exchange membrane(PEM)water electrolysis offer transformative potential by streamlining electrolyzer while achieving efficient performance remains challenging due to the distinct c...Bifunctional Ir catalysts for proton exchange membrane(PEM)water electrolysis offer transformative potential by streamlining electrolyzer while achieving efficient performance remains challenging due to the distinct conditions required for oxygen and hydrogen evolution reaction(OER and HER).Herein,we propose a theory-directed design of Ir-based bifunctional catalysts,Ir nanoparticles supported on mesoporous carbon spheres embedded with MoSe_(2)(Ir/MoSe_(2)@MCS),leveraging a work function(WF)-induced spontaneous built-in electric field to enhance catalytic performance.They demonstrate exceptional kinetics for both OER and HER,and potential application in the practical PEM electrolyzer,showcasing the effectiveness of this innovative approach.Low overpotentials of 252 mV for OER and 28 mV for HER to drive 10 mA cm^(-2)were observed,and the PEM electrolyzer showed the current density of 2 A cm^(-2)at 1.87 V and maintained stable activity at 1.65 V for over 30 h to deliver 1 A cm^(-2).Density functional theory calculations reveal that the WF difference at Ir/MoSe_(2)interface induces a spontaneous built-in electric field with asymmetric charge distributions,that modulate the electronic environment and d-band center of Ir promoting bifunctional active phase formation.This significantly lowers reaction barriers for water splitting by balancing intermediate adsorption,endowing the bifunctional activity.展开更多
To develop a melting-based larger-scale fabrication process for oxide dispersion strengthened(ODS)steel,this study proposed a method of zone melting with built-in precursor powder(ZMPP),followed by hot forging and agi...To develop a melting-based larger-scale fabrication process for oxide dispersion strengthened(ODS)steel,this study proposed a method of zone melting with built-in precursor powder(ZMPP),followed by hot forging and aging treatments.A 50 kg ingot was successfully prepared,highlighting the scalability of this innovative process.Microstructural analysis revealed a predominantly lath martensite matrix with a small amount of ferrite in the hot-forged ODS steel,without oxide particle aggregation.Aging at 750℃ resulted in the formation of sub-micron-sized Cr_(23)C_(6) particles at grain boundaries and martensitic lath interfaces,accompanied by a high-density(7.64×1023 m^(-3))nano-scale(~6 nm)Y-Si-O complex oxides after 25 h.Additionally,the hot-forged sample exhibited a high yield strength(871 MPa)but limited ductility(5.0%).Aging treatments led to an increase in ductility but a decrease in yield strength.Notably,prolonged aging maintained the strength level of steels while enhancing ductility,with a 23.3% total elongation observed after 25 h.The novel ZMPP method,preparing high-quality ODS steels with uniform microstructure and good mechanical properties,provided a new avenue for large-scale production of ODS steels.展开更多
The exploration of novel multivariate heterostructures has emerged as a pivotal strategy for developing high-performance electromagnetic wave(EMW)absorption materials.However,the loss mechanism in traditional heterost...The exploration of novel multivariate heterostructures has emerged as a pivotal strategy for developing high-performance electromagnetic wave(EMW)absorption materials.However,the loss mechanism in traditional heterostructures is relatively simple,guided by empirical observations,and is not monotonous.In this work,we presented a novel semiconductor-semiconductor-metal heterostructure sys-tem,Mo-MXene/Mo-metal sulfides(metal=Sn,Fe,Mn,Co,Ni,Zn,and Cu),including semiconductor junctions and Mott-Schottky junctions.By skillfully combining these distinct functional components(Mo-MXene,MoS_(2),metal sulfides),we can engineer a multiple heterogeneous interface with superior absorption capabilities,broad effective absorption bandwidths,and ultrathin matching thickness.The successful establishment of semiconductor-semiconductor-metal heterostructures gives rise to a built-in electric field that intensifies electron transfer,as confirmed by density functional theory,which collaborates with multiple dielectric polarization mechanisms to substantially amplify EMW absorption.We detailed a successful synthesis of a series of Mo-MXene/Mo-metal sulfides featuring both semiconductor-semiconductor and semiconductor-metal interfaces.The achievements were most pronounced in Mo-MXene/Mo-Sn sulfide,which achieved remarkable reflection loss values of-70.6 dB at a matching thickness of only 1.885 mm.Radar cross-section calculations indicate that these MXene/Mo-metal sulfides have tremendous potential in practical military stealth technology.This work marks a departure from conventional component design limitations and presents a novel pathway for the creation of advanced MXene-based composites with potent EMW absorption capabilities.展开更多
At present,industrial synthetic ammonia was still obtained through the Hubble-Bosch process,with large energy consumption.It is a research hotspot to realize green synthetic ammonia by using solar energy.The difficult...At present,industrial synthetic ammonia was still obtained through the Hubble-Bosch process,with large energy consumption.It is a research hotspot to realize green synthetic ammonia by using solar energy.The difficulty of photocatalytic ammonia synthesis was that the photo-excited electrons have not enough energy to active N≡N.In this study,Ti was doped into BiOBr by one-step hydrothermal method,which was oxidized into TiO_(2)when the doping amount reaches the maximum,in situ forming Ti_(0.31)B_(0.69)OB/TiO_(2)composites.Benefiting from the synergistic effect of Ti doping and S-scheme heterojunction,the synthetic ammonia efficiency of Ti_(0.31)B_(0.69)OB/TiO_(2)-11.96 reached 1.643 mmol·g_(cat)^(-1)at mild conditions and without hole scavenger for up to 7 h,the efficiency of synthetic ammonia is 115 times,10.5 times and 3.3 times of that of BiOBr,Ti_(0.31)B_(0.69)OB and TiO_(2),respectively.Specifically,DFT calculation confirms that Ti doping accurately refine the electronic structure of BiOBr,facilitate nitrogen adsorption activation and reduce hydrogenation reaction energy barrier,thus accelerating the reaction kinetics of photocatalytic nitrogen reduction(NRR),Meanwhile,constructing S-scheme heterojunction boosts the separation and transfer of photogenerated electron-hole pairs,improving the reduction ability of electrons in the conduction band of TiO_(2)and the oxidation ability of holes in the valence band of Ti_(0.31)B_(0.69)OB.展开更多
Achieving a high carrier migration efficiency by constructing built-in electric field is one of the promising approaches for promoting photocatalytic activity. Herein, we have designed a donor-acceptor(D-A) crystallin...Achieving a high carrier migration efficiency by constructing built-in electric field is one of the promising approaches for promoting photocatalytic activity. Herein, we have designed a donor-acceptor(D-A) crystalline carbon nitride(APMCN) with 4-amino-2,6-dihydroxypyrimidine(AP) as electron donor, in which the pyrimidine ring was well embedded in the heptazine ring via hydrogen-bonding effect during hydrothermal process. The APMCN shows superior charge-transfer due to giant built-in electric field(5.94times higher than pristine carbon nitride), thereby exhibiting excellent photocatalytic H_(2) evolution rate(1350 μmol/h) with a high AQY(62.8%) at 400 nm. Mechanistic analysis based on detailed experimental investigation together with theoretical analysis reveals that the excellent photocatalytic activity is attributed to the promoted charge separation by the giant internal electric field originated from the D–A structure.展开更多
The rational design of high-performance bifunctional electrocatalysts for overall water splitting(OWS)is the key to popularize hydrogen production technology.The active metal oxyhydroxide(MOOH)formed after surface sel...The rational design of high-performance bifunctional electrocatalysts for overall water splitting(OWS)is the key to popularize hydrogen production technology.The active metal oxyhydroxide(MOOH)formed after surface self-reconfiguration of transition metal sulfide(TMS)electrocatalyst is often regarded as the"actual catalyst"in oxygen evolution reaction(OER).Herein,an Fe doped Co S2/Mo S2hollow TMS polyhedron(Fe-Co S2/Mo S2)with rich Mott-Schottky heterojunction is reported and directly utilized as an OWS electrocatalyst.The spontaneous built-in electric field(BEF)at the heterogeneous interface regulates the electronic structure and D-band center of the catalyst.More importantly,the“TMS-MOOH”core-shell structure obtained in the KOH electrolyte shows enhanced OER properties.And the introduction of Fe ions activates the inert basal plane of Mo S2,which greatly steps up the performance of HER.Hence,the preferable Fe-CoS_(2)/MoS_(2)–400 presents superior OER activity(η_(10)=178 m V,η_(100)=375 m V),HER activity(η_(10)=92 m V)and ultra-high stability for 50 h.This work has deeply explored the catalytic mechanism of TMS and provided a new idea for the construction of efficient bifunctional catalysts.展开更多
Lithium sulfur(Li-S)battery is a kind of burgeoning energy storage system with high energy density.However,the electrolyte-soluble intermediate lithium polysulfides(Li PSs)undergo notorious shuttle effect,which seriou...Lithium sulfur(Li-S)battery is a kind of burgeoning energy storage system with high energy density.However,the electrolyte-soluble intermediate lithium polysulfides(Li PSs)undergo notorious shuttle effect,which seriously hinders the commercialization of Li-S batteries.Herein,a unique VSe_(2)/V_(2)C heterostructure with local built-in electric field was rationally engineered from V_(2)C parent via a facile thermal selenization process.It exquisitely synergizes the strong affinity of V_(2)C with the effective electrocatalytic activity of VSe_(2).More importantly,the local built-in electric field at the heterointerface can sufficiently promote the electron/ion transport ability and eventually boost the conversion kinetics of sulfur species.The Li-S battery equipped with VSe_(2)/V_(2)C-CNTs-PP separator achieved an outstanding initial specific capacity of 1439.1 m A h g^(-1)with a high capacity retention of 73%after 100 cycles at0.1 C.More impressively,a wonderful capacity of 571.6 mA h g^(-1)was effectively maintained after 600cycles at 2 C with a capacity decay rate of 0.07%.Even under a sulfur loading of 4.8 mg cm^(-2),areal capacity still can be up to 5.6 m A h cm^(-2).In-situ Raman tests explicitly illustrate the effectiveness of VSe_(2)/V_(2)C-CNTs modifier in restricting Li PSs shuttle.Combined with density functional theory calculations,the underlying mechanism of VSe_(2)/V_(2)C heterostructure for remedying Li PSs shuttling and conversion kinetics was deciphered.The strategy of constructing VSe_(2)/V_(2)C heterocatalyst in this work proposes a universal protocol to design metal selenide-based separator modifier for Li-S battery.Besides,it opens an efficient avenue for the separator engineering of Li-S batteries.展开更多
It is a challenging issue to further drive charge separation through the oriented design of Z-scheme het-erojunction in the exploitation of cost-effective photocatalytic materials.In this contribution,the unique Z-sch...It is a challenging issue to further drive charge separation through the oriented design of Z-scheme het-erojunction in the exploitation of cost-effective photocatalytic materials.In this contribution,the unique Z-scheme 3D/2D In_(2)Se_(3)/PCN heterojunction is developed through implanting In_(2)Se_(3) microspheres on PCN nanosheets using an in situ growth technique,which acquires the effective CO generation activity from photocatalytic CO_(2) reduction(CO_(2)R).The CO yield of 4 h in the CO_(2)R reaction over the optimal In_(2)Se_(3)/PCN-15 sample reaches up to 11.40 and 2.41 times higher than that of individual PCN and In_(2)Se_(3),respectively.Such greatly enhanced photocatalytic performance is primarily the improvement of photo-generated carrier separation efficiency.To be more specific,the formed built-in electric field is signifi-cantly intensified by producing the temperature difference potential between In_(2)Se_(3) and PCN owing to the photothermoelectric effect of In_(2)Se_(3),which actuates the high-efficiency separation of photogenerated charge carriers along the Z-scheme transfer path in the In_(2)Se_(3)/PCN heterojunction.The effective strat-egy of enhancing the built-in electric field to drive photogenerated charge separation proposed in this work opens up an innovative avenue to design Z-scheme heterojunction applied to high-efficiency pho-tocatalytic reactions,such as hydrogen generation from water splitting,CO_(2)R,and degradation of organic pollutants.展开更多
The electrochemical reaction rate strongly depends on the pH of the solution and the relatively sluggish alkaline hydrogen evolution reaction(HER)process,attributed to alterations in the type of proton donor and bindi...The electrochemical reaction rate strongly depends on the pH of the solution and the relatively sluggish alkaline hydrogen evolution reaction(HER)process,attributed to alterations in the type of proton donor and binding energy,has consistently presented a significant challenge.Here,we report a new method for boosting alkaline HER via spontaneous built-in electric field strategy employed on cobalt phosphide nanofibers(NFs)electrocatalyst.The anion-cation dual-introduction of V and N on the NFs not only increases the electrochemical surface area but also enhances the catalytic activity,thereby elevating the performance of alkaline HER.An investigation strategy combining experiments and calculations revealed the charge transfer law between multiple active components and the enhanced regulation mechanism of alkaline HER process,ultimately achieving a nearly twice increase in reaction overpotential of the as-fabricated catalyst at-10 mA·cm^(-2).This new approach provides a potential strategy for improving the efficiency of core catalyst for energy conversion technologies.展开更多
Most advanced hydrogen evolution reaction(HER)catalysts show high activity under alkaline conditions.However,the performance deteriorates at a natural and acidic pH,which is often problematic in practical applications...Most advanced hydrogen evolution reaction(HER)catalysts show high activity under alkaline conditions.However,the performance deteriorates at a natural and acidic pH,which is often problematic in practical applications.Herein,a rhenium(Re)sulfide–transition-metal dichalcogenide heterojunc-tion catalyst with Re-rich vacancies(NiS_(2)-ReS_(2)-V)has been constructed.The optimized catalyst shows extraordinary electrocatalytic HER performance over a wide range of pH,with ultralow overpotentials of 42,85,and 122 mV under alkaline,acidic,and neutral conditions,respectively.Moreover,the two-electrode system with NiS_(2)-ReS_(2)-V1 as the cathode provides a voltage of 1.73 V at 500 mA cm^(-2),superior to industrial systems.Besides,the open-circuit voltage of a single Zn–H_(2)O cell with NiS_(2)-ReS_(2)-V1 as the cathode can reach an impressive 90.9% of the theoretical value,with a maximum power density of up to 31.6 mW cm^(-2).Moreover,it shows remarkable stability,with sustained discharge for approximately 120 h at 10 mA cm^(-2),significantly outperforming commercial Pt/C catalysts under the same conditions in all aspects.A series of systematic characterizations and theoretical calculations demonstrate that Re vacancies on the heterojunction interface would generate a stronger built-in electric field,which profoundly affects surface charge distribution and subsequently enhances HER performance.展开更多
Constructing a built-in electric field has emerged as a key strategy for enhancing charge separation and transfer,thereby improving photoelectrochemical performance.Recently,considerable efforts have been devoted to t...Constructing a built-in electric field has emerged as a key strategy for enhancing charge separation and transfer,thereby improving photoelectrochemical performance.Recently,considerable efforts have been devoted to this endeavor.This review systematically summarizes the impact of built-in electric fields on enhancing charge separation and transfer mechanisms,focusing on the modulation of built-in electric fields in terms of depth and orderliness.First,mechanisms and tuning strategies for built-in electric fields are explored.Then,the state-of-the-art works regarding built-in electric fields for modulating charge separation and transfer are summarized and categorized according to surface and interface depth.Finally,current strategies for constructing bulk built-in electric fields in photoelectrodes are explored,and insights into future developments for enhancing charge separation and transfer in high-performance photoelectrochemical applications are provided.展开更多
Constructing heterostructure is considered as an effective strategy to address the sluggish electronic and ionic kinetics of anode materials for sodium ion batteries(SIBs).However,realizing the orientated growth and u...Constructing heterostructure is considered as an effective strategy to address the sluggish electronic and ionic kinetics of anode materials for sodium ion batteries(SIBs).However,realizing the orientated growth and uniform distribution of the heterostructure is still a great challenge.Herein,the regulated novel CoSe_(2)/NiSe_(2)heterostructure confined in N-doped carbon nanofibers(CoSe_(2)/NiSe_(2)@N-C)are prepared by using Co/Ni-ZIF template,in which,the CoSe_(2)/NiSe_(2)heterostructures realize uniform distribution on a micro level.Benefiting from the unique heterostructure and N-doped carbon nanofibers,the CoSe_(2)/NiSe_(2)@N-C deliveries superior rate capability and durable cycle lifespan with a reversible capacity of 400.5 mA h g^(-1)after 5000 cycles at 2 A g^(-1).The Na-ion full battery with CoSe_(2)/NiSe_(2)@N-C anode and layered oxide cathode displays a remarkable energy density of 563 W h kg^(-1)with 241.1 W kg^(-1)at 0.1 A g^(-1).The theoretical calculations disclose that the periodic and directional built-in electric-field along with the heterointerfaces of CoSe_(2)/NiSe_(2)@N-C can accelerate electrochemical reaction kinetics.The in(ex)situ experimental measurements reveal the reversible conversion reaction and stable structure of CoSe_(2)/NiSe_(2)@N-C during Na+insertion/extraction.The study highlights the potential ability of precisely controlled heterostructure to stimulate the electrochemical performances of advanced anode for SIBs.展开更多
Developing efficient energy storage for sodium-ion batteries(SIBs)by creating high-performance heterojunctions and understanding their interfacial interaction at the atomic/molecular level holds promise but is also ch...Developing efficient energy storage for sodium-ion batteries(SIBs)by creating high-performance heterojunctions and understanding their interfacial interaction at the atomic/molecular level holds promise but is also challenging.Besides,sluggish reaction kinetics at low temperatures restrict the operation of SIBs in cold climates.Herein,cross-linking nanoarchitectonics of WS_(2)/Ti_(3)C_(2)T_(x) heterojunction,featuring built-in electric field(BIEF),have been developed,employing as a model to reveal the positive effect of heterojunction design and BIEF for modifying the reaction kinetics and electrochemical activity.Particularly,the theoretical analysis manifests the discrepancy in work functions leads to the electronic flow from the electron-rich Ti_(3)C_(2)T_(x) to layered WS_(2),spontaneously forming the BIEF and“ion reservoir”at the heterogeneous interface.Besides,the generation of cross-linking pathways further promotes the transportation of electrons/ions,which guarantees rapid diffusion kinetics and excellent structure coupling.Consequently,superior sodium storage performance is obtained for the WS_(2)/Ti_(3)C_(2)T_(x) heterojunction,with only 0.2%decay per cycle at 5.0 A g^(-1)(25℃)up to 1000 cycles and a high capacity of 293.5 mA h g^(-1)(0.1A g^(-1)after 100 cycles)even at-20℃.Importantly,the spontaneously formed BIEF,accompanied by“ion reservoir”,in heterojunction provides deep understandings of the correlation between structure fabricated and performance obtained.展开更多
Electrocatalytic reduction of nitrate(NO_(3)^(-))at low concentrations to ammonia(NH_(4)^(+))still faces chal lenges of low NO_(3)^(-)conversion and NH_(4)^(+)selectivity due to the sluggish mass transfer and insuffic...Electrocatalytic reduction of nitrate(NO_(3)^(-))at low concentrations to ammonia(NH_(4)^(+))still faces chal lenges of low NO_(3)^(-)conversion and NH_(4)^(+)selectivity due to the sluggish mass transfer and insufficien atomic hydrogen(H^(*))supply.Herein,we propose CuO/NiO heterojunction with the assistance of a built-in electric field to enhance mass transfer and H^(*)provision.The built-in electric field in Cu O/Ni O is success fully formed as demonstrated by X-ray photoelectron spectroscopy and ultraviolet photoemission spec troscopy.The results reveal that Cu O/Ni O achieves high NO_(3)^(-)reduction activity(100%)and NH_(4)^(+)selec tivity(100%)under low NO_(3)^(-)concentration conditions(100 mg/L NO_(3)^(-),ca.22.6 mg/L NO_(3)^(-)-N),which i superior to that of many recently reported electrocatalysts.Density functional theory calculations furthe clarify that the built-in electric field triggers the enhanced adsorption of reactants on CuO/NiO hetero junction interface and strong d-p orbital hybridization between reactants and CuO/NiO.Besides,the free energy diagram of hydrogen evolution reaction of CuO/NiO confirms the realization of enhanced H^(*)pro vision.Moreover,coupling experiments and consecutive cycle tests demonstrate the potential of CuO/NiO in practical applications.This work may open up a new path and guide the development of efficien electrocatalysts for electrocatalytic reduction of NO_(3)^(-)at low concentrations to NH_(4)^(+).展开更多
基金supported by Guangdong Basic and Applied Basic Research Foundation(Nos.2021A1515010261 and 2023A1515140153)Guangdong Special Innovative Projects of General Universities(No.2022KTSCX136)+1 种基金the Major and Special Project in the Field of Intelligent Manufacturing of the Universities in Guangdong Province(No.2020ZDZX2067)the Innovative Team Project of the Universities in Guangdong Province(No.2023KCXTD035).
文摘The quest for sustainable energy solutions has intensified the need for efficient water electrolysis techniques,pivotal for hydrogen production.However,developing effective bifunctional electrocatalysts capable of driving the hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)remains a formidable challenge.Addressing this,we introduce a novel built-in electric field(BEF)strategy to synthesize NiCoP–Co nanoarrays directly on Ti_(3)C_(2)T_(x) MXene substrates(NiCoP–Co/MXene).This approach leverages a significant work function difference(ΔΦ),propelling these nanoarrays as adept bifunctional electrocatalysts for comprehensive water splitting.MXene,in this process,plays a dual role.It acts as a conductive support,enhancing the catalyst’s overall conductivity,and facilitates an effective charge transport pathway,ensuring efficient charge transfer.Our study reveals that the BEF induces an electric field at the interface,prompting charge transfer from Co to NiCoP.This transfer modulates asymmetric charge distributions,which intricately control intermediates’adsorption and desorption dynamics.Such regulation is crucial for enhancing the reaction kinetics of both HER and OER.Furthermore,under oxidative conditions,the NiCoP–Co/MXene catalyst undergoes a structural metamorphosis into Ni(Co)oxides/hydroxides/MXene,increasing OER performance.This research demonstrates the BEF’s role in fine-tuning interfacial charge redistribution and underscores its potential in crafting more sophisticated electrocatalytic designs.The insights gained here could pave the way for the next generation of electrocatalysis,with far-reaching implications for energy conversion and storage technologies.
文摘The rational configuration of built-in electric field(IEF)in heterogeneous materials can significantly optimize the band structure to accelerate the separation of photogenerated charge carriers.However,the strength modulation of IEF formed by various materials has an uncertain enhancing effect on the separation of photogenerated carriers.Herein,a mesoporous MIL-125(Ti)@BiOCl S-scheme heterojunction with controllable IEF is prepared by green photoreduction reaction to investigate the relationship between IEF,microstructure,and photocatalytic activity.Moreover,the corresponding results demonstrate the MIL-125(Ti)@BiOCl effectively regulates the IEF strength through controlling the concentration of ligand defects,thereby optimizing the band structure and improving the efficiency of photogenerated charge separation.The optimized IEF significantly enhances the photocatalytic degradation performance of mesoporous MIL-125(Ti)-3@BiOCl towards tetracycline,with a k value of 0.07 min^(–1),which are approximately 5.5 and 4.7 times greater than that of BiOCl(0.0127 min^(–1))and MIL-125(Ti)-3(0.015 min^(–1)).These findings provide a new pathway for regulating IEF within MOF-based heterojunctions,and offer new insights into the intrinsic correlations between defect structure,IEF,and photocatalytic activity.
基金financially supported by the National Natural Science Foundation of China(51977097).
文摘Solvated zinc ions are prone to undergo desolvation at the electrode/electrolyte interfaces,and unstable H_(2)O molecules within the solvated sheaths tend to trigger hydrogen evolution reaction(HER),further accelerating interfaces decay.Herein,we propose for the first time a novel strategy to enhance the interfacial stabilities by insitu dynamic reconstruction of weakly solvated Zn2þduring the desolvation processes at heterointerfaces.Theoretical calculations indicate that,due to built-in electric field effects(BEFs),the plating/stripping mechanism shifts from[Zn(H_(2)O)_(6)]_(2)þto[Zn(H_(2)O)_(5)(SO_(4))^(2-)]_(2)þwithout additional electrolyte additives,reducing the solvation ability of H_(2)O,enhancing the competitive coordination of SO_(4)^(2-),essentially eliminating the undesirable side effects of anodes.Hence,symmetric cells can operate stably for 3000 h(51.7-times increase in cycle life),and the full cells can operate stably for 5000 cycles(51.5-times increase in cycle life).This study provides valuable insights into the critical design of weakly solvated Zn^(2+) þand desolvation processes at heterointerfaces.
基金financially supported by the National Natural Science Foundation of China(Grant No.52073106)。
文摘Constructing heterostructures and facilitating surface reconstruction are effective ways to obtain excellent catalysts for the oxygen evolution reaction(OER).Surface reconstruction is a dynamic process that is affected by the built-in electric field of the heterostructure.In this study,P/N co-doped carbon-coated NiCo/Ni-CoO heterostructure was prepared by in situ acid etching,aniline polymerization,and pyrolysis.This method can form a tightly connected heterogeneous interface.It was found that introducing P-O bonds in the carbon shell can increase its work function,thereby enhancing the built-in electric field between the carbon shell and the core catalyst.Detailed characterizations confirm that the P-O bridge at the heterogeneous interface can provide an electron flow highway from the core to the shell.The generated carbon defects generated by P leaching during surface reconstruction also have strong electronabsorbing capacity.These effects promote the conversion of Co^(2+)to Co^(3+),thereby providing more highly active sites.The resulting catalyst shows significantly enhanced activity and stability.This study demonstrates the promoting effect of the built-in electric field on the surface reconstruction of the catalyst and emphasizes the importance of the construction of tightly connected heterogeneous interface,which is instructive for the design of excellent OER catalysts.
基金supported by the National Natural Science Foundation of China(22262010,22062005,22165005,U20A20128)Guangxi Science and Technology Fund for Distinguished HighTalent Introduction Program(AC22035091)Guangxi Science Fund for Distinguished Young Scholars(2019GXNSFFA245016)。
文摘Rational design of defected carbons adjacent to nitrogen(N)dopants is a fascinating but challenging approach for enhancing the catalytic performance of N-doped carbon.Meanwhile,the combined effect of heteroatom doping and defect engineering can efficiently increase the oxygen reduction reaction(ORR)ability of inactive carbons through charge redistribution.Herein,we report that an enhanced built-in electric field caused by the combined effect of N-doping and carbon defects in the twodimensional(2D)mesoporous N-doped carbon nano flakes(NCNF)is a promising technique for improving ORR performance.As a result,the NCNF exhibits more promising ORR activity than Pt/C and similar performance with reported robust catalysts.Comprehensive experimental and theoretical investigations suggest that topologically defected carbon adjacent to the graphitic valley nitrogen is a real active site,rendering optimal energy for the adsorption of ORR intermediates and lowering the total energy barrier for ORR.Also,NCNF-based Zn-air batteries exhibited an excellent power density and specific capacity of~121.10 mW cm^(-2)and~679.86 mA h g_(Zn)^(-1),respectively.This study not only offers new insights into defected carbons with graphitic valley N for ORR but also proposes novel catalyst design principles and provides a solid grasp of the built-in electric field effect on the ORR performance of defective catalysts.
文摘Bifunctional Ir catalysts for proton exchange membrane(PEM)water electrolysis offer transformative potential by streamlining electrolyzer while achieving efficient performance remains challenging due to the distinct conditions required for oxygen and hydrogen evolution reaction(OER and HER).Herein,we propose a theory-directed design of Ir-based bifunctional catalysts,Ir nanoparticles supported on mesoporous carbon spheres embedded with MoSe_(2)(Ir/MoSe_(2)@MCS),leveraging a work function(WF)-induced spontaneous built-in electric field to enhance catalytic performance.They demonstrate exceptional kinetics for both OER and HER,and potential application in the practical PEM electrolyzer,showcasing the effectiveness of this innovative approach.Low overpotentials of 252 mV for OER and 28 mV for HER to drive 10 mA cm^(-2)were observed,and the PEM electrolyzer showed the current density of 2 A cm^(-2)at 1.87 V and maintained stable activity at 1.65 V for over 30 h to deliver 1 A cm^(-2).Density functional theory calculations reveal that the WF difference at Ir/MoSe_(2)interface induces a spontaneous built-in electric field with asymmetric charge distributions,that modulate the electronic environment and d-band center of Ir promoting bifunctional active phase formation.This significantly lowers reaction barriers for water splitting by balancing intermediate adsorption,endowing the bifunctional activity.
基金financially supported by the National Natural Science Foundation of China(Nos.52271034,52301058 and 52471042)the National MCF Energy R&D Program of China(No.2018YFE0306102)+1 种基金the China Postdoctoral Science Foundation(No.2023M732183)the Postdoctoral Fellowship Program of CPSF(No.GZB20230399).
文摘To develop a melting-based larger-scale fabrication process for oxide dispersion strengthened(ODS)steel,this study proposed a method of zone melting with built-in precursor powder(ZMPP),followed by hot forging and aging treatments.A 50 kg ingot was successfully prepared,highlighting the scalability of this innovative process.Microstructural analysis revealed a predominantly lath martensite matrix with a small amount of ferrite in the hot-forged ODS steel,without oxide particle aggregation.Aging at 750℃ resulted in the formation of sub-micron-sized Cr_(23)C_(6) particles at grain boundaries and martensitic lath interfaces,accompanied by a high-density(7.64×1023 m^(-3))nano-scale(~6 nm)Y-Si-O complex oxides after 25 h.Additionally,the hot-forged sample exhibited a high yield strength(871 MPa)but limited ductility(5.0%).Aging treatments led to an increase in ductility but a decrease in yield strength.Notably,prolonged aging maintained the strength level of steels while enhancing ductility,with a 23.3% total elongation observed after 25 h.The novel ZMPP method,preparing high-quality ODS steels with uniform microstructure and good mechanical properties,provided a new avenue for large-scale production of ODS steels.
基金supported by the National Natural Science Foundation of China(No.22269010,52231007,12327804,T2321003,22088101)the Jiangxi Provincial Natural Science Foundation(No.20224BAB214021)+1 种基金the Major Research Program of Jingdezhen Ceramic Industry(No.2023ZDGG002)the Ministry of Science and Technology of China(973 Project No.2021YFA1200600).
文摘The exploration of novel multivariate heterostructures has emerged as a pivotal strategy for developing high-performance electromagnetic wave(EMW)absorption materials.However,the loss mechanism in traditional heterostructures is relatively simple,guided by empirical observations,and is not monotonous.In this work,we presented a novel semiconductor-semiconductor-metal heterostructure sys-tem,Mo-MXene/Mo-metal sulfides(metal=Sn,Fe,Mn,Co,Ni,Zn,and Cu),including semiconductor junctions and Mott-Schottky junctions.By skillfully combining these distinct functional components(Mo-MXene,MoS_(2),metal sulfides),we can engineer a multiple heterogeneous interface with superior absorption capabilities,broad effective absorption bandwidths,and ultrathin matching thickness.The successful establishment of semiconductor-semiconductor-metal heterostructures gives rise to a built-in electric field that intensifies electron transfer,as confirmed by density functional theory,which collaborates with multiple dielectric polarization mechanisms to substantially amplify EMW absorption.We detailed a successful synthesis of a series of Mo-MXene/Mo-metal sulfides featuring both semiconductor-semiconductor and semiconductor-metal interfaces.The achievements were most pronounced in Mo-MXene/Mo-Sn sulfide,which achieved remarkable reflection loss values of-70.6 dB at a matching thickness of only 1.885 mm.Radar cross-section calculations indicate that these MXene/Mo-metal sulfides have tremendous potential in practical military stealth technology.This work marks a departure from conventional component design limitations and presents a novel pathway for the creation of advanced MXene-based composites with potent EMW absorption capabilities.
基金financially supported by the National Natural Science Foundation of China(Nos.22168040 and 22162025)the Project of Science&Technology Office of Shannxi Province(No.2022JM-062)。
文摘At present,industrial synthetic ammonia was still obtained through the Hubble-Bosch process,with large energy consumption.It is a research hotspot to realize green synthetic ammonia by using solar energy.The difficulty of photocatalytic ammonia synthesis was that the photo-excited electrons have not enough energy to active N≡N.In this study,Ti was doped into BiOBr by one-step hydrothermal method,which was oxidized into TiO_(2)when the doping amount reaches the maximum,in situ forming Ti_(0.31)B_(0.69)OB/TiO_(2)composites.Benefiting from the synergistic effect of Ti doping and S-scheme heterojunction,the synthetic ammonia efficiency of Ti_(0.31)B_(0.69)OB/TiO_(2)-11.96 reached 1.643 mmol·g_(cat)^(-1)at mild conditions and without hole scavenger for up to 7 h,the efficiency of synthetic ammonia is 115 times,10.5 times and 3.3 times of that of BiOBr,Ti_(0.31)B_(0.69)OB and TiO_(2),respectively.Specifically,DFT calculation confirms that Ti doping accurately refine the electronic structure of BiOBr,facilitate nitrogen adsorption activation and reduce hydrogenation reaction energy barrier,thus accelerating the reaction kinetics of photocatalytic nitrogen reduction(NRR),Meanwhile,constructing S-scheme heterojunction boosts the separation and transfer of photogenerated electron-hole pairs,improving the reduction ability of electrons in the conduction band of TiO_(2)and the oxidation ability of holes in the valence band of Ti_(0.31)B_(0.69)OB.
基金supported by the Basic Science Center Program for Ordered Energy Conversion of the National Natural Science Foundation of China (No.51888103)the National Natural Science Foundation of China (Nos.52376209 and 52172248)+1 种基金China Postdoctoral Science Foundation (Nos.2020M673386 and 2020T130503)China Fundamental Research Funds for the Central Universities。
文摘Achieving a high carrier migration efficiency by constructing built-in electric field is one of the promising approaches for promoting photocatalytic activity. Herein, we have designed a donor-acceptor(D-A) crystalline carbon nitride(APMCN) with 4-amino-2,6-dihydroxypyrimidine(AP) as electron donor, in which the pyrimidine ring was well embedded in the heptazine ring via hydrogen-bonding effect during hydrothermal process. The APMCN shows superior charge-transfer due to giant built-in electric field(5.94times higher than pristine carbon nitride), thereby exhibiting excellent photocatalytic H_(2) evolution rate(1350 μmol/h) with a high AQY(62.8%) at 400 nm. Mechanistic analysis based on detailed experimental investigation together with theoretical analysis reveals that the excellent photocatalytic activity is attributed to the promoted charge separation by the giant internal electric field originated from the D–A structure.
基金supported by National Natural Science Foundation of China(Nos.52073199 and 52274304)。
文摘The rational design of high-performance bifunctional electrocatalysts for overall water splitting(OWS)is the key to popularize hydrogen production technology.The active metal oxyhydroxide(MOOH)formed after surface self-reconfiguration of transition metal sulfide(TMS)electrocatalyst is often regarded as the"actual catalyst"in oxygen evolution reaction(OER).Herein,an Fe doped Co S2/Mo S2hollow TMS polyhedron(Fe-Co S2/Mo S2)with rich Mott-Schottky heterojunction is reported and directly utilized as an OWS electrocatalyst.The spontaneous built-in electric field(BEF)at the heterogeneous interface regulates the electronic structure and D-band center of the catalyst.More importantly,the“TMS-MOOH”core-shell structure obtained in the KOH electrolyte shows enhanced OER properties.And the introduction of Fe ions activates the inert basal plane of Mo S2,which greatly steps up the performance of HER.Hence,the preferable Fe-CoS_(2)/MoS_(2)–400 presents superior OER activity(η_(10)=178 m V,η_(100)=375 m V),HER activity(η_(10)=92 m V)and ultra-high stability for 50 h.This work has deeply explored the catalytic mechanism of TMS and provided a new idea for the construction of efficient bifunctional catalysts.
基金supported by the National Natural Science Foundation of China(No.52072099)the Joint Guidance Project of the Natural Science Foundation of Heilongjiang Province,China(No.LH2022E093)the Team Program of the Natural Science Foundation of Heilongjiang Province,China(No.TD2021E005)。
文摘Lithium sulfur(Li-S)battery is a kind of burgeoning energy storage system with high energy density.However,the electrolyte-soluble intermediate lithium polysulfides(Li PSs)undergo notorious shuttle effect,which seriously hinders the commercialization of Li-S batteries.Herein,a unique VSe_(2)/V_(2)C heterostructure with local built-in electric field was rationally engineered from V_(2)C parent via a facile thermal selenization process.It exquisitely synergizes the strong affinity of V_(2)C with the effective electrocatalytic activity of VSe_(2).More importantly,the local built-in electric field at the heterointerface can sufficiently promote the electron/ion transport ability and eventually boost the conversion kinetics of sulfur species.The Li-S battery equipped with VSe_(2)/V_(2)C-CNTs-PP separator achieved an outstanding initial specific capacity of 1439.1 m A h g^(-1)with a high capacity retention of 73%after 100 cycles at0.1 C.More impressively,a wonderful capacity of 571.6 mA h g^(-1)was effectively maintained after 600cycles at 2 C with a capacity decay rate of 0.07%.Even under a sulfur loading of 4.8 mg cm^(-2),areal capacity still can be up to 5.6 m A h cm^(-2).In-situ Raman tests explicitly illustrate the effectiveness of VSe_(2)/V_(2)C-CNTs modifier in restricting Li PSs shuttle.Combined with density functional theory calculations,the underlying mechanism of VSe_(2)/V_(2)C heterostructure for remedying Li PSs shuttling and conversion kinetics was deciphered.The strategy of constructing VSe_(2)/V_(2)C heterocatalyst in this work proposes a universal protocol to design metal selenide-based separator modifier for Li-S battery.Besides,it opens an efficient avenue for the separator engineering of Li-S batteries.
基金National Natural Science Foundation of China(Nos.52072153 and 62004143)Key R&D Program of Hubei Province(No.2022BAA084)+2 种基金Postdoctoral Science Foundation of China(No.2021M690023)Graduate Research Innovation Program of Jiangsu Provincial(Nos.KYCX22_3694 and KYCX23_3649)Zhenjiang Key R&D Programmes(No.SH2021021).
文摘It is a challenging issue to further drive charge separation through the oriented design of Z-scheme het-erojunction in the exploitation of cost-effective photocatalytic materials.In this contribution,the unique Z-scheme 3D/2D In_(2)Se_(3)/PCN heterojunction is developed through implanting In_(2)Se_(3) microspheres on PCN nanosheets using an in situ growth technique,which acquires the effective CO generation activity from photocatalytic CO_(2) reduction(CO_(2)R).The CO yield of 4 h in the CO_(2)R reaction over the optimal In_(2)Se_(3)/PCN-15 sample reaches up to 11.40 and 2.41 times higher than that of individual PCN and In_(2)Se_(3),respectively.Such greatly enhanced photocatalytic performance is primarily the improvement of photo-generated carrier separation efficiency.To be more specific,the formed built-in electric field is signifi-cantly intensified by producing the temperature difference potential between In_(2)Se_(3) and PCN owing to the photothermoelectric effect of In_(2)Se_(3),which actuates the high-efficiency separation of photogenerated charge carriers along the Z-scheme transfer path in the In_(2)Se_(3)/PCN heterojunction.The effective strat-egy of enhancing the built-in electric field to drive photogenerated charge separation proposed in this work opens up an innovative avenue to design Z-scheme heterojunction applied to high-efficiency pho-tocatalytic reactions,such as hydrogen generation from water splitting,CO_(2)R,and degradation of organic pollutants.
基金financially supported by the National Natural Science Foundation of China(No.52304335)China Postdoctoral Science Foundation(No.2023TQ0303)+3 种基金the Postdoctoral Fellowship Program of CPSF(No.GZC20232450)the Project of Zhongyuan Critical Metals Laboratory(Nos.GJJSGFYQ202305 and GJJSGFJQ202302)the Youth Science and technology innovation of Henan Province(No.23HASTIT009)Henan Province Youth Talent Support Program(2022)。
文摘The electrochemical reaction rate strongly depends on the pH of the solution and the relatively sluggish alkaline hydrogen evolution reaction(HER)process,attributed to alterations in the type of proton donor and binding energy,has consistently presented a significant challenge.Here,we report a new method for boosting alkaline HER via spontaneous built-in electric field strategy employed on cobalt phosphide nanofibers(NFs)electrocatalyst.The anion-cation dual-introduction of V and N on the NFs not only increases the electrochemical surface area but also enhances the catalytic activity,thereby elevating the performance of alkaline HER.An investigation strategy combining experiments and calculations revealed the charge transfer law between multiple active components and the enhanced regulation mechanism of alkaline HER process,ultimately achieving a nearly twice increase in reaction overpotential of the as-fabricated catalyst at-10 mA·cm^(-2).This new approach provides a potential strategy for improving the efficiency of core catalyst for energy conversion technologies.
基金This study was supported by the National Research Foundation of Korea(NRF-2021R1A2C4001777,NRF-2022M3H4A1A04096482 and RS-2023-00229679),the National Natural Science Foundation of China(No.21965005,52363028)the Natural Science Foundation of Guangxi Province(2021GXNSFAA076001)the Guangxi Technology Base and Talent Subject(GUIKE AD20297039).
文摘Most advanced hydrogen evolution reaction(HER)catalysts show high activity under alkaline conditions.However,the performance deteriorates at a natural and acidic pH,which is often problematic in practical applications.Herein,a rhenium(Re)sulfide–transition-metal dichalcogenide heterojunc-tion catalyst with Re-rich vacancies(NiS_(2)-ReS_(2)-V)has been constructed.The optimized catalyst shows extraordinary electrocatalytic HER performance over a wide range of pH,with ultralow overpotentials of 42,85,and 122 mV under alkaline,acidic,and neutral conditions,respectively.Moreover,the two-electrode system with NiS_(2)-ReS_(2)-V1 as the cathode provides a voltage of 1.73 V at 500 mA cm^(-2),superior to industrial systems.Besides,the open-circuit voltage of a single Zn–H_(2)O cell with NiS_(2)-ReS_(2)-V1 as the cathode can reach an impressive 90.9% of the theoretical value,with a maximum power density of up to 31.6 mW cm^(-2).Moreover,it shows remarkable stability,with sustained discharge for approximately 120 h at 10 mA cm^(-2),significantly outperforming commercial Pt/C catalysts under the same conditions in all aspects.A series of systematic characterizations and theoretical calculations demonstrate that Re vacancies on the heterojunction interface would generate a stronger built-in electric field,which profoundly affects surface charge distribution and subsequently enhances HER performance.
基金financially supported by the Industrial Technology Innovation Program of IMAST(No.2023JSYD 01003)the National Natural Science Foundation of China(Nos.52104292 and U2341209)。
文摘Constructing a built-in electric field has emerged as a key strategy for enhancing charge separation and transfer,thereby improving photoelectrochemical performance.Recently,considerable efforts have been devoted to this endeavor.This review systematically summarizes the impact of built-in electric fields on enhancing charge separation and transfer mechanisms,focusing on the modulation of built-in electric fields in terms of depth and orderliness.First,mechanisms and tuning strategies for built-in electric fields are explored.Then,the state-of-the-art works regarding built-in electric fields for modulating charge separation and transfer are summarized and categorized according to surface and interface depth.Finally,current strategies for constructing bulk built-in electric fields in photoelectrodes are explored,and insights into future developments for enhancing charge separation and transfer in high-performance photoelectrochemical applications are provided.
基金financially supported by the Natural Science Foundation of Shandong Province(ZR2021QB055,ZR2023MB017,ZR2022JQ10)the National Natural Science Foundation of China(21901146,220781792,22274083)。
文摘Constructing heterostructure is considered as an effective strategy to address the sluggish electronic and ionic kinetics of anode materials for sodium ion batteries(SIBs).However,realizing the orientated growth and uniform distribution of the heterostructure is still a great challenge.Herein,the regulated novel CoSe_(2)/NiSe_(2)heterostructure confined in N-doped carbon nanofibers(CoSe_(2)/NiSe_(2)@N-C)are prepared by using Co/Ni-ZIF template,in which,the CoSe_(2)/NiSe_(2)heterostructures realize uniform distribution on a micro level.Benefiting from the unique heterostructure and N-doped carbon nanofibers,the CoSe_(2)/NiSe_(2)@N-C deliveries superior rate capability and durable cycle lifespan with a reversible capacity of 400.5 mA h g^(-1)after 5000 cycles at 2 A g^(-1).The Na-ion full battery with CoSe_(2)/NiSe_(2)@N-C anode and layered oxide cathode displays a remarkable energy density of 563 W h kg^(-1)with 241.1 W kg^(-1)at 0.1 A g^(-1).The theoretical calculations disclose that the periodic and directional built-in electric-field along with the heterointerfaces of CoSe_(2)/NiSe_(2)@N-C can accelerate electrochemical reaction kinetics.The in(ex)situ experimental measurements reveal the reversible conversion reaction and stable structure of CoSe_(2)/NiSe_(2)@N-C during Na+insertion/extraction.The study highlights the potential ability of precisely controlled heterostructure to stimulate the electrochemical performances of advanced anode for SIBs.
基金supported by the faculty startup funds from the Yangzhou Universitythe Natural Science Foundation of Jiangsu Province(BK20210821)+1 种基金the National Natural Science Foundation of China(22102141)the Lvyangjinfeng Talent Program of Yangzhou。
文摘Developing efficient energy storage for sodium-ion batteries(SIBs)by creating high-performance heterojunctions and understanding their interfacial interaction at the atomic/molecular level holds promise but is also challenging.Besides,sluggish reaction kinetics at low temperatures restrict the operation of SIBs in cold climates.Herein,cross-linking nanoarchitectonics of WS_(2)/Ti_(3)C_(2)T_(x) heterojunction,featuring built-in electric field(BIEF),have been developed,employing as a model to reveal the positive effect of heterojunction design and BIEF for modifying the reaction kinetics and electrochemical activity.Particularly,the theoretical analysis manifests the discrepancy in work functions leads to the electronic flow from the electron-rich Ti_(3)C_(2)T_(x) to layered WS_(2),spontaneously forming the BIEF and“ion reservoir”at the heterogeneous interface.Besides,the generation of cross-linking pathways further promotes the transportation of electrons/ions,which guarantees rapid diffusion kinetics and excellent structure coupling.Consequently,superior sodium storage performance is obtained for the WS_(2)/Ti_(3)C_(2)T_(x) heterojunction,with only 0.2%decay per cycle at 5.0 A g^(-1)(25℃)up to 1000 cycles and a high capacity of 293.5 mA h g^(-1)(0.1A g^(-1)after 100 cycles)even at-20℃.Importantly,the spontaneously formed BIEF,accompanied by“ion reservoir”,in heterojunction provides deep understandings of the correlation between structure fabricated and performance obtained.
基金support of the National Natural Science Foundation of China(Nos.52170082,51938007,21906076,and 52300081)the Natural Science Foundation of Jiangxi Province(No.20212ACB203008)。
文摘Electrocatalytic reduction of nitrate(NO_(3)^(-))at low concentrations to ammonia(NH_(4)^(+))still faces chal lenges of low NO_(3)^(-)conversion and NH_(4)^(+)selectivity due to the sluggish mass transfer and insufficien atomic hydrogen(H^(*))supply.Herein,we propose CuO/NiO heterojunction with the assistance of a built-in electric field to enhance mass transfer and H^(*)provision.The built-in electric field in Cu O/Ni O is success fully formed as demonstrated by X-ray photoelectron spectroscopy and ultraviolet photoemission spec troscopy.The results reveal that Cu O/Ni O achieves high NO_(3)^(-)reduction activity(100%)and NH_(4)^(+)selec tivity(100%)under low NO_(3)^(-)concentration conditions(100 mg/L NO_(3)^(-),ca.22.6 mg/L NO_(3)^(-)-N),which i superior to that of many recently reported electrocatalysts.Density functional theory calculations furthe clarify that the built-in electric field triggers the enhanced adsorption of reactants on CuO/NiO hetero junction interface and strong d-p orbital hybridization between reactants and CuO/NiO.Besides,the free energy diagram of hydrogen evolution reaction of CuO/NiO confirms the realization of enhanced H^(*)pro vision.Moreover,coupling experiments and consecutive cycle tests demonstrate the potential of CuO/NiO in practical applications.This work may open up a new path and guide the development of efficien electrocatalysts for electrocatalytic reduction of NO_(3)^(-)at low concentrations to NH_(4)^(+).