This paper focused on the design and optimization of automatic sprinkler fire extinguishing systems in building fire protection.It was emphasized the importance of considering various factors in design,such as fire ri...This paper focused on the design and optimization of automatic sprinkler fire extinguishing systems in building fire protection.It was emphasized the importance of considering various factors in design,such as fire risk assessment and space utilization.Optimization strategies include enhancing water and energy efficiency,using ecofriendly materials,and smart monitoring.Practical implementation and validation in different building types were presented,along with performance benchmark analysis.Balancing fire safety and resource utilization is crucial,and future research in AI driven tuning and nano materials was promising.展开更多
In high-rise building fires, the most immediate threat to passenger life and safety evacuation is the smoke inhalation. Some traditional models for smoke prevention and exhaust are analyzed and compared with the smoke...In high-rise building fires, the most immediate threat to passenger life and safety evacuation is the smoke inhalation. Some traditional models for smoke prevention and exhaust are analyzed and compared with the smoke-preventing air curtain. The rationality and the feasibility of the air curtain are theoretically expounded. The air volume, tuyere width and jet velocity in the air curtain experiment are designed according to the theoreti- cal calculation model. Experimental results indicate that the effect of air curtain to prevent smoke diffusion is re- markable as the volume ratio of air-smoke is about 0. 6, the jet angle is between 25^o and 35^o, and the jet thickness is between 25 mm and 45 mm. The efficiency of air curtain can reach 98% on the entraining effect. Meanwhile, experiments verify the theorectical calculation.展开更多
It is difficult to rescue people from outside, and emergency evacuation is still a main measure to decrease casualties in high-rise building fires. To improve evacuation efficiency, a valid and easily manipulated grou...It is difficult to rescue people from outside, and emergency evacuation is still a main measure to decrease casualties in high-rise building fires. To improve evacuation efficiency, a valid and easily manipulated grouping evacuation strategy is proposed. Occupants escape in groups according to the shortest evacuation route is determined by graph theory. In order to evaluate and find the optimal grouping, computational experiments are performed to design and simulate the evacuation processes. A case study shown the application in detail and quantitative research conclusions is obtained. The thoughts and approaches of this study can be used to guide actual high-rise building evacuation processes in future.展开更多
Architecture is the foundation of social development and one of the elements of people's life and production. With the continuous development of social economy and the continuous increase of population, the functi...Architecture is the foundation of social development and one of the elements of people's life and production. With the continuous development of social economy and the continuous increase of population, the functions assumed by buildings are also increasing day by day. Under this background, in the process of architectural design, we should not only be able to meet the most basic functions of buildings, but also increase investment in functionality, safety and stability to continuously improve the comprehensive performance of buildings. Among them, safety is a priority issue in architectural design. Once there is a problem in safety, its hidden dangers and possible losses are often difficult to measure. Building safety design involves many aspects, and building fire prevention design is one of the important contents, especially with the continuous increase of all kinds of electrical wires and appliances in buildings, it puts forward higher and higher requirements for building fire prevention capability. Therefore, in the current process of architectural design, full consideration should be given to the scientific application of architectural fire protection design, and the safety and reliability of architectural design should be continuously improved.展开更多
A multistage assessment index set is chosen based on the analysis of building fire safety system, whereby the weight of each index is determined through an analy tie.hierarchy process; a fuzzy synthetic assessment mod...A multistage assessment index set is chosen based on the analysis of building fire safety system, whereby the weight of each index is determined through an analy tie.hierarchy process; a fuzzy synthetic assessment model for the building fire safety system is constructed, and the quantified result was obtained by using hierarchy parameter judgment. This fuzzy synthetic assessment method can quantify assessment result of the building fire safety system, so thatthe fire precautions may be accurately adopted, and the serious potential risk may be avoided. The application shows that this method possesses both objectivity and feasibility.展开更多
Aiming at reducing the deficiency of the traditional fire pre-warning algorithms and the intelligent fire pre-warning algorithms such as artificial neural network,and then to improve the accuracy of fire prewarning fo...Aiming at reducing the deficiency of the traditional fire pre-warning algorithms and the intelligent fire pre-warning algorithms such as artificial neural network,and then to improve the accuracy of fire prewarning for high-rise buildings,a composite fire pre-warning controller is designed according to the characteristic( nonlinear,less historical data,many influence factors),also a high-rise building fire pre-warning model is set up based on the support vector regression( SV R). Then the wood fire standard history data is applied to make empirical analysis. The research results can provide a reliable decision support framework for high-rise building fire pre-warning.展开更多
As one of the main factors affecting the rapid development of China's social economy, fire is uncontrollable and unpredictable. Especially in dealing with serious fire accidents, not only can not guarantee the saf...As one of the main factors affecting the rapid development of China's social economy, fire is uncontrollable and unpredictable. Especially in dealing with serious fire accidents, not only can not guarantee the safety of personnel and property, but also pose a threat to social development.. Therefore, in order to do a good job in social fire protection work and eliminate potential safety hazards, combining with big data technology to build intelligent fire prevention and control information system is the main direction of fire management exploration in various countries. Combined with the characteristics of big data and the successful practice in some urban building fire safety management, this paper discusses the application characteristics of big data in urban building fire safety management and the application development of big data in urban building fire safety management.展开更多
China Standardization:Can you please briefly introduce ISO,its international standards as well as your scope of work?Rachel Miller Prada:ISO is an independent non-governmental organization dedicated to developing inte...China Standardization:Can you please briefly introduce ISO,its international standards as well as your scope of work?Rachel Miller Prada:ISO is an independent non-governmental organization dedicated to developing international standards.Currently,ISO has 175 member bodies,representing 175 countries that participate in its standard development work.We have a portfolio of over 24,000 international standards,with around 100 new standards issued or existing ones revised every month.The ultimate goal of our standardization work is to support the achievement of the United Nations Sustainable Development Goals(SDGs).Every standard we develop and every task I undertake in my role contributes to these global objectives.展开更多
Curtain wall systems have evolved from aesthetic facade elements into multifunctional building envelopes that actively contribute to energy efficiency and climate responsiveness.This reviewpresents a comprehensive exa...Curtain wall systems have evolved from aesthetic facade elements into multifunctional building envelopes that actively contribute to energy efficiency and climate responsiveness.This reviewpresents a comprehensive examination of curtain walls from an energy-engineering perspective,highlighting their structural typologies(Stick and Unitized),material configurations,and integration with smart technologies such as electrochromic glazing,parametric design algorithms,and Building Management Systems(BMS).Thestudy explores the thermal,acoustic,and solar performance of curtain walls across various climatic zones,supported by comparative analyses and iconic case studies including Apple Park,Burj Khalifa,and Milad Tower.Key challenges—including installation complexity,high maintenance costs,and climate sensitivity—are critically assessed alongside proposed solutions.A central innovation of this work lies in framing curtain walls not only as passive architectural elements but as dynamic interfaces that modulate energy flows,reduce HVAC loads,and enhance occupant comfort.The reviewed data indicate that optimized curtain wall configurations—especially those integrating electrochromic glazing and BIPV modules—can achieve annual energy consumption reductions ranging fromapproximately 5%to 27%,depending on climate,control strategy,and facade typology.The findings offer a valuable reference for architects,energy engineers,and decision-makers seeking to integrate high-performance facades into future-ready building designs.展开更多
https://www.sciencedirect.com/journal/energy-and-buildings/vol/350/suppl/CV olume 350,1 January 2026[OA]( 1)Rooftop agrivoltaic powered onsite hydrogenp roduction for insulated gasochromic smart glazing and hydrogen v...https://www.sciencedirect.com/journal/energy-and-buildings/vol/350/suppl/CV olume 350,1 January 2026[OA]( 1)Rooftop agrivoltaic powered onsite hydrogenp roduction for insulated gasochromic smart glazing and hydrogen vehicles:A holistic approach to sustainabler esidential building by Shanza Neda Hussain,Aritra Ghosh,Article 116675 A bstract:The study focused on designing a sustainable buildingi nvolving rooftop agrivoltaics,advanced glazing technologies ando nsite hydrogen production for a residential property in Birmingham,UK where green hydrogen produced by harnessinge lectricity generated by agrivoltaics system on rooftop of the building is employed to change the transparency of vacuum gasochromic glazing and refuel hydrogen-powered fuel cell vehicle using storage hydrogen for a sustainable building approach.展开更多
With the development of economy and society and the growth of population,the high-rise and multi-function of commercial buildings have become an international trend.But it also poses huge fire hazards.Most of the exis...With the development of economy and society and the growth of population,the high-rise and multi-function of commercial buildings have become an international trend.But it also poses huge fire hazards.Most of the existing studies’research objects are predominantly high-rise residential buildings,without considering the impact of different functional zones(Standard floor,entertainment zone,office zone,equipment room and so on)and personnel distribution of commercial buildings evacuation.And the influence of using elevators to carry evacuees on the refuge floor on personnel evacuation is rarely studied.In this work,the fire scenario of the Yangtze River InternationalConferenceCenter,a high-rise commercial building,is simulated with the Pyrosim programto get the necessary parameters under various fire scenarios and to calculate the available evacuation time TASET.At the same time,according to the complex functional zone of the commercial high-rise building and the distribution of people in different time periods,a reasonable evacuation strategy is developed and simulated by Pathfinder software.The results indicate that unorganized evacuation will lead individuals to take the erroneous evacuation route,resulting in a vast region of congestion;comprehensive consideration of the time staggering and the reasonable distribution of evacuation routes can significantly improve evacuation efficiency,and the TRSET of night and working hours is 36.6%–55.3%and 49.9%–79.6%of unorganized evacuation,respectively.For the night fire,60%of the people use elevator-refuge floor to evacuate is the optimal strategy;for the fire during working hours,half of the people on standard floors use the elevator to evacuate and people on multifunctional floors evacuate in four batches is the best plan.The results of this study can provide viable solutions and a foundation for analyzing the fire evacuation and safety of big commercial high-rise buildings.展开更多
Based on the basic idea of zone modeling method, a two-layer zone model is developed and programmed to calculate the fire growth and smoke spread in a multi-room building subjected to a fire.The related predictiVe equ...Based on the basic idea of zone modeling method, a two-layer zone model is developed and programmed to calculate the fire growth and smoke spread in a multi-room building subjected to a fire.The related predictiVe equations, numerical simulation method and sub-models implemented in this model are concisely described. A set of experimental data from Cooper’s work at NIST for a two-room compatment fire are chosen for comparison with the model and program, and the numerical results fundamentally agree well with the experimental data. Then, an example of numerical calculation of a two-story building fire is presented, and the relevant output results are given and analyzed.展开更多
Fire simulations and sensors are widely used in building fires,various data such as temperature,CO and CO2 concentration,visibility can be obtained by sensors and sensor-based simulation. It is important to generate a...Fire simulations and sensors are widely used in building fires,various data such as temperature,CO and CO2 concentration,visibility can be obtained by sensors and sensor-based simulation. It is important to generate a risk map based on such data so that we can use it to estimate safety of the building. In this paper,we propose a method to generate a dynamical,integrated risk map using sensor readings in a building fire. Such risk evaluation model is developed using similarity comparison between the space state and dangerous state by a likelihood distance calculating and data grouping from a two-step cluster method. The risk evaluation model considers the integrated influence on the occupants in the zone from high temperature,lack of oxygen,toxic and harmful gases and shows the relative fire risk map at certain time. Based on the simulation study,it is proved that multi-factor fire risk analysis would be more objective and accurate than single factor and two-factor risk analysis and the fire risk evaluation model can generate a risk map and provide the classification information and the whole building risk statistic results to support evacuation command and control.展开更多
Since serious fire occurred frequently in recent years, fire safety of high-rise building has attracted extensive attention. A National Basic Research Program (973 program) of China has been set up by Ministry of Sc...Since serious fire occurred frequently in recent years, fire safety of high-rise building has attracted extensive attention. A National Basic Research Program (973 program) of China has been set up by Ministry of Science and Technology (MOST) of China in 2012 to meet the research requirements of fire safety in high-rise buildings. This paper reviews the current state of art of research on fire dynamics of high-rise buildings, including the up-to-date progress of this project. The following three subjects on fire dynamics of high-rise buildings are addressed in this review: the ejected flame and fire plume behavior over facade out of the compartment window, the flame spread behavior over facade thermal insulation materiMs, and the buoyancy-driven smoke transportation characteristics along long vertical channels in high-rise buildings. Prospective future works are discussed and summarized.展开更多
The discovery of oil and gas in Uganda has attracted many investors, leading to increase in fuel/gas distributing companies and fueling stations creating rapid demand for land to locate the stations compared to availa...The discovery of oil and gas in Uganda has attracted many investors, leading to increase in fuel/gas distributing companies and fueling stations creating rapid demand for land to locate the stations compared to available open urban land. Because of the explosive and combustion characteristics of fuel stored and dispensed at stations, several studies have been conducted on different fires at fueling stations such as static fire, jet fire, vapor cloud explosions, open fires, etc. but there was need to assess spatially the risk of fire from stations, its consequences and sovereignty on buildings surrounding them. This was done basing on seven parameters—proximity of buildings to stations, building materials, distance between buildings, wind speed, temperature, slope and vegetation. Analytical hierarchy process and pairwise comparison were used to weight the parameters based on their relative importance. Weighted sum tool was applied to generate the fire risk maps for the quarters—December to February, March to May, June to August, and September to November from 2008 to 2013. The parameters were overlaid with the buildings in each risk zone for all the four quarters and their influences determined. The highest contributors were proximity of the buildings to stations, building materials and separation between buildings. Most of the affected buildings were made of rusted corrugated iron sheets and wood;the separation distance from one building to another ranged from 0 - 4 m. Most of buildings located within 100 m from stations were at moderate risk level and within 50 m were at highest risk level. The period of December to February and June to August had the highest risk. The findings can be used to guide planners and policy makers on building location vs. material vs. separation. It can also guide developers on where, when and how to carry out their developments.展开更多
Spread of fire smoke in the elevator shaft of a high-rise building is influ- enced by many driving facts. We simulate smoke spreading in the elevator shaft, stair room, and pre-chamber with and without different suppl...Spread of fire smoke in the elevator shaft of a high-rise building is influ- enced by many driving facts. We simulate smoke spreading in the elevator shaft, stair room, and pre-chamber with and without different supplied pressurized air. The simulation shows that smoke moves very fast in the elevator shaft. When a 12 floor high-rise building is in fire, smoke can fill up the elevator shaft in less than 1.5 min after a fire started, temperature in the elevator shaft can be higher than 187℃ in 5 rain, and the concentration of CO can also reach a high level. The elevator shaft has a very low visibility in less than about 100 s.展开更多
The concept of the green building as sustainable construction has continuously been studied,developed and distributed.Technologies to realize the green building to use less energy,while protecting the environment and ...The concept of the green building as sustainable construction has continuously been studied,developed and distributed.Technologies to realize the green building to use less energy,while protecting the environment and improving the quality of residences have increasingly been used in not only new buildings in the design phase,but also in existing ones to reduce the energy and environment loads.Therefore,the number of green buildings is increasing.However,there are some cases that green building technologies for low energy use,low carbon emissions and pleasant indoor environment violate fire safety standards;so it is imminent to address the issue.Furthermore,unlike continuous studies on development and distribution of green buildings,there are few studies on the issue because of the lack of fire safety awareness of green buildings.Therefore,this study intends to raise the awareness of fire safety awareness of green buildings through theoretical consideration and analysis of cases about green building technologies.展开更多
With rapid economic and social development in China, high-rise buildings have continuously sprung up since 2006. However, several big fire accidents in high-rise buildings such as the Beijing Television Cultural Cente...With rapid economic and social development in China, high-rise buildings have continuously sprung up since 2006. However, several big fire accidents in high-rise buildings such as the Beijing Television Cultural Center fire in 2009 and the Shanghai Jing'an District fire in 2010 etc. have claimed people's lives and caused huge amounts of economic and property losses,展开更多
Fire effects can be one of the most harmful conditions that any building may experience throughout its service life. Developing practical protection methods and concepts against potential fire disasters in buildings h...Fire effects can be one of the most harmful conditions that any building may experience throughout its service life. Developing practical protection methods and concepts against potential fire disasters in buildings has been an important consideration in design of buildings in recent decades. Rapid developments in technology have heightened the demand for new and innovative fire protection systems in comparison with conventional and traditional methods. Such a need for new technologies is in particular of greater importance when it comes to existing buildings. Retrofitting an existing building for fire safety is a greater challenge compared with designing a new building using materials and components that have more desirable and superior fire rating to begin with. Furthermore, strategies to design a new building that includes state-of-the-art fire safety features are also different from solutions that may be more suitable for retrofitting an existing building. This paper presents a review of the literature concerning conventional and new or innovative retrofitting methods for fire safety of buildings. Advantages and disadvantages of different fire protection devices and methods as available and understood from the literature are mentioned. Study of fire safety systems shows that each has its drawbacks. Comparison of the results shows that disadvantages of a solitary system for retrofitting against fire can be improved by using a combination of several fire safety concepts or methods simultaneously.展开更多
In the analysis and research of few cases on the characteristics of vertical"burning"and spreading of fire in high-rise buildings in China and overseas,the mechanism of vertical spreading of fire along exter...In the analysis and research of few cases on the characteristics of vertical"burning"and spreading of fire in high-rise buildings in China and overseas,the mechanism of vertical spreading of fire along external wall is caused by hot pressing and wind pressure existing in high-rise buildings.The use of external wall combustible materials and near-window combustible items resulted in the formation of high temperature pyrotechnics and the burning of the external wall.Besides,due to the lack of fire-fighting measurements in high-rise building,it is recommended that the external wall of the high-rise building should be equipped with vertical fire-proof partitioning and non-combustible materials by setting up an automatic fire-fighting water curtain system along the vertical section of the external wall and above the indoor window.Therefore,the automatic sprinkler can be set up to prevent the fire from spreading vertically along the external wall of the building effectively.展开更多
文摘This paper focused on the design and optimization of automatic sprinkler fire extinguishing systems in building fire protection.It was emphasized the importance of considering various factors in design,such as fire risk assessment and space utilization.Optimization strategies include enhancing water and energy efficiency,using ecofriendly materials,and smart monitoring.Practical implementation and validation in different building types were presented,along with performance benchmark analysis.Balancing fire safety and resource utilization is crucial,and future research in AI driven tuning and nano materials was promising.
文摘In high-rise building fires, the most immediate threat to passenger life and safety evacuation is the smoke inhalation. Some traditional models for smoke prevention and exhaust are analyzed and compared with the smoke-preventing air curtain. The rationality and the feasibility of the air curtain are theoretically expounded. The air volume, tuyere width and jet velocity in the air curtain experiment are designed according to the theoreti- cal calculation model. Experimental results indicate that the effect of air curtain to prevent smoke diffusion is re- markable as the volume ratio of air-smoke is about 0. 6, the jet angle is between 25^o and 35^o, and the jet thickness is between 25 mm and 45 mm. The efficiency of air curtain can reach 98% on the entraining effect. Meanwhile, experiments verify the theorectical calculation.
基金supported by Beijing University of Civil Engineering and Architecture Nature Science(ZF16078,X18067)
文摘It is difficult to rescue people from outside, and emergency evacuation is still a main measure to decrease casualties in high-rise building fires. To improve evacuation efficiency, a valid and easily manipulated grouping evacuation strategy is proposed. Occupants escape in groups according to the shortest evacuation route is determined by graph theory. In order to evaluate and find the optimal grouping, computational experiments are performed to design and simulate the evacuation processes. A case study shown the application in detail and quantitative research conclusions is obtained. The thoughts and approaches of this study can be used to guide actual high-rise building evacuation processes in future.
文摘Architecture is the foundation of social development and one of the elements of people's life and production. With the continuous development of social economy and the continuous increase of population, the functions assumed by buildings are also increasing day by day. Under this background, in the process of architectural design, we should not only be able to meet the most basic functions of buildings, but also increase investment in functionality, safety and stability to continuously improve the comprehensive performance of buildings. Among them, safety is a priority issue in architectural design. Once there is a problem in safety, its hidden dangers and possible losses are often difficult to measure. Building safety design involves many aspects, and building fire prevention design is one of the important contents, especially with the continuous increase of all kinds of electrical wires and appliances in buildings, it puts forward higher and higher requirements for building fire prevention capability. Therefore, in the current process of architectural design, full consideration should be given to the scientific application of architectural fire protection design, and the safety and reliability of architectural design should be continuously improved.
文摘A multistage assessment index set is chosen based on the analysis of building fire safety system, whereby the weight of each index is determined through an analy tie.hierarchy process; a fuzzy synthetic assessment model for the building fire safety system is constructed, and the quantified result was obtained by using hierarchy parameter judgment. This fuzzy synthetic assessment method can quantify assessment result of the building fire safety system, so thatthe fire precautions may be accurately adopted, and the serious potential risk may be avoided. The application shows that this method possesses both objectivity and feasibility.
基金Supported by the National Natural Science Foundation of China(11072035)
文摘Aiming at reducing the deficiency of the traditional fire pre-warning algorithms and the intelligent fire pre-warning algorithms such as artificial neural network,and then to improve the accuracy of fire prewarning for high-rise buildings,a composite fire pre-warning controller is designed according to the characteristic( nonlinear,less historical data,many influence factors),also a high-rise building fire pre-warning model is set up based on the support vector regression( SV R). Then the wood fire standard history data is applied to make empirical analysis. The research results can provide a reliable decision support framework for high-rise building fire pre-warning.
文摘As one of the main factors affecting the rapid development of China's social economy, fire is uncontrollable and unpredictable. Especially in dealing with serious fire accidents, not only can not guarantee the safety of personnel and property, but also pose a threat to social development.. Therefore, in order to do a good job in social fire protection work and eliminate potential safety hazards, combining with big data technology to build intelligent fire prevention and control information system is the main direction of fire management exploration in various countries. Combined with the characteristics of big data and the successful practice in some urban building fire safety management, this paper discusses the application characteristics of big data in urban building fire safety management and the application development of big data in urban building fire safety management.
文摘China Standardization:Can you please briefly introduce ISO,its international standards as well as your scope of work?Rachel Miller Prada:ISO is an independent non-governmental organization dedicated to developing international standards.Currently,ISO has 175 member bodies,representing 175 countries that participate in its standard development work.We have a portfolio of over 24,000 international standards,with around 100 new standards issued or existing ones revised every month.The ultimate goal of our standardization work is to support the achievement of the United Nations Sustainable Development Goals(SDGs).Every standard we develop and every task I undertake in my role contributes to these global objectives.
文摘Curtain wall systems have evolved from aesthetic facade elements into multifunctional building envelopes that actively contribute to energy efficiency and climate responsiveness.This reviewpresents a comprehensive examination of curtain walls from an energy-engineering perspective,highlighting their structural typologies(Stick and Unitized),material configurations,and integration with smart technologies such as electrochromic glazing,parametric design algorithms,and Building Management Systems(BMS).Thestudy explores the thermal,acoustic,and solar performance of curtain walls across various climatic zones,supported by comparative analyses and iconic case studies including Apple Park,Burj Khalifa,and Milad Tower.Key challenges—including installation complexity,high maintenance costs,and climate sensitivity—are critically assessed alongside proposed solutions.A central innovation of this work lies in framing curtain walls not only as passive architectural elements but as dynamic interfaces that modulate energy flows,reduce HVAC loads,and enhance occupant comfort.The reviewed data indicate that optimized curtain wall configurations—especially those integrating electrochromic glazing and BIPV modules—can achieve annual energy consumption reductions ranging fromapproximately 5%to 27%,depending on climate,control strategy,and facade typology.The findings offer a valuable reference for architects,energy engineers,and decision-makers seeking to integrate high-performance facades into future-ready building designs.
文摘https://www.sciencedirect.com/journal/energy-and-buildings/vol/350/suppl/CV olume 350,1 January 2026[OA]( 1)Rooftop agrivoltaic powered onsite hydrogenp roduction for insulated gasochromic smart glazing and hydrogen vehicles:A holistic approach to sustainabler esidential building by Shanza Neda Hussain,Aritra Ghosh,Article 116675 A bstract:The study focused on designing a sustainable buildingi nvolving rooftop agrivoltaics,advanced glazing technologies ando nsite hydrogen production for a residential property in Birmingham,UK where green hydrogen produced by harnessinge lectricity generated by agrivoltaics system on rooftop of the building is employed to change the transparency of vacuum gasochromic glazing and refuel hydrogen-powered fuel cell vehicle using storage hydrogen for a sustainable building approach.
基金the grant fromthe Key Technologies Research and Development Program(Grant No.2021YFF0602005)the National Natural Science Foundation of China(No.51678135)the Fundamental Research Funds for the Central Universities(Nos.2242022k30031,2242022k30033).
文摘With the development of economy and society and the growth of population,the high-rise and multi-function of commercial buildings have become an international trend.But it also poses huge fire hazards.Most of the existing studies’research objects are predominantly high-rise residential buildings,without considering the impact of different functional zones(Standard floor,entertainment zone,office zone,equipment room and so on)and personnel distribution of commercial buildings evacuation.And the influence of using elevators to carry evacuees on the refuge floor on personnel evacuation is rarely studied.In this work,the fire scenario of the Yangtze River InternationalConferenceCenter,a high-rise commercial building,is simulated with the Pyrosim programto get the necessary parameters under various fire scenarios and to calculate the available evacuation time TASET.At the same time,according to the complex functional zone of the commercial high-rise building and the distribution of people in different time periods,a reasonable evacuation strategy is developed and simulated by Pathfinder software.The results indicate that unorganized evacuation will lead individuals to take the erroneous evacuation route,resulting in a vast region of congestion;comprehensive consideration of the time staggering and the reasonable distribution of evacuation routes can significantly improve evacuation efficiency,and the TRSET of night and working hours is 36.6%–55.3%and 49.9%–79.6%of unorganized evacuation,respectively.For the night fire,60%of the people use elevator-refuge floor to evacuate is the optimal strategy;for the fire during working hours,half of the people on standard floors use the elevator to evacuate and people on multifunctional floors evacuate in four batches is the best plan.The results of this study can provide viable solutions and a foundation for analyzing the fire evacuation and safety of big commercial high-rise buildings.
文摘Based on the basic idea of zone modeling method, a two-layer zone model is developed and programmed to calculate the fire growth and smoke spread in a multi-room building subjected to a fire.The related predictiVe equations, numerical simulation method and sub-models implemented in this model are concisely described. A set of experimental data from Cooper’s work at NIST for a two-room compatment fire are chosen for comparison with the model and program, and the numerical results fundamentally agree well with the experimental data. Then, an example of numerical calculation of a two-story building fire is presented, and the relevant output results are given and analyzed.
基金supported by the National Natural Science Foundation of China(Grant No.70833003)China Postdoctoral Science Foundation(Grant No.20100470114)the Tsinghua-UTC Research Institute for Inte-grated Building Energy,Safety and Control Systems,and the United Technology Research Center.
文摘Fire simulations and sensors are widely used in building fires,various data such as temperature,CO and CO2 concentration,visibility can be obtained by sensors and sensor-based simulation. It is important to generate a risk map based on such data so that we can use it to estimate safety of the building. In this paper,we propose a method to generate a dynamical,integrated risk map using sensor readings in a building fire. Such risk evaluation model is developed using similarity comparison between the space state and dangerous state by a likelihood distance calculating and data grouping from a two-step cluster method. The risk evaluation model considers the integrated influence on the occupants in the zone from high temperature,lack of oxygen,toxic and harmful gases and shows the relative fire risk map at certain time. Based on the simulation study,it is proved that multi-factor fire risk analysis would be more objective and accurate than single factor and two-factor risk analysis and the fire risk evaluation model can generate a risk map and provide the classification information and the whole building risk statistic results to support evacuation command and control.
基金supported by National Basic Research Program of China (2012CB719702)
文摘Since serious fire occurred frequently in recent years, fire safety of high-rise building has attracted extensive attention. A National Basic Research Program (973 program) of China has been set up by Ministry of Science and Technology (MOST) of China in 2012 to meet the research requirements of fire safety in high-rise buildings. This paper reviews the current state of art of research on fire dynamics of high-rise buildings, including the up-to-date progress of this project. The following three subjects on fire dynamics of high-rise buildings are addressed in this review: the ejected flame and fire plume behavior over facade out of the compartment window, the flame spread behavior over facade thermal insulation materiMs, and the buoyancy-driven smoke transportation characteristics along long vertical channels in high-rise buildings. Prospective future works are discussed and summarized.
文摘The discovery of oil and gas in Uganda has attracted many investors, leading to increase in fuel/gas distributing companies and fueling stations creating rapid demand for land to locate the stations compared to available open urban land. Because of the explosive and combustion characteristics of fuel stored and dispensed at stations, several studies have been conducted on different fires at fueling stations such as static fire, jet fire, vapor cloud explosions, open fires, etc. but there was need to assess spatially the risk of fire from stations, its consequences and sovereignty on buildings surrounding them. This was done basing on seven parameters—proximity of buildings to stations, building materials, distance between buildings, wind speed, temperature, slope and vegetation. Analytical hierarchy process and pairwise comparison were used to weight the parameters based on their relative importance. Weighted sum tool was applied to generate the fire risk maps for the quarters—December to February, March to May, June to August, and September to November from 2008 to 2013. The parameters were overlaid with the buildings in each risk zone for all the four quarters and their influences determined. The highest contributors were proximity of the buildings to stations, building materials and separation between buildings. Most of the affected buildings were made of rusted corrugated iron sheets and wood;the separation distance from one building to another ranged from 0 - 4 m. Most of buildings located within 100 m from stations were at moderate risk level and within 50 m were at highest risk level. The period of December to February and June to August had the highest risk. The findings can be used to guide planners and policy makers on building location vs. material vs. separation. It can also guide developers on where, when and how to carry out their developments.
基金supported by the National Basic Research Program of China(2012CB719703)
文摘Spread of fire smoke in the elevator shaft of a high-rise building is influ- enced by many driving facts. We simulate smoke spreading in the elevator shaft, stair room, and pre-chamber with and without different supplied pressurized air. The simulation shows that smoke moves very fast in the elevator shaft. When a 12 floor high-rise building is in fire, smoke can fill up the elevator shaft in less than 1.5 min after a fire started, temperature in the elevator shaft can be higher than 187℃ in 5 rain, and the concentration of CO can also reach a high level. The elevator shaft has a very low visibility in less than about 100 s.
基金Funded by the National Research Foundation of Korea (NRF) from the Korea government (MEST) under grant No.201-00029196
文摘The concept of the green building as sustainable construction has continuously been studied,developed and distributed.Technologies to realize the green building to use less energy,while protecting the environment and improving the quality of residences have increasingly been used in not only new buildings in the design phase,but also in existing ones to reduce the energy and environment loads.Therefore,the number of green buildings is increasing.However,there are some cases that green building technologies for low energy use,low carbon emissions and pleasant indoor environment violate fire safety standards;so it is imminent to address the issue.Furthermore,unlike continuous studies on development and distribution of green buildings,there are few studies on the issue because of the lack of fire safety awareness of green buildings.Therefore,this study intends to raise the awareness of fire safety awareness of green buildings through theoretical consideration and analysis of cases about green building technologies.
文摘With rapid economic and social development in China, high-rise buildings have continuously sprung up since 2006. However, several big fire accidents in high-rise buildings such as the Beijing Television Cultural Center fire in 2009 and the Shanghai Jing'an District fire in 2010 etc. have claimed people's lives and caused huge amounts of economic and property losses,
文摘Fire effects can be one of the most harmful conditions that any building may experience throughout its service life. Developing practical protection methods and concepts against potential fire disasters in buildings has been an important consideration in design of buildings in recent decades. Rapid developments in technology have heightened the demand for new and innovative fire protection systems in comparison with conventional and traditional methods. Such a need for new technologies is in particular of greater importance when it comes to existing buildings. Retrofitting an existing building for fire safety is a greater challenge compared with designing a new building using materials and components that have more desirable and superior fire rating to begin with. Furthermore, strategies to design a new building that includes state-of-the-art fire safety features are also different from solutions that may be more suitable for retrofitting an existing building. This paper presents a review of the literature concerning conventional and new or innovative retrofitting methods for fire safety of buildings. Advantages and disadvantages of different fire protection devices and methods as available and understood from the literature are mentioned. Study of fire safety systems shows that each has its drawbacks. Comparison of the results shows that disadvantages of a solitary system for retrofitting against fire can be improved by using a combination of several fire safety concepts or methods simultaneously.
文摘In the analysis and research of few cases on the characteristics of vertical"burning"and spreading of fire in high-rise buildings in China and overseas,the mechanism of vertical spreading of fire along external wall is caused by hot pressing and wind pressure existing in high-rise buildings.The use of external wall combustible materials and near-window combustible items resulted in the formation of high temperature pyrotechnics and the burning of the external wall.Besides,due to the lack of fire-fighting measurements in high-rise building,it is recommended that the external wall of the high-rise building should be equipped with vertical fire-proof partitioning and non-combustible materials by setting up an automatic fire-fighting water curtain system along the vertical section of the external wall and above the indoor window.Therefore,the automatic sprinkler can be set up to prevent the fire from spreading vertically along the external wall of the building effectively.