Phase-change material(PCM)is widely used in thermal management due to their unique thermal behavior.However,related research in thermal rectifier is mainly focused on exploring the principles at the fundamental device...Phase-change material(PCM)is widely used in thermal management due to their unique thermal behavior.However,related research in thermal rectifier is mainly focused on exploring the principles at the fundamental device level,which results in a gap to real applications.Here,we propose a controllable thermal rectification design towards building applications through the direct adhesion of composite thermal rectification material(TRM)based on PCM and reduced graphene oxide(rGO)aerogel to ordinary concrete walls(CWs).The design is evaluated in detail by combining experiments and finite element analysis.It is found that,TRM can regulate the temperature difference on both sides of the TRM/CWs system by thermal rectification.The difference in two directions reaches to 13.8 K at the heat flow of 80 W/m^(2).In addition,the larger the change of thermal conductivity before and after phase change of TRM is,the more effective it is for regulating temperature difference in two directions.The stated technology has a wide range of applications for the thermal energy control in buildings with specific temperature requirements.展开更多
Computer based automation and control systems are becoming increasingly important in smart sustainable buildings,often referred to as automated buildings(ABs),in order to automatically control,optimize and supervise a...Computer based automation and control systems are becoming increasingly important in smart sustainable buildings,often referred to as automated buildings(ABs),in order to automatically control,optimize and supervise a wide range of building performance applications over a network while minimizing energy consumption and associated green house gas emission.This technology generally refers to building automation and control systems(BACS)architecture.Instead of costly and time-consuming experiments,this paper focuses on development and design of a distributed dynamic simulation environment with the capability to represent BACS architecture in simulation by run-time coupling two or more different software tools over a network.This involves using distributed dynamic simulations as means to analyze the performance and enhance networked real-time control systems in ABs and improve the functions of real BACS technology.The application and capability of this new dynamic simulation environment are demonstrated by an experimental design,in this paper.展开更多
Large language models(LLMs)are gaining attention due to their potential to enhance efficiency and sustainability in the building domain,a critical area for reducing global carbon emissions.Built on transformer archite...Large language models(LLMs)are gaining attention due to their potential to enhance efficiency and sustainability in the building domain,a critical area for reducing global carbon emissions.Built on transformer architectures,LLMs excel at text generation and data analysis,enabling applications such as automated energy model generation,energy management optimization,and fault detection and diagnosis.These models can potentially streamline complex workflows,enhance decision-making,and improve energy efficiency.However,integrating LLMs into building energy systems poses challenges,including high computational demands,data preparation costs,and the need for domain-specific customization.This perspective paper explores the role of LLMs in the building energy system sector,highlighting their potential applications and limitations.We propose a development roadmap built on in-context learning,domain-specific fine-tuning,retrieval augmented generation,and multimodal integration to enhance LLMs’customization and practical use in this field.This paper aims to spark ideas for bridging the gap between LLMs capabilities and practical building applications,offering insights into the future of LLM-driven methods in building energy applications.展开更多
Buildings contribute to 33%of total global energy consumption,which corresponds to 38%of greenhouse gas emissions.Enhancing building’s energy efficiency remains predominant in mitigating global warming.Advance-ments ...Buildings contribute to 33%of total global energy consumption,which corresponds to 38%of greenhouse gas emissions.Enhancing building’s energy efficiency remains predominant in mitigating global warming.Advance-ments in thermal energy storage(TES)techniques using phase change material(PCM)have gained much attention among researchers,primarily to minimize energy consumption and to promote the use of renewable energy sources.PCM technology stays as the most promising technology for developing high-performance and energy-efficient buildings.The major drawback of PCM is its poor thermal conductivity which limits its potential use which could be resolved by dispersing conductive nanofillers.The acquired database on synthesis routes,properties,and performance of nano-dispersed phase change materials(NDPCMs)with various techniques presented in the paper should deliver useful information in the production of NDPCMs with desirable characteristics mainly for building construction applications.An outline of contemporary developments and use of NDPCMs as TES medium is delivered.Finally,a brief discussion on challenges and the outlook was also made.In-depth research is needed to explore the fundamental mechanisms behind the enhanced thermal conductivity of NDPCM with nanofillers dispersion and also a thorough investigation on how these mechanisms drive improvement in building performance.展开更多
基金This work was supported in part by Tsinghua University-Zhuhai Huafa Industrial Share Company Joint Institute for Architecture Optoelectronic Technologies(JIAOT KF202204)in part by STI 2030—Major Projects under Grant 2022ZD0209200+2 种基金in part by National Natural Science Foundation of China under Grant 62374099,Grant 62022047in part by Beijing Natural Science-Xiaomi Innovation Joint Fund under Grant L233009in part by the Tsinghua-Toyota JointResearch Fund,in part by the Daikin-Tsinghua Union Program,in part sponsored by CIE-Tencent Robotics XRhino-Bird Focused Research Program.
文摘Phase-change material(PCM)is widely used in thermal management due to their unique thermal behavior.However,related research in thermal rectifier is mainly focused on exploring the principles at the fundamental device level,which results in a gap to real applications.Here,we propose a controllable thermal rectification design towards building applications through the direct adhesion of composite thermal rectification material(TRM)based on PCM and reduced graphene oxide(rGO)aerogel to ordinary concrete walls(CWs).The design is evaluated in detail by combining experiments and finite element analysis.It is found that,TRM can regulate the temperature difference on both sides of the TRM/CWs system by thermal rectification.The difference in two directions reaches to 13.8 K at the heat flow of 80 W/m^(2).In addition,the larger the change of thermal conductivity before and after phase change of TRM is,the more effective it is for regulating temperature difference in two directions.The stated technology has a wide range of applications for the thermal energy control in buildings with specific temperature requirements.
文摘Computer based automation and control systems are becoming increasingly important in smart sustainable buildings,often referred to as automated buildings(ABs),in order to automatically control,optimize and supervise a wide range of building performance applications over a network while minimizing energy consumption and associated green house gas emission.This technology generally refers to building automation and control systems(BACS)architecture.Instead of costly and time-consuming experiments,this paper focuses on development and design of a distributed dynamic simulation environment with the capability to represent BACS architecture in simulation by run-time coupling two or more different software tools over a network.This involves using distributed dynamic simulations as means to analyze the performance and enhance networked real-time control systems in ABs and improve the functions of real BACS technology.The application and capability of this new dynamic simulation environment are demonstrated by an experimental design,in this paper.
基金supported by the U.S.National Science Foundation(Grant Number:2309030).
文摘Large language models(LLMs)are gaining attention due to their potential to enhance efficiency and sustainability in the building domain,a critical area for reducing global carbon emissions.Built on transformer architectures,LLMs excel at text generation and data analysis,enabling applications such as automated energy model generation,energy management optimization,and fault detection and diagnosis.These models can potentially streamline complex workflows,enhance decision-making,and improve energy efficiency.However,integrating LLMs into building energy systems poses challenges,including high computational demands,data preparation costs,and the need for domain-specific customization.This perspective paper explores the role of LLMs in the building energy system sector,highlighting their potential applications and limitations.We propose a development roadmap built on in-context learning,domain-specific fine-tuning,retrieval augmented generation,and multimodal integration to enhance LLMs’customization and practical use in this field.This paper aims to spark ideas for bridging the gap between LLMs capabilities and practical building applications,offering insights into the future of LLM-driven methods in building energy applications.
基金The authors would like to acknowledge Universiti Malaysia Pahang (UMP) forthe financial assistance given under RDU 213308 and DRS, Sunway University through SunwayUniversity’s International Research Network Grant Scheme (IRNGS) 2021 (STR-IRNGS-SETRCNMET-01-2021) for carrying out this work.
文摘Buildings contribute to 33%of total global energy consumption,which corresponds to 38%of greenhouse gas emissions.Enhancing building’s energy efficiency remains predominant in mitigating global warming.Advance-ments in thermal energy storage(TES)techniques using phase change material(PCM)have gained much attention among researchers,primarily to minimize energy consumption and to promote the use of renewable energy sources.PCM technology stays as the most promising technology for developing high-performance and energy-efficient buildings.The major drawback of PCM is its poor thermal conductivity which limits its potential use which could be resolved by dispersing conductive nanofillers.The acquired database on synthesis routes,properties,and performance of nano-dispersed phase change materials(NDPCMs)with various techniques presented in the paper should deliver useful information in the production of NDPCMs with desirable characteristics mainly for building construction applications.An outline of contemporary developments and use of NDPCMs as TES medium is delivered.Finally,a brief discussion on challenges and the outlook was also made.In-depth research is needed to explore the fundamental mechanisms behind the enhanced thermal conductivity of NDPCM with nanofillers dispersion and also a thorough investigation on how these mechanisms drive improvement in building performance.