In this research, effect of varying spatial orientations on the build time requirements for fused deposition modelling process is studied. Constructive solid geometry cylindrical primitive is taken as work piece and m...In this research, effect of varying spatial orientations on the build time requirements for fused deposition modelling process is studied. Constructive solid geometry cylindrical primitive is taken as work piece and modeling is accomplished for it. Response surface methodology is used to design the experiments and obtain statistical models for build time requirements corresponding to different orientations of the given primitive in modeller build volume. Contour width, air gap, slice height, raster width, raster angle and angle of orientation are treated as process parameters. Percentage contribution of individual process parameter is found to change for build time corresponding to different spatial orientations. Also, the average of build time requirement changes with spatial orientation. This paper attempts to clearly discuss and describe the observations with an aim to develop a clear understanding of effect of spatial variations on the build time for Fused Deposition Modelling process. This work is an integral part of process layout optimization and these results can effectively aid designers specially while tackling nesting issues.展开更多
In order to improve the efficiency of 3D near-surface velocity model building, we develop a layer-stripping method using seismic first-arrival times. The velocity model within a Common Mid-Point (CMP) gather is assu...In order to improve the efficiency of 3D near-surface velocity model building, we develop a layer-stripping method using seismic first-arrival times. The velocity model within a Common Mid-Point (CMP) gather is assumed to be stratified into thin layers, and the velocity of each layer var- ies linearly with depth. The thickness and velocity of the top layer are estimated using minimum-offset first-arrival data in a CMP gather. Then the top layer is stripped and the second layer becomes a new top layer. After removing the effect of the top layer from the former first-arrival data, the new first-arrival data are obtained and then used to estimate the parameters of the second layer. In this manner, the velocity model, being regarded as that at a CMP location, is built layer-by-layer from the top to the bottom. A 3D near-surface velocity model is then formed using the velocity models at all CMP locations. The tests on synthetic and observed seismic data show that the layer-stripping method can be used to build good near-surface velocity models for static correction, and its computation speed is approximately hundred times faster than that of grid tomography.展开更多
Complex urban scenery is generally composed of gigantic amount of detailed buildings, efficient representation and rendering are essential for its visualization. We present an accelerating method for urban visualizati...Complex urban scenery is generally composed of gigantic amount of detailed buildings, efficient representation and rendering are essential for its visualization. We present an accelerating method for urban visualization. Our approach can optimize the organization of models in accordance with the quadtree based terrain, which makes the parallelization easier. Through minimizing the draw call within one rendering process, our approach can reduce the time cost of each frame and improve the framerate greatly. Hereby, our system can handle large-scale detailed models with high diversity and also can afford the ability to adjust the rendering strategy automatically according to the state of the hardware.展开更多
Nowadays,the world is short of energy source,and larger proportion of building energy consumption is occupied by air conditioning system. It is urgent that not only importance should be attached on energy saving but a...Nowadays,the world is short of energy source,and larger proportion of building energy consumption is occupied by air conditioning system. It is urgent that not only importance should be attached on energy saving but also arcology energy technology based on green and sustainable thought should be advocated. Considering the ever growing energy consumption of residential buildings,intermittent ventilation is a solution to saving energy consumption and improving indoor thermal comfort. Aiming at reducing indoor air temperature by intermittent ventilation and decrease energy consumption of air conditioning system,with the help of DeST (Designer's Simulation Toolkit) this paper analyzes the characteristics of air conditioning load and year round air conditioning time in Chongqing located in hot summer and cold winter zone,obtains the amount of energy consumption saved at different ventilation rates,and recommends suitable ventilation rate in hot summer and cold winter zone.展开更多
The heat transfer performance of the phase change materials used in free cooling and air conditioning applications is low,due to the poor thermal conductivity of the materials.The recent phenomenal advancement in nano...The heat transfer performance of the phase change materials used in free cooling and air conditioning applications is low,due to the poor thermal conductivity of the materials.The recent phenomenal advancement in nano technology provides an opportunity for an appreciable enhancement in the thermal conductivity of the phase change materials.In order to explore the possibilities of using nano technology for various applications,a detailed parametric study is carried out,to analyse the heat transfer enhancement potential with the thermal conductivity of the conventional phase change materials and nano enhanced phase change materials under various flow conditions of the heat transfer fluid.Initially,the theoretical equation,used to determine the time for outward cylindrical solidification of the phase change material,is validated with the experimental results.It is inferred from the parametric studies,that for paraffinic phase change materials with air as the heat transfer fluid,the first step should be to increase the heat transfer coefficient to the maximum extent,before making any attempt to increase the thermal conductivity of the phase change materials,with the addition of nano particles.When water is used as the phase change material,the addition of nano particles is recommended to achieve better heat transfer,when a liquid is used as the heat transfer fluid.展开更多
An optimal control method for seismic-excited building structures with multiple time delays is investigated in this paper. The system state equation with multiple time delays is discretized and transformed into a stan...An optimal control method for seismic-excited building structures with multiple time delays is investigated in this paper. The system state equation with multiple time delays is discretized and transformed into a standard discrete form without any explicit time delay by a particular augmenting for state variables. A time-delay controller is then designed based on this standard equation using the discrete optimal control method. Effectiveness of the proposed controller is demonstrated by numerical simulations. Simulation results indicate that a very small time delay may result in the instability of the control system if it is not compensated in the control design. Time delay may be compensated effectively by the proposed controller, in the mean time, an effective control may be obtained. The proposed controller is valid for both small and large time delays.展开更多
The objective of this study is to identify system parameters from the recorded response of base isolated buildings,such as USC hospital building,during the 1994 Northridge earthquake.Full state measurements are not av...The objective of this study is to identify system parameters from the recorded response of base isolated buildings,such as USC hospital building,during the 1994 Northridge earthquake.Full state measurements are not available for identification.Additionally,the response is nonlinear due to the yielding of the lead-rubber bearings.Two new approaches are presented in this paper to solve the aforementioned problems.First,a reduced order observer is used to estimate the unmeasured states.Second,a least squares technique with time segments is developed to identify the piece-wise linear system properties.The observer is used to estimate the initial conditions needed for the time segmented identification.A series of equivalent linear system parameters are identified in different time segments.It is shown that the change in system parameters,such as frequencies and damping ratios,due to nonlinear behavior of the lead-rubber bearings,are reliably estimated using the presented technique.It is shown that the response was reduced due to yielding of the lead-rubber bearings and period lengthening.展开更多
The effects of higher modes and torsion have a significant impact on the seismic responses of asymmetric-plan tall buildings. A consecutive modal pushover (CMP) procedure is one of the pushover methods that have been ...The effects of higher modes and torsion have a significant impact on the seismic responses of asymmetric-plan tall buildings. A consecutive modal pushover (CMP) procedure is one of the pushover methods that have been developed to consider these effects. The aim of this paper is to modify the (CMP) analysis procedure to estimate the seismic demands of one-way asymmetric-plan tall buildings with dual systems. An analysis of 10-, 15- and 20-story asymmetric-plan buildings is carried out, and the results from the modified consecutive modal pushover (MCMP) procedure are compared with those obtained from the modal pushover analysis (MPA) procedure and the nonlinear time history analysis (NLTHA). The MCMP estimates of the seismic demands of one-way asymmetric-plan buildings demonstrate a reasonable accuracy, compared to the results obtained from the NLTHA. Furthermore, the accuracy of the MCMP procedure in the prediction of plastic hinge rotations is better than the MPA procedure. The new pushover procedure is also more accurate than the FEMA load distribution and the MPA procedure.展开更多
The feasibility of a parameter identification method based on symbolic time series analysis (STSA) and the adaptive immune clonal selection algorithm (AICSA) is studied. Data symbolization by using STSA alleviates the...The feasibility of a parameter identification method based on symbolic time series analysis (STSA) and the adaptive immune clonal selection algorithm (AICSA) is studied. Data symbolization by using STSA alleviates the effects of harmful noise in raw acceleration data. The effect of the parameters in STSA is theoretically evaluated and numerically verified. AICSA is employed to minimize the error between the state sequence histogram (SSH) that is transformed from raw acceleration data by STSA. The proposed methodology is evaluated by comparing it with AICSA using raw acceleration data. AICSA combining STSA is proved to be a powerful tool for identifying unknown parameters of structural systems even when the data is contaminated with relatively large amounts of noise.展开更多
文摘In this research, effect of varying spatial orientations on the build time requirements for fused deposition modelling process is studied. Constructive solid geometry cylindrical primitive is taken as work piece and modeling is accomplished for it. Response surface methodology is used to design the experiments and obtain statistical models for build time requirements corresponding to different orientations of the given primitive in modeller build volume. Contour width, air gap, slice height, raster width, raster angle and angle of orientation are treated as process parameters. Percentage contribution of individual process parameter is found to change for build time corresponding to different spatial orientations. Also, the average of build time requirement changes with spatial orientation. This paper attempts to clearly discuss and describe the observations with an aim to develop a clear understanding of effect of spatial variations on the build time for Fused Deposition Modelling process. This work is an integral part of process layout optimization and these results can effectively aid designers specially while tackling nesting issues.
基金supported by the National Natural Science Foundation of China(Nos.41230318,41074077)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20130132110023)the Fundamental Research Funds for the Central Universities of China(No.201413004)
文摘In order to improve the efficiency of 3D near-surface velocity model building, we develop a layer-stripping method using seismic first-arrival times. The velocity model within a Common Mid-Point (CMP) gather is assumed to be stratified into thin layers, and the velocity of each layer var- ies linearly with depth. The thickness and velocity of the top layer are estimated using minimum-offset first-arrival data in a CMP gather. Then the top layer is stripped and the second layer becomes a new top layer. After removing the effect of the top layer from the former first-arrival data, the new first-arrival data are obtained and then used to estimate the parameters of the second layer. In this manner, the velocity model, being regarded as that at a CMP location, is built layer-by-layer from the top to the bottom. A 3D near-surface velocity model is then formed using the velocity models at all CMP locations. The tests on synthetic and observed seismic data show that the layer-stripping method can be used to build good near-surface velocity models for static correction, and its computation speed is approximately hundred times faster than that of grid tomography.
基金Supported by National Natural Science Foundation of China(Nos.61170205,61232014,61472010 and 61421062)National Key Technology Support Program of China(No.2013BAK03B07)
文摘Complex urban scenery is generally composed of gigantic amount of detailed buildings, efficient representation and rendering are essential for its visualization. We present an accelerating method for urban visualization. Our approach can optimize the organization of models in accordance with the quadtree based terrain, which makes the parallelization easier. Through minimizing the draw call within one rendering process, our approach can reduce the time cost of each frame and improve the framerate greatly. Hereby, our system can handle large-scale detailed models with high diversity and also can afford the ability to adjust the rendering strategy automatically according to the state of the hardware.
基金Projects(2006BAJ02A02-05,2006BAJ01A05-06-04) supported by the National Key Technologies R & D Program of China
文摘Nowadays,the world is short of energy source,and larger proportion of building energy consumption is occupied by air conditioning system. It is urgent that not only importance should be attached on energy saving but also arcology energy technology based on green and sustainable thought should be advocated. Considering the ever growing energy consumption of residential buildings,intermittent ventilation is a solution to saving energy consumption and improving indoor thermal comfort. Aiming at reducing indoor air temperature by intermittent ventilation and decrease energy consumption of air conditioning system,with the help of DeST (Designer's Simulation Toolkit) this paper analyzes the characteristics of air conditioning load and year round air conditioning time in Chongqing located in hot summer and cold winter zone,obtains the amount of energy consumption saved at different ventilation rates,and recommends suitable ventilation rate in hot summer and cold winter zone.
文摘The heat transfer performance of the phase change materials used in free cooling and air conditioning applications is low,due to the poor thermal conductivity of the materials.The recent phenomenal advancement in nano technology provides an opportunity for an appreciable enhancement in the thermal conductivity of the phase change materials.In order to explore the possibilities of using nano technology for various applications,a detailed parametric study is carried out,to analyse the heat transfer enhancement potential with the thermal conductivity of the conventional phase change materials and nano enhanced phase change materials under various flow conditions of the heat transfer fluid.Initially,the theoretical equation,used to determine the time for outward cylindrical solidification of the phase change material,is validated with the experimental results.It is inferred from the parametric studies,that for paraffinic phase change materials with air as the heat transfer fluid,the first step should be to increase the heat transfer coefficient to the maximum extent,before making any attempt to increase the thermal conductivity of the phase change materials,with the addition of nano particles.When water is used as the phase change material,the addition of nano particles is recommended to achieve better heat transfer,when a liquid is used as the heat transfer fluid.
基金supported by the National Natural Science Foundation of China (Nos.10772112,10472065)the Key Project of Ministry of Education of China (No.107043)+2 种基金the Key Scientific Project of Shang-hai Municipal Education Commission (No.09ZZ17)the Specialized Research Fund for the DoctoralProgram of Higher Education of China (No.20070248032)the Research Project of State Key Laboratory of Ocean Engineering of China (No.GKZD010807)
文摘An optimal control method for seismic-excited building structures with multiple time delays is investigated in this paper. The system state equation with multiple time delays is discretized and transformed into a standard discrete form without any explicit time delay by a particular augmenting for state variables. A time-delay controller is then designed based on this standard equation using the discrete optimal control method. Effectiveness of the proposed controller is demonstrated by numerical simulations. Simulation results indicate that a very small time delay may result in the instability of the control system if it is not compensated in the control design. Time delay may be compensated effectively by the proposed controller, in the mean time, an effective control may be obtained. The proposed controller is valid for both small and large time delays.
文摘The objective of this study is to identify system parameters from the recorded response of base isolated buildings,such as USC hospital building,during the 1994 Northridge earthquake.Full state measurements are not available for identification.Additionally,the response is nonlinear due to the yielding of the lead-rubber bearings.Two new approaches are presented in this paper to solve the aforementioned problems.First,a reduced order observer is used to estimate the unmeasured states.Second,a least squares technique with time segments is developed to identify the piece-wise linear system properties.The observer is used to estimate the initial conditions needed for the time segmented identification.A series of equivalent linear system parameters are identified in different time segments.It is shown that the change in system parameters,such as frequencies and damping ratios,due to nonlinear behavior of the lead-rubber bearings,are reliably estimated using the presented technique.It is shown that the response was reduced due to yielding of the lead-rubber bearings and period lengthening.
文摘The effects of higher modes and torsion have a significant impact on the seismic responses of asymmetric-plan tall buildings. A consecutive modal pushover (CMP) procedure is one of the pushover methods that have been developed to consider these effects. The aim of this paper is to modify the (CMP) analysis procedure to estimate the seismic demands of one-way asymmetric-plan tall buildings with dual systems. An analysis of 10-, 15- and 20-story asymmetric-plan buildings is carried out, and the results from the modified consecutive modal pushover (MCMP) procedure are compared with those obtained from the modal pushover analysis (MPA) procedure and the nonlinear time history analysis (NLTHA). The MCMP estimates of the seismic demands of one-way asymmetric-plan buildings demonstrate a reasonable accuracy, compared to the results obtained from the NLTHA. Furthermore, the accuracy of the MCMP procedure in the prediction of plastic hinge rotations is better than the MPA procedure. The new pushover procedure is also more accurate than the FEMA load distribution and the MPA procedure.
文摘The feasibility of a parameter identification method based on symbolic time series analysis (STSA) and the adaptive immune clonal selection algorithm (AICSA) is studied. Data symbolization by using STSA alleviates the effects of harmful noise in raw acceleration data. The effect of the parameters in STSA is theoretically evaluated and numerically verified. AICSA is employed to minimize the error between the state sequence histogram (SSH) that is transformed from raw acceleration data by STSA. The proposed methodology is evaluated by comparing it with AICSA using raw acceleration data. AICSA combining STSA is proved to be a powerful tool for identifying unknown parameters of structural systems even when the data is contaminated with relatively large amounts of noise.