Three-dimensional(3D)urban structures play a critical role in informing climate mitigation strategies aimed at the built environment and facilitating sustainable urban development.Regrettably,there exists a significan...Three-dimensional(3D)urban structures play a critical role in informing climate mitigation strategies aimed at the built environment and facilitating sustainable urban development.Regrettably,there exists a significant gap in detailed and consistent data on 3D building space structures with global coverage due to the challenges inherent in the data collection and model calibration processes.In this study,we constructed a global urban structure(GUS-3D)dataset,including building volume,height,and footprint information,at a 500 m spatial resolution using extensive satellite observation products and numerous reference building samples.Our analysis indicated that the total volume of buildings worldwide in2015 exceeded 1×10^(12)m^(3).Over the 1985 to 2015 period,we observed a slight increase in the magnitude of 3D building volume growth(i.e.,it increased from 166.02 km3 during the 1985–2000 period to 175.08km3 during the 2000–2015 period),while the expansion magnitudes of the two-dimensional(2D)building footprint(22.51×10^(3) vs 13.29×10^(3)km^(2))and urban extent(157×10^(3) vs 133.8×10^(3)km^(2))notably decreased.This trend highlights the significant increase in intensive vertical utilization of urban land.Furthermore,we identified significant heterogeneity in building space provision and inequality across cities worldwide.This inequality is particularly pronounced in many populous Asian cities,which has been overlooked in previous studies on economic inequality.The GUS-3D dataset shows great potential to deepen our understanding of the urban environment and creates new horizons for numerous 3D urban studies.展开更多
Spatial seismic vulnerability assessments are primally conducted at the community and grid level,using heuristic and empirical approaches.Building-based spatial statistical vulnerability models are rare because of dat...Spatial seismic vulnerability assessments are primally conducted at the community and grid level,using heuristic and empirical approaches.Building-based spatial statistical vulnerability models are rare because of data limitations.Generating open-access spatial inventories that document seismic damage and building attributes and test their effectiveness in assessing damage would promote the advancement of spatial vulnerability assessment.The 2022 Mw 6.7 Luding earthquake in the western Sichuan Province of China provides an opportunity to validate this approach.The local government urgently dispatched experts to survey building damage,marking all buildings with damage class stickers.In this work,we sampled 2889 buildings as GPS points and documented the damage classes and building attributes,including structure type,number of floors,and age.A polygon-based digital inventory was generated by digitizing the rooftops of the sampled buildings and importing the attributes.Statistical regressions were created by plotting damage against shaking intensity and PGA,and Random Forest modeling was carried out considering not only buildings and seismic parameters but also environmental factors.The result indicates that statistical regressions have notable uncertainties,and the Random Forest model shows a≥79%accuracy.Topographical factors showed notable importance in the Random Forest modeling.This work provides an open-access seismic building damage inventory and demonstrates its potential for damage prediction and vulnerability assessment.展开更多
Against the background of energy conservation and emission reduction,green construction and intelligent buildings have become an inevitable trend in the transformation of the construction industry.They effectively red...Against the background of energy conservation and emission reduction,green construction and intelligent buildings have become an inevitable trend in the transformation of the construction industry.They effectively reduce environmental damage and pollution caused by construction projects during the construction process,improve the comfort and health of buildings,and are conducive to promoting the sustainable development of China’s construction industry.This paper analyzes the relationship between green construction and intelligent buildings,examines the dilemmas faced by the integrated development of green construction and intelligent buildings,and proposes measures such as optimizing architectural design schemes,advancing technological innovation,improving energy utilization efficiency,actively applying BIM technology,and strengthening building lifecycle management,so as to promote the sustainable development of China’s construction industry.展开更多
https://www. sciencedirect. com/journal/energy-and-buildings/vol/346/suppl/C Volume346, 1November2025[OA](1)Towards energy flexible commercial buildings:Machine learning approaches,implementation aspects,and future re...https://www. sciencedirect. com/journal/energy-and-buildings/vol/346/suppl/C Volume346, 1November2025[OA](1)Towards energy flexible commercial buildings:Machine learning approaches,implementation aspects,and future research directions by M. M. A. L. N. Maheepala,Hangxin Li,Dilan Robert,et al,Article116170Abstract:Commercial buildings encounter considerable challenges in predicting and managing energy flexibility,arising from the complexity of their energy systems and the interdependencies among system components and building thermal mass. Nonetheless,the emergence of “smarter buildings” creates significant opportunities for applying machine learning(ML)techniques in energy flexibility.展开更多
To exchange experiences and progress in standardization capacity building at home and abroad,the sub-forum on capacity building and creating leadership in standardization was held on July 9.The sub-forum was hosted by...To exchange experiences and progress in standardization capacity building at home and abroad,the sub-forum on capacity building and creating leadership in standardization was held on July 9.The sub-forum was hosted by the Qingdao Municipal People’s Government and co-organized by the International Standardization Training Base(Qingdao),Qingdao University,International Standardization Outstanding Contribution Foundation,and Shandong National Standards Center of Technical Evaluation,which was expected to inject new vitality into the industrial development and provide new ideas for improving the talent cultivation system.展开更多
The application of ecological building materials in architectural design is in line with the concept of green development and can promote the transformation and upgrading of the construction industry.Against this back...The application of ecological building materials in architectural design is in line with the concept of green development and can promote the transformation and upgrading of the construction industry.Against this background,this article systematically explains the definition,characteristics,and classification of ecological building materials,and discusses the selection criteria and application scenarios of ecological building materials.On the basis of the previous analysis,the article proposes that the application of ecological building materials in architectural design needs to do a good job in the integration of materials,system expression,digital synergy,and total life cycle management.Thus,it expands the application scenarios of ecological building materials in architectural design and helps the industry to develop sustainably.展开更多
Construction engineering plays a vital role in urban development,especially as the pace of modern progress continues to accelerate.The widespread use of energy-saving and green environmental protection building materi...Construction engineering plays a vital role in urban development,especially as the pace of modern progress continues to accelerate.The widespread use of energy-saving and green environmental protection building materials in this field not only brings convenience to daily life but also promotes the scientific,sustainable,and stable development of construction projects.These materials significantly extend the service life of buildings while supporting environmental protection efforts.This paper explores the practical application value of energy-saving and environmentally friendly building materials in construction engineering,outlines the key application principles,and analyzes their specific types and usage requirements.The aim is to provide a valuable reference for future research and practical implementation.展开更多
Although currently,a large part of the existing buildings is considered inefficient in terms of energy,the ability to save energy consumption up to 80%has been proven in residential and commercial buildings.Also,carbo...Although currently,a large part of the existing buildings is considered inefficient in terms of energy,the ability to save energy consumption up to 80%has been proven in residential and commercial buildings.Also,carbon dioxide is one of the most important greenhouse gases contributing to climate change and is responsible for 60%of global warming.The facade of the building,as the main intermediary between the interior and exterior spaces,plays a significant role in adjusting the weather conditions and providing thermal comfort to the residents.In this research,715 different scenarios were defined with the combination of various types of construction materials,and the effect of each of these scenarios on the process of energy loss from the surface of the external walls of the building during the operation period was determined.In the end,these scenarios were compared during a one-year operation period,and the amount of energy consumption in each of these scenarios was calculated.Also,bymeasuring the amount of carbon emissions in buildings during the operation period and before that,let’s look at practical methods to reduce the effects of the construction industry on the environment.By comparing the research findings,it can be seen that the ranking of each scenario in terms of total energy consumption is not necessarily the same as the ranking of energy consumption for gas consumption or electricity consumption for the same scenario.That is,choosing the optimal scenario depends on the type of energy consumed in the building.Finally,we determined the scenarios with the lowest and highest amounts of embodied and operational carbon.In the end,we obtained the latent carbon compensation period for each scenario.This article can help designers and construction engineers optimize the energy consumption of buildings by deciding on the right materials.展开更多
This work’s aim is to participate in local materials (raw or fiber improved), which can be used in sustainable and accessible buildings to every Senegalese. To do this, studied materials are respectively collected fr...This work’s aim is to participate in local materials (raw or fiber improved), which can be used in sustainable and accessible buildings to every Senegalese. To do this, studied materials are respectively collected from a laterite clay pit in Ndouloumadjie Dembe (Matam, Northern Senegal) and another from a termite mound in Tattaguine (Fatick, Central Senegal). These samples are first subjected to Geotechnical identification tests. Mud bricks are then made with raw or sifted millet involucre improved to 1%, 2%, and 3% at 5 mm sieve samples. These briquettes are subjected to compression tests and thermal evaluations. Lagrange and Newton methods of numeric modelling are used to test the whole mixture points between 1% and 3% millet involucre for a better correlation between mechanical and thermal parameters. The results show that in Matam, as well as in Tattaguine, these muds, raw or improved, are of good thermomechanical quality when they are used in bricks making. And the thermomechanical coupling quality reaches a maximum situated at 2.125% for Ndouloumadjie and 2.05% for Tattaguine. These briquettes’ building quality depends on the mud content used in iron, aluminum, silica and clay. Thus, same natural materials can be used in the establishment of habitats according to their geotechnical, chemical, mechanical and thermal characteristics.展开更多
Preserving the spirit of a historical environment does not necessarily mean a repetition of its language generated by nostalgia.The aim of this article is to present the way I was trying to form a real dialogue betwee...Preserving the spirit of a historical environment does not necessarily mean a repetition of its language generated by nostalgia.The aim of this article is to present the way I was trying to form a real dialogue between a new modern residential building and the existing historic urban district of the city of Tel Aviv,neither by reconstructing the past nor dissociating from it by enforcing a completely new order.A district that already provided a unique interface between Eastern and Western architecture,being a micro-document of the architectural history of Tel Aviv from 1920 to 1930.展开更多
The spraying robot for building exterior walls is an innovative technology in the field of modern construction.This paper discusses its design structure,application cases,technical benefits,and industrial impacts.Rese...The spraying robot for building exterior walls is an innovative technology in the field of modern construction.This paper discusses its design structure,application cases,technical benefits,and industrial impacts.Research shows that this type of robot improves the efficiency and quality of exterior wall construction.Its intelligent design enhances operation accuracy and safety,reduces costs and risks,and strengthens application ability in complex environments,showing broad application prospects and symbolizing the development trend of intelligence and automation in the industry.In the future,it is necessary to strengthen its intelligence and adaptive ability further,explore multi-function design,promote automation technology,and ensure construction safety and economic benefits.展开更多
There are limited biosecurity measures directed at preventing airborne transmission of viruses in swine.The effectiveness of dust mitigation strategies such as oil sprinkling,to decrease risk of airborne virus transmi...There are limited biosecurity measures directed at preventing airborne transmission of viruses in swine.The effectiveness of dust mitigation strategies such as oil sprinkling,to decrease risk of airborne virus transmission are unknown.Metagenomics and qPCR for common fecal viruses were used to hunt for a ubiquitous virus to serve as a proxy when evaluating the efficiency of mitigation strategies against airborne viral infectious agents.Air particles were collected from swine buildings using high-volume air samplers.Extracted DNA and RNA were used to perform specific RT-qPCR and qPCR and analyzed by highthroughput sequencing.Porcine astroviruses group 2 were common(from 102 to 105 genomic copies per cubic meter of air or gc/m^(3),93%positivity)while no norovirus genogroup II was recovered from air samples.Porcine torque teno sus virus were detected by qPCR in low concentrations(from 101 to 102 gc/m^(3),47%positivity).Among the identified viral families by metagenomics analysis,Herelleviridae,Microviridae,Myoviridae,Podoviridae,and Siphoviridae were dominant.The phage vB_AviM_AVP of Aerococcus was present in all air samples and a newly designed qPCR revealed between 101 and 105 gc/m^(3) among the samples taken for the present study(97%positivity)and banked samples from5-and 15-year old studies(89%positivity).According to the present study,both the porcine astrovirus group 2 and the phage vB_AviM_AVP of Aerococcus could be proxy for airborne viruses of swine buildings.展开更多
Nowadays,we are witnessing the tremendous changes brought by AI technologies.What role can standards play in this process?How can we build global trust and enable responsible innovation?
On March 28,2025,an M_(w) 7.7 earthquake struck near Mandalay,Myanmar,producing intense ground shaking.Strong motion recorded at a station close to the fault indicated a peak ground acceleration of 1.066 g in the vert...On March 28,2025,an M_(w) 7.7 earthquake struck near Mandalay,Myanmar,producing intense ground shaking.Strong motion recorded at a station close to the fault indicated a peak ground acceleration of 1.066 g in the vertical direction and 0.631 g in the horizontal direction.The earthquake caused collapse or severe damage of numerous buildings,resulting in thousands of fatalities and injuries,as well as substantial economic losses.The authors participated in the post-earthquake emergency response as members of the China Search and Rescue Team.During the rescue operations,an investigation into the characteristics of collapsed structures was conducted and the stability of building debris was assessed to ensure the safety of rescue efforts.Subsequently,a rapid seismic safety assessment of affected structures was carried out,including nine city residential blocks,two hospitals,and two apartments.Preliminary analyses indicate that the main causes of structural failure were insufficient cross-sectional dimensions of beams and columns,inadequate stirrup reinforcement,and lack of structural redundancy.展开更多
The outdoor landscape design of medical buildings affects the healthcare experience of patients and the work environment of medical staff.Therapeutic landscapes contribute to the recovery of patients and provide a com...The outdoor landscape design of medical buildings affects the healthcare experience of patients and the work environment of medical staff.Therapeutic landscapes contribute to the recovery of patients and provide a comfortable,convenient,and safe outdoor space for both patients and healthcare professionals.This article analyzes the concept,classification,design necessity,and smart enhancement methods of therapeutic landscapes.By combining the case study of the wellness landscape design of the Fifth People’s Hospital of Chongqing,it derives insights into therapeutic landscape design,such as the rational use of natural elements,the construction of pedestrian space systems,the arrangement of specialized botanical gardens,the integration of multiple therapies,and the application of smart technologies.The aim is to promote the development of therapeutic outdoor landscape design for medical buildings.展开更多
A novel Additive Manufacturing(AM)-driven concurrent design strategy based on the beam characterization model considering strength constraints is proposed.The lattice topology,radius size,Building Orientation(BO),and ...A novel Additive Manufacturing(AM)-driven concurrent design strategy based on the beam characterization model considering strength constraints is proposed.The lattice topology,radius size,Building Orientation(BO),and structural yield strength can be simultaneously adjusted by integrating the overall process-structure-performance relationship of the AM process into the optimization.Specifically,the transverse isotropic material model is adopted to describe the material properties induced by the layer-by-layer manner of additive manufacturing.To bolster lattice strength performance,the stress constraints and ratio constraints of lattice struts are employed.The Tsai-Wu yield criterion is implemented to characterize the lattice strut's strength,while the P-norm method streamlines the handling of multiple constraints,minimizing computational overhead.Moreover,the gradient-based optimization model is established,where both the individual struts diameters and BO can be designed,and the buckling-prone spatial struts are strategically eliminated to improve the lattice strength further.Furthermore,several typical structures are optimized to verify the effectiveness of the proposed method.The optimized results are quite encouraging since the heterogeneous lattice structures with optimized BO obtained by the strength-based concurrent method show a remarkably improved performance compared to traditional designs.展开更多
The Internet of Things(IoT)technology provides new impetus for the development of building intelligence.This research focuses on the intelligent design and management of buildings based on IoT engineering.It expounds ...The Internet of Things(IoT)technology provides new impetus for the development of building intelligence.This research focuses on the intelligent design and management of buildings based on IoT engineering.It expounds on the system design principles such as sensor technology,communication network technology,and data storage and analysis,and analyzes the key points of design,including design requirement analysis,equipment layout,and system integration.Through specific cases,it demonstrates the application practice of the system in buildings,and presents the application effect of intelligent system management with multi-parameter values,providing theoretical and practical references for the development of building intelligence and helping to achieve efficient,energy-saving,and safe building operation.展开更多
In this study,terrestrial laser scanning(TLS)is used to collect building data after the M_(s) 7.0 magnitude earthquake in Lushan,Sichuan,China in 2013 for analysis and research.The analysis focuses on extracting the t...In this study,terrestrial laser scanning(TLS)is used to collect building data after the M_(s) 7.0 magnitude earthquake in Lushan,Sichuan,China in 2013 for analysis and research.The analysis focuses on extracting the tilt and deformation of masonry buildings that are difficult to identify through visual inspection in basically intact,slightly damaged and moderately damaged masonry buildings,to solve the problem of ambiguous identification of damage.A quantitative analysis of the determination indexes of the degree of earthquake damage was carried out,and the numerical characteristics parameters such as the curvature of the wall point cloud proximity,angle,contour of the fitted plane of the point cloud,verticality(flatness)of the wall,standard deviation of the profile and angle of the profile were established to determine the degree of earthquake damage to buildings based on LiDAR data.The development of quantitative determination indexes for the degree of earthquake damage of buildings in this study has important application value for LiDAR data in the identification and extraction of earthquake damage information and damage level determination.展开更多
The aim of this article is to explore potential directions for the development of artificial intelligence(AI).It points out that,while current AI can handle the statistical properties of complex systems,it has difficu...The aim of this article is to explore potential directions for the development of artificial intelligence(AI).It points out that,while current AI can handle the statistical properties of complex systems,it has difficulty effectively processing and fully representing their spatiotemporal complexity patterns.The article also discusses a potential path of AI development in the engineering domain.Based on the existing understanding of the principles of multilevel com-plexity,this article suggests that consistency among the logical structures of datasets,AI models,model-building software,and hardware will be an important AI development direction and is worthy of careful consideration.展开更多
基金supported by the National Science Fund for Distinguished Young Scholars(42225107)the National Natural Science Foundation of China(42001326,42371414,42171409,and 42271419)+1 种基金the Natural Science Foundation of Guangdong Province of China(2022A1515012207)the Basic and Applied Basic Research Project of Guangzhou Science and Technology Planning(202201011539)。
文摘Three-dimensional(3D)urban structures play a critical role in informing climate mitigation strategies aimed at the built environment and facilitating sustainable urban development.Regrettably,there exists a significant gap in detailed and consistent data on 3D building space structures with global coverage due to the challenges inherent in the data collection and model calibration processes.In this study,we constructed a global urban structure(GUS-3D)dataset,including building volume,height,and footprint information,at a 500 m spatial resolution using extensive satellite observation products and numerous reference building samples.Our analysis indicated that the total volume of buildings worldwide in2015 exceeded 1×10^(12)m^(3).Over the 1985 to 2015 period,we observed a slight increase in the magnitude of 3D building volume growth(i.e.,it increased from 166.02 km3 during the 1985–2000 period to 175.08km3 during the 2000–2015 period),while the expansion magnitudes of the two-dimensional(2D)building footprint(22.51×10^(3) vs 13.29×10^(3)km^(2))and urban extent(157×10^(3) vs 133.8×10^(3)km^(2))notably decreased.This trend highlights the significant increase in intensive vertical utilization of urban land.Furthermore,we identified significant heterogeneity in building space provision and inequality across cities worldwide.This inequality is particularly pronounced in many populous Asian cities,which has been overlooked in previous studies on economic inequality.The GUS-3D dataset shows great potential to deepen our understanding of the urban environment and creates new horizons for numerous 3D urban studies.
基金supported by Mission No. 9 "Geological Environment and Hazards" (2019QZKK0900) of "The Second Tibetan Plateau Scientific Expedition and Research" projectNational Natural Science Foundation of China (No.42101087)
文摘Spatial seismic vulnerability assessments are primally conducted at the community and grid level,using heuristic and empirical approaches.Building-based spatial statistical vulnerability models are rare because of data limitations.Generating open-access spatial inventories that document seismic damage and building attributes and test their effectiveness in assessing damage would promote the advancement of spatial vulnerability assessment.The 2022 Mw 6.7 Luding earthquake in the western Sichuan Province of China provides an opportunity to validate this approach.The local government urgently dispatched experts to survey building damage,marking all buildings with damage class stickers.In this work,we sampled 2889 buildings as GPS points and documented the damage classes and building attributes,including structure type,number of floors,and age.A polygon-based digital inventory was generated by digitizing the rooftops of the sampled buildings and importing the attributes.Statistical regressions were created by plotting damage against shaking intensity and PGA,and Random Forest modeling was carried out considering not only buildings and seismic parameters but also environmental factors.The result indicates that statistical regressions have notable uncertainties,and the Random Forest model shows a≥79%accuracy.Topographical factors showed notable importance in the Random Forest modeling.This work provides an open-access seismic building damage inventory and demonstrates its potential for damage prediction and vulnerability assessment.
文摘Against the background of energy conservation and emission reduction,green construction and intelligent buildings have become an inevitable trend in the transformation of the construction industry.They effectively reduce environmental damage and pollution caused by construction projects during the construction process,improve the comfort and health of buildings,and are conducive to promoting the sustainable development of China’s construction industry.This paper analyzes the relationship between green construction and intelligent buildings,examines the dilemmas faced by the integrated development of green construction and intelligent buildings,and proposes measures such as optimizing architectural design schemes,advancing technological innovation,improving energy utilization efficiency,actively applying BIM technology,and strengthening building lifecycle management,so as to promote the sustainable development of China’s construction industry.
文摘https://www. sciencedirect. com/journal/energy-and-buildings/vol/346/suppl/C Volume346, 1November2025[OA](1)Towards energy flexible commercial buildings:Machine learning approaches,implementation aspects,and future research directions by M. M. A. L. N. Maheepala,Hangxin Li,Dilan Robert,et al,Article116170Abstract:Commercial buildings encounter considerable challenges in predicting and managing energy flexibility,arising from the complexity of their energy systems and the interdependencies among system components and building thermal mass. Nonetheless,the emergence of “smarter buildings” creates significant opportunities for applying machine learning(ML)techniques in energy flexibility.
文摘To exchange experiences and progress in standardization capacity building at home and abroad,the sub-forum on capacity building and creating leadership in standardization was held on July 9.The sub-forum was hosted by the Qingdao Municipal People’s Government and co-organized by the International Standardization Training Base(Qingdao),Qingdao University,International Standardization Outstanding Contribution Foundation,and Shandong National Standards Center of Technical Evaluation,which was expected to inject new vitality into the industrial development and provide new ideas for improving the talent cultivation system.
文摘The application of ecological building materials in architectural design is in line with the concept of green development and can promote the transformation and upgrading of the construction industry.Against this background,this article systematically explains the definition,characteristics,and classification of ecological building materials,and discusses the selection criteria and application scenarios of ecological building materials.On the basis of the previous analysis,the article proposes that the application of ecological building materials in architectural design needs to do a good job in the integration of materials,system expression,digital synergy,and total life cycle management.Thus,it expands the application scenarios of ecological building materials in architectural design and helps the industry to develop sustainably.
文摘Construction engineering plays a vital role in urban development,especially as the pace of modern progress continues to accelerate.The widespread use of energy-saving and green environmental protection building materials in this field not only brings convenience to daily life but also promotes the scientific,sustainable,and stable development of construction projects.These materials significantly extend the service life of buildings while supporting environmental protection efforts.This paper explores the practical application value of energy-saving and environmentally friendly building materials in construction engineering,outlines the key application principles,and analyzes their specific types and usage requirements.The aim is to provide a valuable reference for future research and practical implementation.
文摘Although currently,a large part of the existing buildings is considered inefficient in terms of energy,the ability to save energy consumption up to 80%has been proven in residential and commercial buildings.Also,carbon dioxide is one of the most important greenhouse gases contributing to climate change and is responsible for 60%of global warming.The facade of the building,as the main intermediary between the interior and exterior spaces,plays a significant role in adjusting the weather conditions and providing thermal comfort to the residents.In this research,715 different scenarios were defined with the combination of various types of construction materials,and the effect of each of these scenarios on the process of energy loss from the surface of the external walls of the building during the operation period was determined.In the end,these scenarios were compared during a one-year operation period,and the amount of energy consumption in each of these scenarios was calculated.Also,bymeasuring the amount of carbon emissions in buildings during the operation period and before that,let’s look at practical methods to reduce the effects of the construction industry on the environment.By comparing the research findings,it can be seen that the ranking of each scenario in terms of total energy consumption is not necessarily the same as the ranking of energy consumption for gas consumption or electricity consumption for the same scenario.That is,choosing the optimal scenario depends on the type of energy consumed in the building.Finally,we determined the scenarios with the lowest and highest amounts of embodied and operational carbon.In the end,we obtained the latent carbon compensation period for each scenario.This article can help designers and construction engineers optimize the energy consumption of buildings by deciding on the right materials.
文摘This work’s aim is to participate in local materials (raw or fiber improved), which can be used in sustainable and accessible buildings to every Senegalese. To do this, studied materials are respectively collected from a laterite clay pit in Ndouloumadjie Dembe (Matam, Northern Senegal) and another from a termite mound in Tattaguine (Fatick, Central Senegal). These samples are first subjected to Geotechnical identification tests. Mud bricks are then made with raw or sifted millet involucre improved to 1%, 2%, and 3% at 5 mm sieve samples. These briquettes are subjected to compression tests and thermal evaluations. Lagrange and Newton methods of numeric modelling are used to test the whole mixture points between 1% and 3% millet involucre for a better correlation between mechanical and thermal parameters. The results show that in Matam, as well as in Tattaguine, these muds, raw or improved, are of good thermomechanical quality when they are used in bricks making. And the thermomechanical coupling quality reaches a maximum situated at 2.125% for Ndouloumadjie and 2.05% for Tattaguine. These briquettes’ building quality depends on the mud content used in iron, aluminum, silica and clay. Thus, same natural materials can be used in the establishment of habitats according to their geotechnical, chemical, mechanical and thermal characteristics.
文摘Preserving the spirit of a historical environment does not necessarily mean a repetition of its language generated by nostalgia.The aim of this article is to present the way I was trying to form a real dialogue between a new modern residential building and the existing historic urban district of the city of Tel Aviv,neither by reconstructing the past nor dissociating from it by enforcing a completely new order.A district that already provided a unique interface between Eastern and Western architecture,being a micro-document of the architectural history of Tel Aviv from 1920 to 1930.
基金Design and Research of Intelligent Construction Device for the“Water-in-Sand”Process of High-Rise Building Exterior Wall(Project No.2022KQNCX189)。
文摘The spraying robot for building exterior walls is an innovative technology in the field of modern construction.This paper discusses its design structure,application cases,technical benefits,and industrial impacts.Research shows that this type of robot improves the efficiency and quality of exterior wall construction.Its intelligent design enhances operation accuracy and safety,reduces costs and risks,and strengthens application ability in complex environments,showing broad application prospects and symbolizing the development trend of intelligence and automation in the industry.In the future,it is necessary to strengthen its intelligence and adaptive ability further,explore multi-function design,promote automation technology,and ensure construction safety and economic benefits.
文摘There are limited biosecurity measures directed at preventing airborne transmission of viruses in swine.The effectiveness of dust mitigation strategies such as oil sprinkling,to decrease risk of airborne virus transmission are unknown.Metagenomics and qPCR for common fecal viruses were used to hunt for a ubiquitous virus to serve as a proxy when evaluating the efficiency of mitigation strategies against airborne viral infectious agents.Air particles were collected from swine buildings using high-volume air samplers.Extracted DNA and RNA were used to perform specific RT-qPCR and qPCR and analyzed by highthroughput sequencing.Porcine astroviruses group 2 were common(from 102 to 105 genomic copies per cubic meter of air or gc/m^(3),93%positivity)while no norovirus genogroup II was recovered from air samples.Porcine torque teno sus virus were detected by qPCR in low concentrations(from 101 to 102 gc/m^(3),47%positivity).Among the identified viral families by metagenomics analysis,Herelleviridae,Microviridae,Myoviridae,Podoviridae,and Siphoviridae were dominant.The phage vB_AviM_AVP of Aerococcus was present in all air samples and a newly designed qPCR revealed between 101 and 105 gc/m^(3) among the samples taken for the present study(97%positivity)and banked samples from5-and 15-year old studies(89%positivity).According to the present study,both the porcine astrovirus group 2 and the phage vB_AviM_AVP of Aerococcus could be proxy for airborne viruses of swine buildings.
文摘Nowadays,we are witnessing the tremendous changes brought by AI technologies.What role can standards play in this process?How can we build global trust and enable responsible innovation?
基金National Natural Science Foundation of China for Distinguished Young Scholars under Grant No.52125806Scientific Research Fund of Institute of Engineering Mechanics,China Earthquake Administration under Grant No.2021B03。
文摘On March 28,2025,an M_(w) 7.7 earthquake struck near Mandalay,Myanmar,producing intense ground shaking.Strong motion recorded at a station close to the fault indicated a peak ground acceleration of 1.066 g in the vertical direction and 0.631 g in the horizontal direction.The earthquake caused collapse or severe damage of numerous buildings,resulting in thousands of fatalities and injuries,as well as substantial economic losses.The authors participated in the post-earthquake emergency response as members of the China Search and Rescue Team.During the rescue operations,an investigation into the characteristics of collapsed structures was conducted and the stability of building debris was assessed to ensure the safety of rescue efforts.Subsequently,a rapid seismic safety assessment of affected structures was carried out,including nine city residential blocks,two hospitals,and two apartments.Preliminary analyses indicate that the main causes of structural failure were insufficient cross-sectional dimensions of beams and columns,inadequate stirrup reinforcement,and lack of structural redundancy.
基金Research Fund Projects of Chongqing Institute of Engineering:Research on the Intelligent Design of Indoor and Outdoor Spaces for Chongqing’s“Integrated Medical and Elderly Care”Health and Wellness Buildings in the Context of Digitization(Project No.:2023xsky01)Research on Spatial Syntax Parameters and Combination Patterns of Urban and Rural Community Elderly Care Centers from a Multi-Dimensional Perspective(Project No.:2024XZKY003)2024 Curriculum Ideological and Political Demonstration Course Construction Project of Chongqing Institute of Engineering,“Residential Landscape Design”(Project No.:KC20240006)。
文摘The outdoor landscape design of medical buildings affects the healthcare experience of patients and the work environment of medical staff.Therapeutic landscapes contribute to the recovery of patients and provide a comfortable,convenient,and safe outdoor space for both patients and healthcare professionals.This article analyzes the concept,classification,design necessity,and smart enhancement methods of therapeutic landscapes.By combining the case study of the wellness landscape design of the Fifth People’s Hospital of Chongqing,it derives insights into therapeutic landscape design,such as the rational use of natural elements,the construction of pedestrian space systems,the arrangement of specialized botanical gardens,the integration of multiple therapies,and the application of smart technologies.The aim is to promote the development of therapeutic outdoor landscape design for medical buildings.
基金co-supported by National Key R&D Program of China(No.2022YFB4602003)Key Project of National Natural Science Foundation of China(No.12032018)+2 种基金Guangdong Basic and Applied Basic Research Foundation(No.2022A1515110489)National Natural Science Foundation of China-China Academy of General Technology Joint Fund for Basic Research(No.52375380)National Key Research and Development Program of China(No.2022YFB3402200)。
文摘A novel Additive Manufacturing(AM)-driven concurrent design strategy based on the beam characterization model considering strength constraints is proposed.The lattice topology,radius size,Building Orientation(BO),and structural yield strength can be simultaneously adjusted by integrating the overall process-structure-performance relationship of the AM process into the optimization.Specifically,the transverse isotropic material model is adopted to describe the material properties induced by the layer-by-layer manner of additive manufacturing.To bolster lattice strength performance,the stress constraints and ratio constraints of lattice struts are employed.The Tsai-Wu yield criterion is implemented to characterize the lattice strut's strength,while the P-norm method streamlines the handling of multiple constraints,minimizing computational overhead.Moreover,the gradient-based optimization model is established,where both the individual struts diameters and BO can be designed,and the buckling-prone spatial struts are strategically eliminated to improve the lattice strength further.Furthermore,several typical structures are optimized to verify the effectiveness of the proposed method.The optimized results are quite encouraging since the heterogeneous lattice structures with optimized BO obtained by the strength-based concurrent method show a remarkably improved performance compared to traditional designs.
文摘The Internet of Things(IoT)technology provides new impetus for the development of building intelligence.This research focuses on the intelligent design and management of buildings based on IoT engineering.It expounds on the system design principles such as sensor technology,communication network technology,and data storage and analysis,and analyzes the key points of design,including design requirement analysis,equipment layout,and system integration.Through specific cases,it demonstrates the application practice of the system in buildings,and presents the application effect of intelligent system management with multi-parameter values,providing theoretical and practical references for the development of building intelligence and helping to achieve efficient,energy-saving,and safe building operation.
基金Earthquake Science and Technology Program of Hebei Province under Grant Nos.DZ2021120300001,DZ2024083000001,DZ2024112400016 and DZ2025092800001。
文摘In this study,terrestrial laser scanning(TLS)is used to collect building data after the M_(s) 7.0 magnitude earthquake in Lushan,Sichuan,China in 2013 for analysis and research.The analysis focuses on extracting the tilt and deformation of masonry buildings that are difficult to identify through visual inspection in basically intact,slightly damaged and moderately damaged masonry buildings,to solve the problem of ambiguous identification of damage.A quantitative analysis of the determination indexes of the degree of earthquake damage was carried out,and the numerical characteristics parameters such as the curvature of the wall point cloud proximity,angle,contour of the fitted plane of the point cloud,verticality(flatness)of the wall,standard deviation of the profile and angle of the profile were established to determine the degree of earthquake damage to buildings based on LiDAR data.The development of quantitative determination indexes for the degree of earthquake damage of buildings in this study has important application value for LiDAR data in the identification and extraction of earthquake damage information and damage level determination.
文摘The aim of this article is to explore potential directions for the development of artificial intelligence(AI).It points out that,while current AI can handle the statistical properties of complex systems,it has difficulty effectively processing and fully representing their spatiotemporal complexity patterns.The article also discusses a potential path of AI development in the engineering domain.Based on the existing understanding of the principles of multilevel com-plexity,this article suggests that consistency among the logical structures of datasets,AI models,model-building software,and hardware will be an important AI development direction and is worthy of careful consideration.