Water oxidation is the bottleneck of artificial photosynthesis.Since the first ruthenium-based molecular water oxidation catalyst,the blue dimer,was reported by Meyer’ s group in 1982,catalysts based on transition me...Water oxidation is the bottleneck of artificial photosynthesis.Since the first ruthenium-based molecular water oxidation catalyst,the blue dimer,was reported by Meyer’ s group in 1982,catalysts based on transition metals have been widely employed to explore the mechanism of water oxidation.Because the oxidation of water requires harsh oxidative conditions,the stability of transition complexes under the relevant catalytic conditions has always been a challenge.In this work,we report the redox properties of a CuⅢ complex(TAML-CuⅢ] with a redox-active macrocyclic ligand(TAML) and its reactivity toward catalytic water oxidation.TAML-CuⅢ displayed a completely different electrochemical behavior from that of the TAML-CoⅢ complex previously reported by our group.TAML-CuⅢ can only be oxidized by one-electron oxidation of the ligand to form TAML·+-CuⅢand cannot achieve water activation through the ligand-centered proton-coupled electron transfer that takes place in the case of TAML-CoⅢ.The generated TAML·+-CuⅢ intermediate can undergo further oxidation and ligand hydrolysis with the assistance of borate anions,triggering the formation of a heterogeneous B/CuOx nanocatalyst Therefore,the choice of the buffer solution has a significant influence on the electrochemical behavior and stability of molecular water oxidation catalysts.展开更多
In the high-humidity, hot-summer-cold-winter(HSCW) zone of China, the moisture buffering effect in the envelope is found to be significant in optimum insulation thickness. However, few studies have considered the effe...In the high-humidity, hot-summer-cold-winter(HSCW) zone of China, the moisture buffering effect in the envelope is found to be significant in optimum insulation thickness. However, few studies have considered the effects of indoor moisture buffering on the optimum insulation thickness and energy consumption. In this study, we considered the energy load of an exterior wall under moisture transfer from the outdoor to the indoor environment. An optimum insulation thickness was obtained by integrating the P1-P2model. A residential building was selected for the case study to verify the proposed method. Finally, a comparison was made with two other widely used methods, namely the transient heat transfer model(TH) and the coupled heat and moisture transfer model(CHM). The results indicated that the indoor moisture buffering effect on the optimum insulation thickness is 2.54 times greater than the moisture buffering effect in the envelope, and the two moisture buffering effects make opposing contributions to the optimum insulation thickness. Therefore, when TH or CHM was used without considering the indoor moisture buffering effect, the optimum insulation thickness of the southern wall under one air change per hour(1 ACH) and 100% normal heat source may be overestimated by 2.13% to 3. 59%, and the annual energy load on a single wall may be underestimated by 10.10% to 11.44%. The decrease of airtightness and the increase of indoor heat sources may result in a slight reduction of optimum insulation thickness. This study will enable professionals to consider the effects of moisture buffering on the design of insulation thickness.展开更多
A top-contact organic field-effect transistor (OFET) is fabricated by adopting a pentacene/1,11-bis(di-4- tolylaminophenyl) cyclohexane (TAPC) heterojunction structure and inserting an MoO3 buffer layer between ...A top-contact organic field-effect transistor (OFET) is fabricated by adopting a pentacene/1,11-bis(di-4- tolylaminophenyl) cyclohexane (TAPC) heterojunction structure and inserting an MoO3 buffer layer between the TAPC organic semiconductor layer and the source/drain electrode. The performances of the heterojunction OFET, including output current, field-effect mobility, and threshed voltage~ are all significantly improved by introducing the MoO3 thin buffer layer. The performance improvement of the modified heterojunction OFET is attributed to a better contact formed at the Au/TAPC interface due to the MoO3 thin buffer layer, thereby leading to a remarkable reduction of the contact resistance at the metal/organic interface.展开更多
An improved 4H-SiC metal-semiconductor field-effect transistors (MESFETs) with step p-buffer layer is proposed, and the static and dynamic electrical performances are analysed in this paper. A step p-buffer layer ha...An improved 4H-SiC metal-semiconductor field-effect transistors (MESFETs) with step p-buffer layer is proposed, and the static and dynamic electrical performances are analysed in this paper. A step p-buffer layer has been applied not only to increase the channel current, but also to improve the transconductance. This is due to the fact that the variation in p-buffer layer depth leads to the decrease in parasitic series resistance resulting from the change in the active channel thickness and modulation in the electric field distribution inside the channel. Detailed numerical simulations demonstrate that the saturation drain current and the maximum theoretical output power density of the proposed structure are about 30% and 37% larger than those of the conventional structure. The cut-off frequency and the maximum oscillation frequency of the proposed MESFETs are 14.5 and 62 GHz, respectively, which are higher than that of the conventional structure. Therefore, the 4H-SiC MESFETs with step p-buffer layer have superior direct-current and radio-frequency performances compared to the similar devices based on the conventional structure.展开更多
An improved structure of silicon carbide metal-semiconductor field-effect transistors (MESFET) is proposed for high power microwave applications. Numerical models for the physical and electrical mechanisms of the de...An improved structure of silicon carbide metal-semiconductor field-effect transistors (MESFET) is proposed for high power microwave applications. Numerical models for the physical and electrical mechanisms of the device are presented, and the static and dynamic electrical performances are analysed. By comparison with the conventional structure, the proposed structure exhibits a superior frequency response while possessing better DC characteristics. A p-type spacer layer, inserted between the oxide and the channel, is shown to suppress the surface trap effect and improve the distribution of the electric field at the gate edge. Meanwhile, a lightly doped n-type buffer layer under the gate reduces depletion in the channel, resulting in an increase in the output current and a reduction in the gate-capacitance. The structural parameter dependences of the device performance are discussed, and an optimized design is obtained. The results show that the maximum saturation current density of 325 mA/mm is yielded, compared with 182 mA/mm for conventional MESFETs under the condition that the breakdown voltage of the proposed MESFET is larger than that of the conventional MESFET, leading to an increase of 79% in the output power density. In addition, improvements of 27% cut-off frequency and 28% maximum oscillation frequency are achieved compared with a conventional MESFET, respectively.展开更多
Based on the observation that both subthreshold and gate leakage depend on transistors width, this paper introduces a feasible method to fast estimate leakage current in buffers. In simulating of leakage current with ...Based on the observation that both subthreshold and gate leakage depend on transistors width, this paper introduces a feasible method to fast estimate leakage current in buffers. In simulating of leakage current with swept transistor width, we found that gate leakage is not always a linear function of the device geometry. Subsequently, this paper presented the theoretical analysis and experimental evidence of this exceptional gate leakage behavior and developed a design methodology to devise a low-leakage and high-performance buffer with no penalty in area using this deviation.展开更多
We use the carbon nanotube (CNT) as the material of the pH sensing layer of the separative structure for the extended gate H^+-ion sensitive field effect transistor (EGFET) device.The CNT paste was prepared with CNT p...We use the carbon nanotube (CNT) as the material of the pH sensing layer of the separative structure for the extended gate H^+-ion sensitive field effect transistor (EGFET) device.The CNT paste was prepared with CNT powder,Ag powder,silicagel,the di-n-butyl phthalate and the toluene solvents by appropriate ratio,then immobilized on the silicon substrate to form the carbon nanotube sensing layer.We measured theⅠ_(DS)-Ⅴ_G curves of the carbon nanotube separative structure EGFET device in the different pH buffer solutions by the Keithley 236Ⅰ-Ⅴmeasurement system.According to the experimental results,we can obtain the pH sensitivities of the carbon nanotube separative structure EGFET device,which is 62.54mV/pH from pH1 to pH13.展开更多
Building buffer zone space is not only one of essential approaches for better mental quality of interior building space, but also an important factor that may influence interior thermal comfort and energy consumption....Building buffer zone space is not only one of essential approaches for better mental quality of interior building space, but also an important factor that may influence interior thermal comfort and energy consumption. This study aims to analyze regulative advantages of buffer zone to the surrounding functional spaces. Based on a fieldwork test in a typical office building in cold climate zone in Beijing,China,the monitor data show interior physical performance in the Winter. The research selects two types of different buffer zones in the same building. One is a south-faced greenhouse which has large dimension with plenty of vegetation,and the other is a simple atrium in the middle of five floor building with mount of skylights. The factors and their influence to surrounding functional spaces and the whole building are found out from the comparisons of collected data by floor to floor monitor test on both buffer zones at the same time. The comparisons of two types of buffer zones conclude that the greenhouse is more effective to air quality regulation but not so clearly wellperformed to thermal buffering as expected due to the dominate active central heating in the Winter. This fieldwork test results for building performance can be helpful for both architects and engineers in the early phase of sustainable design.展开更多
A theoretical model of the refractive index changes of the TE and TM modes in an electro-absorption modulator (EAM) is deduced. The photon absorption and refractive index changes are analyzed numerically. The influe...A theoretical model of the refractive index changes of the TE and TM modes in an electro-absorption modulator (EAM) is deduced. The photon absorption and refractive index changes are analyzed numerically. The influence of pump intensity on the phase difference between the TE and TM modes is studied. The polarization rotation effect is obtained in the EAM, and a novel all-optical fiber loop buffer is designed.展开更多
The nano-titanium dioxide (nano-TiO_2) sensing membrane,fabricated by sol-gel technology,was used as the pH-sensing layer of the extended gate field effect transistor (EGFET) device.The objective of this research is t...The nano-titanium dioxide (nano-TiO_2) sensing membrane,fabricated by sol-gel technology,was used as the pH-sensing layer of the extended gate field effect transistor (EGFET) device.The objective of this research is the preparation of titanium dioxide materials by sol-gel method using Ti(OBu)_4 as the precursor.In this study,we fabricated a nano-titanium dioxide sensing layer on the ITO glass by dip coating.In order to examine the sensitivity of the nano-TiO_2 films applied to the EGFET devices,we adopted the ITO glass as substrate,and measured theⅠ_(DS)-Ⅴ_G curves of the nano-titanium dioxide separative structure EGFET device in the pH buffer solutions that have different pH values by the Keithley 236 Instrument.By the experimental results,we can obtain the pH sensitivities of the EGFET with nano-TiO_2 sensing membrane prepared by sol-gel method,which is 59.86mV/pH from pH 1 to pH 9.展开更多
To solve the problem of condensation at the radiant cooling terminal,a novel radiant cooling terminal(NRCT)based on the moisture buffering effect is proposed.The NRCT combines traditional radiant cooling terminals wit...To solve the problem of condensation at the radiant cooling terminal,a novel radiant cooling terminal(NRCT)based on the moisture buffering effect is proposed.The NRCT combines traditional radiant cooling terminals with solid humidity conditioning materials(HCM).On this basis,a coupled anti-condensation regulation strategy between the NRCT and the fresh air system was constructed,which utilizes the moisture buffering effect of the HCM to extend the condensation time,and reserves sufficient time for active intervention of personnel and feedback adjustment of the fresh air system.Then,the indoor air parameters are restored to normal design values as a result of the fresh air system.Meanwhile,the HCM releases the adsorbed water vapor,thereby enabling the completion of the desorption process.Using numerical simulation methods to study each step of the anti-condensation regulation strategy,the results indicate that the NRCT can effectively prevent condensation,and it can ensure that condensation does not occur within 20 min after the window is opened,even under extreme weather conditions.Moreover,the anti-condensation effect improves with the thickness increase of the HCM.However,when ensuring the prevention of condensation while expecting the best moisture adsorption effect,there is an optimal value for the thickness of the HCM.Increasing the fresh air supply volume can enable the HCM to complete the desorption process more quickly.In the final steady-state operation process,the HCM can continue to release moisture,achieving sustainable utilization of the HCM.In actual operation,the operational duration of the fresh air system during the moisture desorption process can be regulated by tracking the relative humidity of the outlet to ensure that the HCM completes the adsorption and desorption cycle.This anti-condensation regulation strategy can provide effective guarantee for the non-condensing operation of radiant cooling terminals.展开更多
文摘Water oxidation is the bottleneck of artificial photosynthesis.Since the first ruthenium-based molecular water oxidation catalyst,the blue dimer,was reported by Meyer’ s group in 1982,catalysts based on transition metals have been widely employed to explore the mechanism of water oxidation.Because the oxidation of water requires harsh oxidative conditions,the stability of transition complexes under the relevant catalytic conditions has always been a challenge.In this work,we report the redox properties of a CuⅢ complex(TAML-CuⅢ] with a redox-active macrocyclic ligand(TAML) and its reactivity toward catalytic water oxidation.TAML-CuⅢ displayed a completely different electrochemical behavior from that of the TAML-CoⅢ complex previously reported by our group.TAML-CuⅢ can only be oxidized by one-electron oxidation of the ligand to form TAML·+-CuⅢand cannot achieve water activation through the ligand-centered proton-coupled electron transfer that takes place in the case of TAML-CoⅢ.The generated TAML·+-CuⅢ intermediate can undergo further oxidation and ligand hydrolysis with the assistance of borate anions,triggering the formation of a heterogeneous B/CuOx nanocatalyst Therefore,the choice of the buffer solution has a significant influence on the electrochemical behavior and stability of molecular water oxidation catalysts.
基金supported by the National Natural Science Foundation of China (Nos. 51978623 and 52076189)。
文摘In the high-humidity, hot-summer-cold-winter(HSCW) zone of China, the moisture buffering effect in the envelope is found to be significant in optimum insulation thickness. However, few studies have considered the effects of indoor moisture buffering on the optimum insulation thickness and energy consumption. In this study, we considered the energy load of an exterior wall under moisture transfer from the outdoor to the indoor environment. An optimum insulation thickness was obtained by integrating the P1-P2model. A residential building was selected for the case study to verify the proposed method. Finally, a comparison was made with two other widely used methods, namely the transient heat transfer model(TH) and the coupled heat and moisture transfer model(CHM). The results indicated that the indoor moisture buffering effect on the optimum insulation thickness is 2.54 times greater than the moisture buffering effect in the envelope, and the two moisture buffering effects make opposing contributions to the optimum insulation thickness. Therefore, when TH or CHM was used without considering the indoor moisture buffering effect, the optimum insulation thickness of the southern wall under one air change per hour(1 ACH) and 100% normal heat source may be overestimated by 2.13% to 3. 59%, and the annual energy load on a single wall may be underestimated by 10.10% to 11.44%. The decrease of airtightness and the increase of indoor heat sources may result in a slight reduction of optimum insulation thickness. This study will enable professionals to consider the effects of moisture buffering on the design of insulation thickness.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61071026 and 61177032)the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No.61021061)+1 种基金the Fundamental Research Fund for the Central Universities of Misistry of Education of China (Grant No.ZYGX2010Z004)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20090185110020)
文摘A top-contact organic field-effect transistor (OFET) is fabricated by adopting a pentacene/1,11-bis(di-4- tolylaminophenyl) cyclohexane (TAPC) heterojunction structure and inserting an MoO3 buffer layer between the TAPC organic semiconductor layer and the source/drain electrode. The performances of the heterojunction OFET, including output current, field-effect mobility, and threshed voltage~ are all significantly improved by introducing the MoO3 thin buffer layer. The performance improvement of the modified heterojunction OFET is attributed to a better contact formed at the Au/TAPC interface due to the MoO3 thin buffer layer, thereby leading to a remarkable reduction of the contact resistance at the metal/organic interface.
基金Project supported by the Fundamental Research Funds for the Central Universities(Grant No.ZYGX2009J029)
文摘An improved 4H-SiC metal-semiconductor field-effect transistors (MESFETs) with step p-buffer layer is proposed, and the static and dynamic electrical performances are analysed in this paper. A step p-buffer layer has been applied not only to increase the channel current, but also to improve the transconductance. This is due to the fact that the variation in p-buffer layer depth leads to the decrease in parasitic series resistance resulting from the change in the active channel thickness and modulation in the electric field distribution inside the channel. Detailed numerical simulations demonstrate that the saturation drain current and the maximum theoretical output power density of the proposed structure are about 30% and 37% larger than those of the conventional structure. The cut-off frequency and the maximum oscillation frequency of the proposed MESFETs are 14.5 and 62 GHz, respectively, which are higher than that of the conventional structure. Therefore, the 4H-SiC MESFETs with step p-buffer layer have superior direct-current and radio-frequency performances compared to the similar devices based on the conventional structure.
基金Project supported by the National Science Fund for Distinguished Young Scholars of China(Grant No.60725415)the National Natural Science Foundation of China(Grant No.60606006)the Pre-research Foundation of China(Grant No.51308030201)
文摘An improved structure of silicon carbide metal-semiconductor field-effect transistors (MESFET) is proposed for high power microwave applications. Numerical models for the physical and electrical mechanisms of the device are presented, and the static and dynamic electrical performances are analysed. By comparison with the conventional structure, the proposed structure exhibits a superior frequency response while possessing better DC characteristics. A p-type spacer layer, inserted between the oxide and the channel, is shown to suppress the surface trap effect and improve the distribution of the electric field at the gate edge. Meanwhile, a lightly doped n-type buffer layer under the gate reduces depletion in the channel, resulting in an increase in the output current and a reduction in the gate-capacitance. The structural parameter dependences of the device performance are discussed, and an optimized design is obtained. The results show that the maximum saturation current density of 325 mA/mm is yielded, compared with 182 mA/mm for conventional MESFETs under the condition that the breakdown voltage of the proposed MESFET is larger than that of the conventional MESFET, leading to an increase of 79% in the output power density. In addition, improvements of 27% cut-off frequency and 28% maximum oscillation frequency are achieved compared with a conventional MESFET, respectively.
基金Supported by the National Natural Science Foundation of China(No.61271149)
文摘Based on the observation that both subthreshold and gate leakage depend on transistors width, this paper introduces a feasible method to fast estimate leakage current in buffers. In simulating of leakage current with swept transistor width, we found that gate leakage is not always a linear function of the device geometry. Subsequently, this paper presented the theoretical analysis and experimental evidence of this exceptional gate leakage behavior and developed a design methodology to devise a low-leakage and high-performance buffer with no penalty in area using this deviation.
文摘We use the carbon nanotube (CNT) as the material of the pH sensing layer of the separative structure for the extended gate H^+-ion sensitive field effect transistor (EGFET) device.The CNT paste was prepared with CNT powder,Ag powder,silicagel,the di-n-butyl phthalate and the toluene solvents by appropriate ratio,then immobilized on the silicon substrate to form the carbon nanotube sensing layer.We measured theⅠ_(DS)-Ⅴ_G curves of the carbon nanotube separative structure EGFET device in the different pH buffer solutions by the Keithley 236Ⅰ-Ⅴmeasurement system.According to the experimental results,we can obtain the pH sensitivities of the carbon nanotube separative structure EGFET device,which is 62.54mV/pH from pH1 to pH13.
基金Sponsored by the Key Project of National Natural Science Foundation of China(Grant No.51138004)the National Science and Technology Support Program(Grant No.2012BAJ10B02)
文摘Building buffer zone space is not only one of essential approaches for better mental quality of interior building space, but also an important factor that may influence interior thermal comfort and energy consumption. This study aims to analyze regulative advantages of buffer zone to the surrounding functional spaces. Based on a fieldwork test in a typical office building in cold climate zone in Beijing,China,the monitor data show interior physical performance in the Winter. The research selects two types of different buffer zones in the same building. One is a south-faced greenhouse which has large dimension with plenty of vegetation,and the other is a simple atrium in the middle of five floor building with mount of skylights. The factors and their influence to surrounding functional spaces and the whole building are found out from the comparisons of collected data by floor to floor monitor test on both buffer zones at the same time. The comparisons of two types of buffer zones conclude that the greenhouse is more effective to air quality regulation but not so clearly wellperformed to thermal buffering as expected due to the dominate active central heating in the Winter. This fieldwork test results for building performance can be helpful for both architects and engineers in the early phase of sustainable design.
基金supported by the National Natural Science Foundation of China(Grant No.61077014)the National Basic Research Program of China(Grant No.2010CB327601)
文摘A theoretical model of the refractive index changes of the TE and TM modes in an electro-absorption modulator (EAM) is deduced. The photon absorption and refractive index changes are analyzed numerically. The influence of pump intensity on the phase difference between the TE and TM modes is studied. The polarization rotation effect is obtained in the EAM, and a novel all-optical fiber loop buffer is designed.
文摘The nano-titanium dioxide (nano-TiO_2) sensing membrane,fabricated by sol-gel technology,was used as the pH-sensing layer of the extended gate field effect transistor (EGFET) device.The objective of this research is the preparation of titanium dioxide materials by sol-gel method using Ti(OBu)_4 as the precursor.In this study,we fabricated a nano-titanium dioxide sensing layer on the ITO glass by dip coating.In order to examine the sensitivity of the nano-TiO_2 films applied to the EGFET devices,we adopted the ITO glass as substrate,and measured theⅠ_(DS)-Ⅴ_G curves of the nano-titanium dioxide separative structure EGFET device in the pH buffer solutions that have different pH values by the Keithley 236 Instrument.By the experimental results,we can obtain the pH sensitivities of the EGFET with nano-TiO_2 sensing membrane prepared by sol-gel method,which is 59.86mV/pH from pH 1 to pH 9.
基金supported by the National Natural Science Foundation of China[No.52276179]the Natural Science Foundation of Jiangsu Province[No.BK20231425]。
文摘To solve the problem of condensation at the radiant cooling terminal,a novel radiant cooling terminal(NRCT)based on the moisture buffering effect is proposed.The NRCT combines traditional radiant cooling terminals with solid humidity conditioning materials(HCM).On this basis,a coupled anti-condensation regulation strategy between the NRCT and the fresh air system was constructed,which utilizes the moisture buffering effect of the HCM to extend the condensation time,and reserves sufficient time for active intervention of personnel and feedback adjustment of the fresh air system.Then,the indoor air parameters are restored to normal design values as a result of the fresh air system.Meanwhile,the HCM releases the adsorbed water vapor,thereby enabling the completion of the desorption process.Using numerical simulation methods to study each step of the anti-condensation regulation strategy,the results indicate that the NRCT can effectively prevent condensation,and it can ensure that condensation does not occur within 20 min after the window is opened,even under extreme weather conditions.Moreover,the anti-condensation effect improves with the thickness increase of the HCM.However,when ensuring the prevention of condensation while expecting the best moisture adsorption effect,there is an optimal value for the thickness of the HCM.Increasing the fresh air supply volume can enable the HCM to complete the desorption process more quickly.In the final steady-state operation process,the HCM can continue to release moisture,achieving sustainable utilization of the HCM.In actual operation,the operational duration of the fresh air system during the moisture desorption process can be regulated by tracking the relative humidity of the outlet to ensure that the HCM completes the adsorption and desorption cycle.This anti-condensation regulation strategy can provide effective guarantee for the non-condensing operation of radiant cooling terminals.