Double-clamped bistable buckled beams demonstrate great versatility in various fields such as robotics,energy harvesting,and microelectromechanical system(MEMS).However,their design often requires time-consuming and e...Double-clamped bistable buckled beams demonstrate great versatility in various fields such as robotics,energy harvesting,and microelectromechanical system(MEMS).However,their design often requires time-consuming and expensive computations.In this work,we present a method to easily and rapidly design bistable buckled beams subjected to a transverse point force.Based on the Euler–Bernoulli beam theory,we establish a theoretical model of bistable buckled beams to characterize their snapthrough properties.This model is verified against the results from a finite element analysis(FEA)model,with maximum discrepancy less than 7%.By analyzing and simplifying our theoretical model,we derive explicit analytical expressions for critical behavioral values on the force-displacement curve of the beam.These behavioral values include critical force,critical displacement,and travel,which are generally sufficient for characterizing the snapthrough properties of a bistable buckled beam.Based on these analytical formulas,we investigate the influence of a bistable buckled beam's key design parameters,including its actuation position and precompression,on its critical behavioral values,with our results validated by FEA simulations.Our analytical method enables fast and computationally inexpensive design of bistable buckled beams and can guide the design of complicated systems that incorporate bistable mechanisms.展开更多
Electronic, elastic and piezoelectric properties of two-dimensional (2D) group-IV buckled monolayers (GeSi, SnSi and SnGe) are studied by first principle calculations. According to our calculations, SnSi and SnGe ...Electronic, elastic and piezoelectric properties of two-dimensional (2D) group-IV buckled monolayers (GeSi, SnSi and SnGe) are studied by first principle calculations. According to our calculations, SnSi and SnGe are good 2D piezoelectric materials with large piezoelectric coefficients. The values of d11d11 of SnSi and SnGe are 5.04pm/V and 5.42pm/V, respectively, which are much larger than 2D MoS2 (3.6pm/V) and are comparable with some frequently used bulk materials (e.g., wurtzite AlN 5.1pm/V). Charge transfer is calculated by the L wdin analysis and we find that the piezoelectric coefficients (d11d11 and d31) are highly dependent on the polarizabilities of the anions and cations in group-IV monolayers.展开更多
On the bafis of the generalized von K(?)rm(?)n theory for perforated thin plates established in [1,2], the existence of buckled states for perforated plates subjected to self-equilibrating inplane forces along each ed...On the bafis of the generalized von K(?)rm(?)n theory for perforated thin plates established in [1,2], the existence of buckled states for perforated plates subjected to self-equilibrating inplane forces along each edge systematically is investigated. This work completely generalizes the results in [3, 4].展开更多
The subharmonic resonance and bifurcations of a clamped-clamped buckled beam under base harmonic excitations are investigated.The nonlinear partial integrodifferential equation of the motion of the buckled beam with b...The subharmonic resonance and bifurcations of a clamped-clamped buckled beam under base harmonic excitations are investigated.The nonlinear partial integrodifferential equation of the motion of the buckled beam with both quadratic and cubic nonlinearities is given by using Hamilton’s principle.A set of second-order nonlinear ordinary differential equations are obtained by spatial discretization with the Galerkin method.A high-dimensional model of the buckled beam is derived,concerning nonlinear coupling.The incremental harmonic balance(IHB)method is used to achieve the periodic solutions of the high-dimensional model of the buckled beam to observe the nonlinear frequency response curve and the nonlinear amplitude response curve,and the Floquet theory is used to analyze the stability of the periodic solutions.Attention is focused on the subharmonic resonance caused by the internal resonance as the excitation frequency near twice of the first natural frequency of the buckled beam with/without the antisymmetric modes being excited.Bifurcations including the saddle-node,Hopf,perioddoubling,and symmetry-breaking bifurcations are observed.Furthermore,quasi-periodic motion is observed by using the fourth-order Runge-Kutta method,which results from the Hopf bifurcation of the response of the buckled beam with the anti-symmetric modes being excited.展开更多
Dirac states composed of Px,y orbitals have been reported in many two-dimensional (2D) systems with honeycomb lattices recently. Their potential importance has aroused strong interest in a comprehensive understandin...Dirac states composed of Px,y orbitals have been reported in many two-dimensional (2D) systems with honeycomb lattices recently. Their potential importance has aroused strong interest in a comprehensive understanding of such states. Here, we construct a four-band tight-binding model for the Px,y-orbital Dirac states considering both the nearest neighbor hopping interactions and the lattice-buckling effect. We find that Px,y-orbital Dirac states are accompanied with two addi- tional narrow bands that are flat in the limit of vanishing n bonding, which is in agreement with previous studies. Most importantly, we analytically obtain the linear dispersion relationship between energy and momentum vector near the Dirac cone. We find that the Fermi velocity is determined not only by the hopping through n bonding but also by the hopping through ~ bonding of Px,y orbitals, which is in contrast to the case of pz-orbital Dirac states. Consequently, Px,y-orbital Dirac states offer more flexible engineering, with the Fermi velocity being more sensitive to the changes of lattice constants and buckling angles, if strain is exerted. We further validate our tight-binding scheme by direct first-principles calcula- tions of model-materials including hydrogenated monolayer Bi and Sb honeycomb lattices. Our work provides a more in-depth understanding of Px,y-orbital Dirac states in honeycomb lattices, which is useful for the applications of this family of materials in nanoelectronics.展开更多
In this paper, the axisymmetric buckled states of an annular sandwich plate ( Reissner-type sandwich plate) with the clamped inner edge which is subjected to a uniform radial compressive thrust at the clamped outer ed...In this paper, the axisymmetric buckled states of an annular sandwich plate ( Reissner-type sandwich plate) with the clamped inner edge which is subjected to a uniform radial compressive thrust at the clamped outer edge are studied. Firstly, the basic equation of the buckled problem is derived. Secondly, the critical loads for some parameters are obtained by using the shooting method. Finally, we discuss the existence of the buckled slates in the vicinity of the critical loads and obtain the asymptotic expansions of the buckled states.展开更多
A method of determining bifurcation directions at a double eigenvalue is presented by combining the finite element method with the perturbation method. By using the present method, the buckled states of rectangular pl...A method of determining bifurcation directions at a double eigenvalue is presented by combining the finite element method with the perturbation method. By using the present method, the buckled states of rectangular plates at a double eigenvalue are numerically analyzed. The results show that this method is effective.展开更多
The use of columns on elastic foundation is very common in Civil Engineering, like bridge pier, the foundation of the buildings etc. So, it will be useful to find the critical load for the structure, the problem in th...The use of columns on elastic foundation is very common in Civil Engineering, like bridge pier, the foundation of the buildings etc. So, it will be useful to find the critical load for the structure, the problem in this paper will be solved by Finite-Difference Mode, that' s simple and has an extensive use. The way it works is that by dividing the component into many units. Finite-difference methods (FDM) are numerical methods for anoroximating, the solutions to differential eauations usine finite difference equations to approximate derivatives.展开更多
The elastic conductor is crucial in wearable electronics and soft robotics.The ideal intrinsic elastic bulk conductors show uniform three-dimensional conductive networks and stable resistance during large stretch.A ch...The elastic conductor is crucial in wearable electronics and soft robotics.The ideal intrinsic elastic bulk conductors show uniform three-dimensional conductive networks and stable resistance during large stretch.A challenge is that the variation of resistance is high under deformation due to disconnection of conductive pathway for bulk elastic conductors.Our strategy is to introduce buckled structure into the conductive network,by self-assembly of a carbon nanotube layer on the interconnecting micropore surface of a prestrained foam,followed by strain relaxation.Both unfolding of buckles and flattening of micropores contributed to the stability of the resistance under deformation(2.0%resistance variation under 70%strain).Microstructural analysis and finite element analysis illustrated different patterns of two-dimensional buckling structures could be obtained due to the imperfections in the conductive layer.Applications as all-directional interconnects,stretchable electromagnetic interference shielding and electrothermal tumor ablation were demonstrated.展开更多
The availability of fiber conductors that can be stretched to large extents without significantly changing resistance or con-ductivity could enable the advances of elastic conductors as electronic interconnects,electr...The availability of fiber conductors that can be stretched to large extents without significantly changing resistance or con-ductivity could enable the advances of elastic conductors as electronic interconnects,electronic skins,stretchable sensors,wearable systems,and medical robots.Therefore,the preparation of fiber conductors with high stretchability is crucial to the development of flexible electronic devices.This review summarizes the advances in constructing fiber conductors with an emphasis on recent developments of buckled structural design,fabrication methodologies,and strategies,with the ulti-mate goal of achieving good stability of resistance or conductivity at large strains.This review classifies the buckled fiber conductors into inner buckling and outer buckling,and related examples are summarized,providing a context that buckled fiber conductors are geared towards applications in electrical interconnects,wearable systems,and smart medical robotics.The present challenges in this area are critically evaluated and our perspectives for improving the performance of the buckled fiber conductors for future applications are presented.展开更多
By using an extended Melnikov method on multi-degree-of-freedom Hamiltonian systems with perturbations,the global bifurcations and chaotic dynamics are investigated for a parametrically excited,simply supported rectan...By using an extended Melnikov method on multi-degree-of-freedom Hamiltonian systems with perturbations,the global bifurcations and chaotic dynamics are investigated for a parametrically excited,simply supported rectangular buckled thin plate.The formulas of the rectangular buckled thin plate are derived by using the von Karman type equation.The two cases of the buckling for the rectangular thin plate are considered.With the aid of Galerkin's approach,a two-degree-of-freedom nonautonomous nonlinear system is obtained for the non-autonomous rectangular buckled thin plate.The high-dimensional Melnikov method developed by Yagasaki is directly employed to the non-autonomous ordinary differential equation of motion to analyze the global bifurcations and chaotic dynamics of the rectangular buckled thin plate.Numerical method is used to find the chaotic responses of the non-autonomous rectangular buckled thin plate.The results obtained here indicate that the chaotic motions can occur in the parametrically excited,simply supported rectangular buckled thin plate.展开更多
This study focused on the buckling characteristics of egg-shaped shells with single crack and double cracks under axial pressure.First,the geometric parameters of the egg-shaped shell were designed,and a numerical mod...This study focused on the buckling characteristics of egg-shaped shells with single crack and double cracks under axial pressure.First,the geometric parameters of the egg-shaped shell were designed,and a numerical model of the egg-shaped shell was established.Then,the initial crack was introduced into the equatorial weld of the egg-shaped shell,and the effects of the crack on the buckling characteristics under different wall thicknesses were explored,as were the effects of the single crack direction,double crack angle and spacing on the buckling characteristics.Finally,crack-free,single crack and double crack egg-shaped shells were fabricated from Q235 steel.The buckling loads and failure modes of the three egg-shaped shells were obtained via axial compression experiments.The numerical critical buckling loads and buckling modes were compared with the experimental results to verify the accuracy of the numerical model.The results of this study are valuable for the design of egg-shaped shells under axial loading.展开更多
The stiffness properties of variable stiffness(VS) composite plates can be controlled by manipulating the variation in the fiber angle, thereby significantly improving their buckling properties. Nonlinear fiber paths ...The stiffness properties of variable stiffness(VS) composite plates can be controlled by manipulating the variation in the fiber angle, thereby significantly improving their buckling properties. Nonlinear fiber paths have attracted attention in the field of composites due to their large design space. The major challenge in adopting nonlinear fiber paths is obtaining a fiber path function within the design space that is easily computable and efficiently yields the highest buckling load of a VS plate. In this investigation, an innovative nonlinear function was proposed to describe the fiber orientation by integrating a center fiber angle into the conventional linear function. The parameters of the nonlinear function can directly represent the fiber angles at a fixed position. This novel approach has promising potential for improving the optimal efficiency of fiber paths because the linear and nonlinear functions are simplified with two identical path parameters. Furthermore, a multilevel optimization method was developed by combining finite element analysis(FEA) with an adaptive radial basis function(RBF) surrogate model, and it was found that the number of FEA cases could be reduced by iteratively inheriting training points. The integration of this nonlinear function with a surrogate model is a significant advancement in the structural optimization of composites. Subsequently, the optimal linear and nonlinear fiber paths were computed to maximize the buckling load of VS plates. The FEA results show that the computational efficiency was greatly improved by the proposed nonlinear function and optimization method. The buckling resistance could be enhanced by the nonlinear fiber path, and the reinforcement mechanism was the redistribution and reduction of in-plane compressive stress.展开更多
Steel cylindrical shells are widely used in engineering structures due to their high strength-to-weight ratio,but they are vulnerable to buckling under axial loads.To address this limitation,fiber-reinforced polymer(F...Steel cylindrical shells are widely used in engineering structures due to their high strength-to-weight ratio,but they are vulnerable to buckling under axial loads.To address this limitation,fiber-reinforced polymer(FRP)composites have emerged as promising materials for structural reinforcement.This study investigates the buckling behavior of steel cylindrical shells reinforced with inner and outer layers of polymer composite materials under axial compression.Using analytical and numerical modeling methods,the critical buckling loads for different reinforcement options were evaluated.Two-sided glass fiber reinforced plastic(GFRP)or carbon fiber reinforced plastic(CFRP)coatings,as well as combined coatings with layers of different composites,were considered.GFRP+CFRPIn the calculations,the coatings were treated as homogeneous orthotropic materials with equivalent averaged elastic characteristics.The numerical analysis revealed that CFRP reinforcement achieved the highest increase in buckling load,with improvements ranging from 9.84%to 47.29%,depending on the composite thickness and steel shell thickness.GFRP reinforcement,while beneficial,demonstrated a lower effectiveness,with buckling load increases between 5.89%and 19.30%.The hybrid reinforcement provided an optimal balance,improving buckling resistance by GFRP+CFRP6.94%to 43.95%.Statistical analysis further identified composite type and thickness as the most significant factors affecting buckling performance.The findings suggest that CFRP is the preferred reinforcement material,especially when applied to thin-walled cylindrical shells,while hybrid reinforcements can be effectively utilized for structures requiring a balance between stiffness and ductility.These insights provide a foundation for optimizing FRP reinforcement strategies to enhance the structural integrity of steel shells in engineering applications.展开更多
This study presents an extension of multiscale topology optimization by integrating both yield stress and local/global buckling considerations into the design process.Building upon established multiscale methodologies...This study presents an extension of multiscale topology optimization by integrating both yield stress and local/global buckling considerations into the design process.Building upon established multiscale methodologies,we develop a new framework incorporating yield stress limits either as constraints or objectives alongside previously established local and global buckling constraints.This approach significantly refines the optimization process,ensuring that the resulting designs meet mechanical performance criteria and adhere to critical material yield constraints.First,we establish local density-dependent von Mises yield surfaces based on local yield estimates from homogenization-based analysis to predict the local yield limits of the homogenized materials.Then,these local yield-based load factors are combined with local and global buckling criteria to obtain topology optimized designs that consider yield and buckling failure on all levels.This integration is crucial for the practical application of optimized structures in real-world scenarios,where material yield and stability behavior critically influence structural integrity and durability.Numerical examples demonstrate how optimized designs depend on the stiffness to yield ratio of the considered building material.Despite the foundational assumption of the separation of scales,the de-homogenized structures,even at relatively coarse length scales,exhibit a remarkably high degree of agreement with the corresponding homogenized predictions.展开更多
AIM:To report the refractive and surgical outcomes of scleral buckling(SB)with or without pars plana vitrectomy(PPV)in patients with pseudophakic rhegmatogenous retinal detachment(PRRD).METHODS:A consecutive case seri...AIM:To report the refractive and surgical outcomes of scleral buckling(SB)with or without pars plana vitrectomy(PPV)in patients with pseudophakic rhegmatogenous retinal detachment(PRRD).METHODS:A consecutive case series of patients with pseudophakia who underwent retinal detachment(RD)surgery was enrolled.The SB procedures were selected to initially treat primary pseudophakic PRRDs and SB-PPV for more complex cases,according to preoperative findings.Eyes with anterior chamber intraocular lens,proliferative vitreoretinopathy anterior to equator,previous invasive glaucoma surgery,severe degenerative myopia or macular hole,and<6mo follow-up were excluded from outcomes analysis.The primary clinical outcome measures were the single surgery anatomic success(SSAS)and final surgery anatomic success(FSAS)rates.Secondary outcome measures were postoperative visual acuity and refractive error.RESULTS:A total of 81 consecutive patients(81 eyes)were enrolled for analysis,comprising 66(81%)men and 15(19%)women with a mean age of 58y(range,33-86y)and the mean final follow-up period was 21.0±19.6mo.A total of 62 PRRDs(n=62;76.5%)were repaired with an initial SB,and 19 PRRDs(n=19;23.5%)were repaired with a combined SB-PPV.The SSAS and FSAS rates were 92.6%(75/81)and 100%(81/81),respectively.All initial failures had retinal reattachment after the secondary PPV.The mean final postoperative best-corrected visual acuity(BCVA)was 0.42±0.33 logMAR(visual acuity 20/55)and final mean refractive error was-1.48±1.40 diopters.The patients who underwent initially SB-PPV had a significantly longer duration of RD and a higher giant retinal tear rate(P<0.05)preoperatively.SSAS was 56/62(90.3%)and 19/19(100%),and the mean postoperative refractive error was-1.30±1.32 D and-1.53±1.38 D for the patients in the SB and SB-PPV groups,respectively.There was no statistically significant difference for those who had SSAS and postoperative refractive errors between the 2 groups.The postoperative BCVAs of the patients with SSAS were not significantly better in the SB group(median,20/40)than in the SB-PPV group(median 20/50).In the SB group,patients with macula-on had better visual acuity postoperatively than patients with macula-off(P=0.000).CONCLUSION:The initial surgical procedures of SB with or without PPV according to the preoperative findings achieve a high reattachment rate and an acceptable refractive error for primary pseudophakic RRD management.展开更多
In this paper,a type of reinforcing structure for composite shell with single and through hole is presented.The experimental tests for the composite shells without hole,with single hole and reinforced structure,with t...In this paper,a type of reinforcing structure for composite shell with single and through hole is presented.The experimental tests for the composite shells without hole,with single hole and reinforced structure,with through hole and reinforced structure subjected to hydrostatic pressure were carried out by the designed experimental test system.The mechanical responses of the composite shells under hydrostatic pressure are obtained by the high-speed camera and strain measurement.The results show that the entire deformation process of the shell can be divided into three:uniform compression,"buckling mode formation"and buckling.The"buckling mode formation"process is captured and reported for the first time.For the composite shell with single hole,the proposed reinforcing structure has a significant reinforcement effect on the shell and the buckling capacity of the shell is not weaker than the complete composite shell.For the composite shell with through hole,sealing effect can be achieved by the proposed reinforcing structure,but the buckling capacity of the shell after reinforcement can only reach 77%of the original buckling capacity.展开更多
Buckling failure in submarine cables presents a prevalent challenge in ocean engineering.This work aims to explore the buckling behavior of umbilical cables with damaged sheaths subjected to compression and bending cy...Buckling failure in submarine cables presents a prevalent challenge in ocean engineering.This work aims to explore the buckling behavior of umbilical cables with damaged sheaths subjected to compression and bending cyclic loads.A finite element model is devised,incorporating a singular armor wire,a rigid core,and a damaged sheath.To scrutinize the buckling progression and corresponding deformation,axial compression and bending cyclic loads are introduced.The observations reveal that a reduction in axial compression results in a larger number of cycles before buckling ensues and progressively shifts the buckling position toward the extrados and fixed end.Decreasing the bending radius precipitates a reduction in the buckling cycle number and minimizes the deformation in the armor wire.Furthermore,an empirical model is presented to predict the occurrence of birdcage buckling,providing a means to anticipate buckling events and to estimate the requisite number of cycles leading to buckling.展开更多
Kirigami,through introducing cuts into a thin sheet,can greatly improve the stretchability of structures and also generate complex patterns,showing potentials in various applications.Interestingly,even with the same c...Kirigami,through introducing cuts into a thin sheet,can greatly improve the stretchability of structures and also generate complex patterns,showing potentials in various applications.Interestingly,even with the same cutting pattern,the mechanical response of kirigami metamaterials can exhibit significant differences depending on the cutting angles in respect to the loading direction.In this work,we investigate the structural deformation of kirigami metamaterials with square domains and varied cutting angles of 0°and 45°.We further introduce a second level of cutting on the basis of the first cutting pattern.By combining experiments and finite element simulations,it is found that,compared to the commonly used 0°cuts,the two-level kirigami metamaterials with 45°cuts exhibit a unique alternating arrangement phenomenon of expanded/unexpanded states in the loading process,which also results in distinct stress–strain response.Through tuning the cutting patterns of metamaterials with 45°cuts,precise control of the rotation of the kirigami unit is realized,leading to kirigami metamaterials with encryption properties.The current work demonstrates the programmability of structural deformation in hierarchical kirigami metamaterials through controlling the local cutting modes.展开更多
The increasing demand to decrease manufacturing costs and weight reduction is driving the aircraft industry to change the use of conventional riveted stiffened panels to integral stiffened panels(ISP)for aircraft fuse...The increasing demand to decrease manufacturing costs and weight reduction is driving the aircraft industry to change the use of conventional riveted stiffened panels to integral stiffened panels(ISP)for aircraft fuselage structures.ISP is a relatively new structure in aircraft industries and is considered the most significant development in a decade.These structures have the potential to replace the conventional stiffened panel due to the emergence of manufacturing technology,including welding,high-speed machining(HSM),extruding,and bonding.Although laser beam welding(LBW)and friction stir welding(FSW)have been applied in aircraft companies,many investigations into ISP continue to be conducted.In this review article,the current state of understanding and advancement of ISP structure is addressed.A particular explanation has been given to(a)buckling performance,(b)fatigue performance of the ISP,(c)modeling and simulation aspects,and(d)the impact of manufacturing decisions in welding processes on the final structural behavior of the ISP during service.Compared to riveted panels,machined ISP had a better compressive buckling load,and FSW integral panels had a lower buckling load than riveted panels.Compressive residual stress decreased the stress intensity factor(SIF)rates,slowing down the growth of fatigue cracks as occurred in FSW and LBW ISP.展开更多
基金financial support from the National Science Foundation of the United State (Grants 1752575 and 1644579)
文摘Double-clamped bistable buckled beams demonstrate great versatility in various fields such as robotics,energy harvesting,and microelectromechanical system(MEMS).However,their design often requires time-consuming and expensive computations.In this work,we present a method to easily and rapidly design bistable buckled beams subjected to a transverse point force.Based on the Euler–Bernoulli beam theory,we establish a theoretical model of bistable buckled beams to characterize their snapthrough properties.This model is verified against the results from a finite element analysis(FEA)model,with maximum discrepancy less than 7%.By analyzing and simplifying our theoretical model,we derive explicit analytical expressions for critical behavioral values on the force-displacement curve of the beam.These behavioral values include critical force,critical displacement,and travel,which are generally sufficient for characterizing the snapthrough properties of a bistable buckled beam.Based on these analytical formulas,we investigate the influence of a bistable buckled beam's key design parameters,including its actuation position and precompression,on its critical behavioral values,with our results validated by FEA simulations.Our analytical method enables fast and computationally inexpensive design of bistable buckled beams and can guide the design of complicated systems that incorporate bistable mechanisms.
基金Supported by the National Natural Science Foundation of China under Grant No 51672208the National Science and Technology Pillar Program during the Twelfth Five-Year Plan Period under Grant No 2012BAD47B02+2 种基金the Sci-Tech Research and Development Program of Shaanxi Province under Grant Nos 2010K01-120,2011JM6010 and 2015JM5183the Shaanxi Provincial Department of Education under Grant No 2013JK0927the SRF for ROCS of SEM
文摘Electronic, elastic and piezoelectric properties of two-dimensional (2D) group-IV buckled monolayers (GeSi, SnSi and SnGe) are studied by first principle calculations. According to our calculations, SnSi and SnGe are good 2D piezoelectric materials with large piezoelectric coefficients. The values of d11d11 of SnSi and SnGe are 5.04pm/V and 5.42pm/V, respectively, which are much larger than 2D MoS2 (3.6pm/V) and are comparable with some frequently used bulk materials (e.g., wurtzite AlN 5.1pm/V). Charge transfer is calculated by the L wdin analysis and we find that the piezoelectric coefficients (d11d11 and d31) are highly dependent on the polarizabilities of the anions and cations in group-IV monolayers.
基金State Education Commission of the People's Republic of China
文摘On the bafis of the generalized von K(?)rm(?)n theory for perforated thin plates established in [1,2], the existence of buckled states for perforated plates subjected to self-equilibrating inplane forces along each edge systematically is investigated. This work completely generalizes the results in [3, 4].
基金Project supported by the National Natural Science Foundation of China(Nos.11972381 and 11572354)the Fundamental Research Funds for the Central Universities(No.18lgzd08)。
文摘The subharmonic resonance and bifurcations of a clamped-clamped buckled beam under base harmonic excitations are investigated.The nonlinear partial integrodifferential equation of the motion of the buckled beam with both quadratic and cubic nonlinearities is given by using Hamilton’s principle.A set of second-order nonlinear ordinary differential equations are obtained by spatial discretization with the Galerkin method.A high-dimensional model of the buckled beam is derived,concerning nonlinear coupling.The incremental harmonic balance(IHB)method is used to achieve the periodic solutions of the high-dimensional model of the buckled beam to observe the nonlinear frequency response curve and the nonlinear amplitude response curve,and the Floquet theory is used to analyze the stability of the periodic solutions.Attention is focused on the subharmonic resonance caused by the internal resonance as the excitation frequency near twice of the first natural frequency of the buckled beam with/without the antisymmetric modes being excited.Bifurcations including the saddle-node,Hopf,perioddoubling,and symmetry-breaking bifurcations are observed.Furthermore,quasi-periodic motion is observed by using the fourth-order Runge-Kutta method,which results from the Hopf bifurcation of the response of the buckled beam with the anti-symmetric modes being excited.
基金Project supported by the National Key Research and Development Projects of China(Grant No.2016YFA0202300)the National Natural Science Foundation of China(Grant No.61390501)+1 种基金the Science Fund from the Chinese Academy of Sciences(Grant No.XDPB0601)the US Army Research Office
文摘Dirac states composed of Px,y orbitals have been reported in many two-dimensional (2D) systems with honeycomb lattices recently. Their potential importance has aroused strong interest in a comprehensive understanding of such states. Here, we construct a four-band tight-binding model for the Px,y-orbital Dirac states considering both the nearest neighbor hopping interactions and the lattice-buckling effect. We find that Px,y-orbital Dirac states are accompanied with two addi- tional narrow bands that are flat in the limit of vanishing n bonding, which is in agreement with previous studies. Most importantly, we analytically obtain the linear dispersion relationship between energy and momentum vector near the Dirac cone. We find that the Fermi velocity is determined not only by the hopping through n bonding but also by the hopping through ~ bonding of Px,y orbitals, which is in contrast to the case of pz-orbital Dirac states. Consequently, Px,y-orbital Dirac states offer more flexible engineering, with the Fermi velocity being more sensitive to the changes of lattice constants and buckling angles, if strain is exerted. We further validate our tight-binding scheme by direct first-principles calcula- tions of model-materials including hydrogenated monolayer Bi and Sb honeycomb lattices. Our work provides a more in-depth understanding of Px,y-orbital Dirac states in honeycomb lattices, which is useful for the applications of this family of materials in nanoelectronics.
基金The projcct supported by the National Natural Science Foundation of China
文摘In this paper, the axisymmetric buckled states of an annular sandwich plate ( Reissner-type sandwich plate) with the clamped inner edge which is subjected to a uniform radial compressive thrust at the clamped outer edge are studied. Firstly, the basic equation of the buckled problem is derived. Secondly, the critical loads for some parameters are obtained by using the shooting method. Finally, we discuss the existence of the buckled slates in the vicinity of the critical loads and obtain the asymptotic expansions of the buckled states.
基金The Project supported by the NationalGansu Province Natural Science Foundation of China
文摘A method of determining bifurcation directions at a double eigenvalue is presented by combining the finite element method with the perturbation method. By using the present method, the buckled states of rectangular plates at a double eigenvalue are numerically analyzed. The results show that this method is effective.
文摘The use of columns on elastic foundation is very common in Civil Engineering, like bridge pier, the foundation of the buildings etc. So, it will be useful to find the critical load for the structure, the problem in this paper will be solved by Finite-Difference Mode, that' s simple and has an extensive use. The way it works is that by dividing the component into many units. Finite-difference methods (FDM) are numerical methods for anoroximating, the solutions to differential eauations usine finite difference equations to approximate derivatives.
基金supported by the National Key Research and Development Program of China(2017YFB0307000)the National Natural Science Foundation of China(51973093,U1533122 and 51773094)+5 种基金the Natural Science Foundation of Tianjin(18JCZDJC36800)the Science Foundation for Distinguished Young Scholars of Tianjin(18JCJQJC46600)the Fundamental Research Funds for the Central Universities(63171219)the State Key Laboratory for Modification of Chemical Fibers and Polymer Materials,Donghua University(LK1704)the National Special Support Plan for High-level Talents people(C041800902)the Eugene McDermott Graduate Fellows Program。
文摘The elastic conductor is crucial in wearable electronics and soft robotics.The ideal intrinsic elastic bulk conductors show uniform three-dimensional conductive networks and stable resistance during large stretch.A challenge is that the variation of resistance is high under deformation due to disconnection of conductive pathway for bulk elastic conductors.Our strategy is to introduce buckled structure into the conductive network,by self-assembly of a carbon nanotube layer on the interconnecting micropore surface of a prestrained foam,followed by strain relaxation.Both unfolding of buckles and flattening of micropores contributed to the stability of the resistance under deformation(2.0%resistance variation under 70%strain).Microstructural analysis and finite element analysis illustrated different patterns of two-dimensional buckling structures could be obtained due to the imperfections in the conductive layer.Applications as all-directional interconnects,stretchable electromagnetic interference shielding and electrothermal tumor ablation were demonstrated.
基金The Natural Science Foundation of Guangdong Province(2019A1515011812)the 100 Top Talents Program-Sun Yat-sen University(29000-18841225)Fundamental Research Funds for the Central Universities(20lgpy12)are gratefully acknowledged.
文摘The availability of fiber conductors that can be stretched to large extents without significantly changing resistance or con-ductivity could enable the advances of elastic conductors as electronic interconnects,electronic skins,stretchable sensors,wearable systems,and medical robots.Therefore,the preparation of fiber conductors with high stretchability is crucial to the development of flexible electronic devices.This review summarizes the advances in constructing fiber conductors with an emphasis on recent developments of buckled structural design,fabrication methodologies,and strategies,with the ulti-mate goal of achieving good stability of resistance or conductivity at large strains.This review classifies the buckled fiber conductors into inner buckling and outer buckling,and related examples are summarized,providing a context that buckled fiber conductors are geared towards applications in electrical interconnects,wearable systems,and smart medical robotics.The present challenges in this area are critically evaluated and our perspectives for improving the performance of the buckled fiber conductors for future applications are presented.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11072008,10732020 and 11002005)the Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality(PHRIHLB)
文摘By using an extended Melnikov method on multi-degree-of-freedom Hamiltonian systems with perturbations,the global bifurcations and chaotic dynamics are investigated for a parametrically excited,simply supported rectangular buckled thin plate.The formulas of the rectangular buckled thin plate are derived by using the von Karman type equation.The two cases of the buckling for the rectangular thin plate are considered.With the aid of Galerkin's approach,a two-degree-of-freedom nonautonomous nonlinear system is obtained for the non-autonomous rectangular buckled thin plate.The high-dimensional Melnikov method developed by Yagasaki is directly employed to the non-autonomous ordinary differential equation of motion to analyze the global bifurcations and chaotic dynamics of the rectangular buckled thin plate.Numerical method is used to find the chaotic responses of the non-autonomous rectangular buckled thin plate.The results obtained here indicate that the chaotic motions can occur in the parametrically excited,simply supported rectangular buckled thin plate.
基金supported by the National Natural Science Foundation of China(Grant No.52271277)the Natural Science Foundation of Jiangsu Province(Grant No.BK20211343)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.SJCX23_2150).
文摘This study focused on the buckling characteristics of egg-shaped shells with single crack and double cracks under axial pressure.First,the geometric parameters of the egg-shaped shell were designed,and a numerical model of the egg-shaped shell was established.Then,the initial crack was introduced into the equatorial weld of the egg-shaped shell,and the effects of the crack on the buckling characteristics under different wall thicknesses were explored,as were the effects of the single crack direction,double crack angle and spacing on the buckling characteristics.Finally,crack-free,single crack and double crack egg-shaped shells were fabricated from Q235 steel.The buckling loads and failure modes of the three egg-shaped shells were obtained via axial compression experiments.The numerical critical buckling loads and buckling modes were compared with the experimental results to verify the accuracy of the numerical model.The results of this study are valuable for the design of egg-shaped shells under axial loading.
基金supported by the National Natural Science Foundation of China (No. 52305026)the China Postdoctoral Science Foundation (No. 2023M741941)。
文摘The stiffness properties of variable stiffness(VS) composite plates can be controlled by manipulating the variation in the fiber angle, thereby significantly improving their buckling properties. Nonlinear fiber paths have attracted attention in the field of composites due to their large design space. The major challenge in adopting nonlinear fiber paths is obtaining a fiber path function within the design space that is easily computable and efficiently yields the highest buckling load of a VS plate. In this investigation, an innovative nonlinear function was proposed to describe the fiber orientation by integrating a center fiber angle into the conventional linear function. The parameters of the nonlinear function can directly represent the fiber angles at a fixed position. This novel approach has promising potential for improving the optimal efficiency of fiber paths because the linear and nonlinear functions are simplified with two identical path parameters. Furthermore, a multilevel optimization method was developed by combining finite element analysis(FEA) with an adaptive radial basis function(RBF) surrogate model, and it was found that the number of FEA cases could be reduced by iteratively inheriting training points. The integration of this nonlinear function with a surrogate model is a significant advancement in the structural optimization of composites. Subsequently, the optimal linear and nonlinear fiber paths were computed to maximize the buckling load of VS plates. The FEA results show that the computational efficiency was greatly improved by the proposed nonlinear function and optimization method. The buckling resistance could be enhanced by the nonlinear fiber path, and the reinforcement mechanism was the redistribution and reduction of in-plane compressive stress.
文摘Steel cylindrical shells are widely used in engineering structures due to their high strength-to-weight ratio,but they are vulnerable to buckling under axial loads.To address this limitation,fiber-reinforced polymer(FRP)composites have emerged as promising materials for structural reinforcement.This study investigates the buckling behavior of steel cylindrical shells reinforced with inner and outer layers of polymer composite materials under axial compression.Using analytical and numerical modeling methods,the critical buckling loads for different reinforcement options were evaluated.Two-sided glass fiber reinforced plastic(GFRP)or carbon fiber reinforced plastic(CFRP)coatings,as well as combined coatings with layers of different composites,were considered.GFRP+CFRPIn the calculations,the coatings were treated as homogeneous orthotropic materials with equivalent averaged elastic characteristics.The numerical analysis revealed that CFRP reinforcement achieved the highest increase in buckling load,with improvements ranging from 9.84%to 47.29%,depending on the composite thickness and steel shell thickness.GFRP reinforcement,while beneficial,demonstrated a lower effectiveness,with buckling load increases between 5.89%and 19.30%.The hybrid reinforcement provided an optimal balance,improving buckling resistance by GFRP+CFRP6.94%to 43.95%.Statistical analysis further identified composite type and thickness as the most significant factors affecting buckling performance.The findings suggest that CFRP is the preferred reinforcement material,especially when applied to thin-walled cylindrical shells,while hybrid reinforcements can be effectively utilized for structures requiring a balance between stiffness and ductility.These insights provide a foundation for optimizing FRP reinforcement strategies to enhance the structural integrity of steel shells in engineering applications.
基金supported by Villum Fonden through the Villum Investigator Project“AMSTRAD”(Grant No.VIL54487).
文摘This study presents an extension of multiscale topology optimization by integrating both yield stress and local/global buckling considerations into the design process.Building upon established multiscale methodologies,we develop a new framework incorporating yield stress limits either as constraints or objectives alongside previously established local and global buckling constraints.This approach significantly refines the optimization process,ensuring that the resulting designs meet mechanical performance criteria and adhere to critical material yield constraints.First,we establish local density-dependent von Mises yield surfaces based on local yield estimates from homogenization-based analysis to predict the local yield limits of the homogenized materials.Then,these local yield-based load factors are combined with local and global buckling criteria to obtain topology optimized designs that consider yield and buckling failure on all levels.This integration is crucial for the practical application of optimized structures in real-world scenarios,where material yield and stability behavior critically influence structural integrity and durability.Numerical examples demonstrate how optimized designs depend on the stiffness to yield ratio of the considered building material.Despite the foundational assumption of the separation of scales,the de-homogenized structures,even at relatively coarse length scales,exhibit a remarkably high degree of agreement with the corresponding homogenized predictions.
文摘AIM:To report the refractive and surgical outcomes of scleral buckling(SB)with or without pars plana vitrectomy(PPV)in patients with pseudophakic rhegmatogenous retinal detachment(PRRD).METHODS:A consecutive case series of patients with pseudophakia who underwent retinal detachment(RD)surgery was enrolled.The SB procedures were selected to initially treat primary pseudophakic PRRDs and SB-PPV for more complex cases,according to preoperative findings.Eyes with anterior chamber intraocular lens,proliferative vitreoretinopathy anterior to equator,previous invasive glaucoma surgery,severe degenerative myopia or macular hole,and<6mo follow-up were excluded from outcomes analysis.The primary clinical outcome measures were the single surgery anatomic success(SSAS)and final surgery anatomic success(FSAS)rates.Secondary outcome measures were postoperative visual acuity and refractive error.RESULTS:A total of 81 consecutive patients(81 eyes)were enrolled for analysis,comprising 66(81%)men and 15(19%)women with a mean age of 58y(range,33-86y)and the mean final follow-up period was 21.0±19.6mo.A total of 62 PRRDs(n=62;76.5%)were repaired with an initial SB,and 19 PRRDs(n=19;23.5%)were repaired with a combined SB-PPV.The SSAS and FSAS rates were 92.6%(75/81)and 100%(81/81),respectively.All initial failures had retinal reattachment after the secondary PPV.The mean final postoperative best-corrected visual acuity(BCVA)was 0.42±0.33 logMAR(visual acuity 20/55)and final mean refractive error was-1.48±1.40 diopters.The patients who underwent initially SB-PPV had a significantly longer duration of RD and a higher giant retinal tear rate(P<0.05)preoperatively.SSAS was 56/62(90.3%)and 19/19(100%),and the mean postoperative refractive error was-1.30±1.32 D and-1.53±1.38 D for the patients in the SB and SB-PPV groups,respectively.There was no statistically significant difference for those who had SSAS and postoperative refractive errors between the 2 groups.The postoperative BCVAs of the patients with SSAS were not significantly better in the SB group(median,20/40)than in the SB-PPV group(median 20/50).In the SB group,patients with macula-on had better visual acuity postoperatively than patients with macula-off(P=0.000).CONCLUSION:The initial surgical procedures of SB with or without PPV according to the preoperative findings achieve a high reattachment rate and an acceptable refractive error for primary pseudophakic RRD management.
基金supported by the Ningbo Major Research and Development Plan Project(Grant No.2024Z135)the Natural Science Basic Research Program of Shaanxi Province(Grant No.2024JC-YBMS-322)+1 种基金China Postdoctoral Science Foundation(Grant No.2020M673492)National Natural Science Foundation of China(Grant No.51909219)。
文摘In this paper,a type of reinforcing structure for composite shell with single and through hole is presented.The experimental tests for the composite shells without hole,with single hole and reinforced structure,with through hole and reinforced structure subjected to hydrostatic pressure were carried out by the designed experimental test system.The mechanical responses of the composite shells under hydrostatic pressure are obtained by the high-speed camera and strain measurement.The results show that the entire deformation process of the shell can be divided into three:uniform compression,"buckling mode formation"and buckling.The"buckling mode formation"process is captured and reported for the first time.For the composite shell with single hole,the proposed reinforcing structure has a significant reinforcement effect on the shell and the buckling capacity of the shell is not weaker than the complete composite shell.For the composite shell with through hole,sealing effect can be achieved by the proposed reinforcing structure,but the buckling capacity of the shell after reinforcement can only reach 77%of the original buckling capacity.
基金financially supported by the National Natural Science Foundation of China(Grant No.52471301)the Fujian Province Transportation Science and Technology Project(Grant No.JC202302)the Zhejiang Provincial Natural Science Foundation of China(Grant No.LY24E090003).
文摘Buckling failure in submarine cables presents a prevalent challenge in ocean engineering.This work aims to explore the buckling behavior of umbilical cables with damaged sheaths subjected to compression and bending cyclic loads.A finite element model is devised,incorporating a singular armor wire,a rigid core,and a damaged sheath.To scrutinize the buckling progression and corresponding deformation,axial compression and bending cyclic loads are introduced.The observations reveal that a reduction in axial compression results in a larger number of cycles before buckling ensues and progressively shifts the buckling position toward the extrados and fixed end.Decreasing the bending radius precipitates a reduction in the buckling cycle number and minimizes the deformation in the armor wire.Furthermore,an empirical model is presented to predict the occurrence of birdcage buckling,providing a means to anticipate buckling events and to estimate the requisite number of cycles leading to buckling.
基金supported by the National Natural Science Foundation of China(Grant Nos.12102392 and 12272341)the Zhejiang Provincial Natural Science Foundation of China(Grant No.LQ21A020008).
文摘Kirigami,through introducing cuts into a thin sheet,can greatly improve the stretchability of structures and also generate complex patterns,showing potentials in various applications.Interestingly,even with the same cutting pattern,the mechanical response of kirigami metamaterials can exhibit significant differences depending on the cutting angles in respect to the loading direction.In this work,we investigate the structural deformation of kirigami metamaterials with square domains and varied cutting angles of 0°and 45°.We further introduce a second level of cutting on the basis of the first cutting pattern.By combining experiments and finite element simulations,it is found that,compared to the commonly used 0°cuts,the two-level kirigami metamaterials with 45°cuts exhibit a unique alternating arrangement phenomenon of expanded/unexpanded states in the loading process,which also results in distinct stress–strain response.Through tuning the cutting patterns of metamaterials with 45°cuts,precise control of the rotation of the kirigami unit is realized,leading to kirigami metamaterials with encryption properties.The current work demonstrates the programmability of structural deformation in hierarchical kirigami metamaterials through controlling the local cutting modes.
基金The authors express their gratitude to Universiti Pura Malaysia(UPM),Malaysia for granting Putra IPS vote number 9742900.
文摘The increasing demand to decrease manufacturing costs and weight reduction is driving the aircraft industry to change the use of conventional riveted stiffened panels to integral stiffened panels(ISP)for aircraft fuselage structures.ISP is a relatively new structure in aircraft industries and is considered the most significant development in a decade.These structures have the potential to replace the conventional stiffened panel due to the emergence of manufacturing technology,including welding,high-speed machining(HSM),extruding,and bonding.Although laser beam welding(LBW)and friction stir welding(FSW)have been applied in aircraft companies,many investigations into ISP continue to be conducted.In this review article,the current state of understanding and advancement of ISP structure is addressed.A particular explanation has been given to(a)buckling performance,(b)fatigue performance of the ISP,(c)modeling and simulation aspects,and(d)the impact of manufacturing decisions in welding processes on the final structural behavior of the ISP during service.Compared to riveted panels,machined ISP had a better compressive buckling load,and FSW integral panels had a lower buckling load than riveted panels.Compressive residual stress decreased the stress intensity factor(SIF)rates,slowing down the growth of fatigue cracks as occurred in FSW and LBW ISP.