期刊文献+
共找到1,325篇文章
< 1 2 67 >
每页显示 20 50 100
Study on the Motion Characteristics of Floating Bubbles near the Wall Based on OpenFOAM
1
作者 Jie Cui Tao Xia +2 位作者 Zhaoyu Qu Xin Chen Mingyuan Li 《哈尔滨工程大学学报(英文版)》 2026年第1期32-45,共14页
In this study,the dynamic characteristics of microscale floating bubbles near the vertical wall are studied.This occurrence is common in industrial and natural phenomena.Although many studies have been conducted on mi... In this study,the dynamic characteristics of microscale floating bubbles near the vertical wall are studied.This occurrence is common in industrial and natural phenomena.Although many studies have been conducted on microscale bubbles,few studies investigate floating bubbles with very small Reynolds number(Re)near the wall,which is the main research goal of this study.Therefore,this study establishes a model for the ascent of small-scale bubbles near a vertical wall using the interFoam solver in OpenFOAM.This study investigates the influences of diverse viscosity parameters,varying distances from the wall,and different gas flow rates on the terminal velocity,deformation,and motion trajectory of bubbles.The results reveal that as liquid viscosity increases,the Re of bubbles gradually decreases and reaches a minimum of 0.012,which is similar to the Re of micrometer-sized bubbles in water.The characteristics of the wall-induced force in the longitudinal direction are closely related to the changes in liquid viscosity.Under low-viscosity conditions,the induced lift is the principal form of action,whereas under high-viscosity conditions,it is primarily manifested as induced drag. 展开更多
关键词 Rising bubble Viscosity Low Reynolds number Near wall bubbles OPENFOAM
在线阅读 下载PDF
Investigation of bubbles escape behavior from low basicity mold flux for high-Mn high-Al steels using 3D X-ray microscope
2
作者 Qiang Liu Xiang Li +3 位作者 Shen Du Ming Gao Yanbin Yin Jiongming Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期102-110,共9页
During the continuous casting process of high-Mn high-Al steels,various types of gases such as Ar need to escape through the top of the mold.In which,the behavior of bubbles traversing the liquid slag serves as a rest... During the continuous casting process of high-Mn high-Al steels,various types of gases such as Ar need to escape through the top of the mold.In which,the behavior of bubbles traversing the liquid slag serves as a restrictive link,closely associated with viscosity and the thickness of liquid slag.In contrast to two-dimensional surface observation,three-dimensional(3D)analysis method can offer a more intuitive,accurate,and comprehensive information.Therefore,this study employs a 3D X-ray microscope(3D-XRM)to obtained spatial distribution and 3D morphological characteristics of residual bubbles in mold flux under different basicity of liquid slag,different temperatures,and different holding times.The results indicate that as basicity of slag increases from 0.52 to 1.03,temperature increases from 1423 to 1573 K,the viscosity of slag decreases,the floating rate of bubbles increases.In addition,when holding time increases from 10 to 30 s,the bubbles floating distance increases,and the volume fraction and average equivalent sphere diameter of the bubbles solidified in the mold flux gradually decreases.In one word,increasing the basicity,temperature,and holding time leading to an increase in the removal rate of bubbles especially for the large.These findings of bubbles escape behavior provide valuable insights into optimizing low basicity mold flux for high-Mn high-Al steels. 展开更多
关键词 mold flux low basicity bubbles three-dimensional X-ray microscope VISCOSITY
在线阅读 下载PDF
Impact of Bubbles on Mechanical Performances in a Borosilicate Glass
3
作者 LI Chengxing LI Dongfeng +2 位作者 MA Shilong QIAO Ang ZHENG Qingshuang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期25-29,共5页
To analyze the impact of bubbles on the mechanical behavior of glasses,by controlling the refining time,we prepared three borosilicate glasses with the same composition and different porosity.By the analysis software ... To analyze the impact of bubbles on the mechanical behavior of glasses,by controlling the refining time,we prepared three borosilicate glasses with the same composition and different porosity.By the analysis software integrated within the optical microscope,the diameter and number of the bubbles on the surface of three borosilicate glasses were quantified.From the hardness and crack initiation resistance(CR),we built the relationship between the porosity and the mechanical performance of these borosilicate glasses. 展开更多
关键词 bubbles oxide glass HARDNESS creak initiation resistance
原文传递
Mechanical Constitutive Model for Equivalent Solid of Fission Gas Bubbles in Irradiated U-10Mo Fuels
4
作者 Li Yong Yan Feng +2 位作者 Zhang Jing Zang Liye Ding Shurong 《稀有金属材料与工程》 北大核心 2025年第7期1653-1660,共8页
The internal pressure within fission gas bubbles(FGBs)in irradiated nuclear fuels drives mechanical interactions with the surrounding fuel skeleton.To investigate the micromechanical stress fields in irradiated nuclea... The internal pressure within fission gas bubbles(FGBs)in irradiated nuclear fuels drives mechanical interactions with the surrounding fuel skeleton.To investigate the micromechanical stress fields in irradiated nuclear fuels containing pressurized FGBs,a mechanical constitutive model for the equivalent solid of FGBs was developed and validated.This model was based on the modified Van der Waals equation,incorporating the effects of surface tension.Using this model,the micromechanical fields in irradiated U-10Mo fuels with randomly distributed FGBs were calculated during uniaxial tensile testing via the finite element(FE)method.The macroscopic elastic constants of the irradiated U-10Mo fuels were then derived using homogenization theory,and the influences of bubble pressure,bubble size,and porosity on these constants were examined.Results show that adjacent FGBs exhibit mechanical interactions,which leads to distinct stress concentrations in the surrounding fuel skeleton.The macroscopic elastic constants of irradiated U-10Mo fuels decrease with increasing the macroscopic porosity,which can be quantitatively described by the Mori-Tanaka model.In contrast,bubble pressure and size have negligible effects on these constants. 展开更多
关键词 effective mechanical constitutive model fission gas bubbles FE method U-10Mo nuclear fuels macroscopic elastic constants
原文传递
Investigation on propagation mechanism of leakage acoustic waves in horizontal liquid pipelines containing gas bubbles
5
作者 Cui-Wei Liu Lin-Jing Yue +2 位作者 Yuan Xue Shu-Fang Zhu Yu-Xing Li 《Petroleum Science》 2025年第4期1757-1770,共14页
Sound speed is essential for leakage detection in liquid pipelines when using acoustic methods,which can be significantly influenced by gas bubbles generated from leakage.The propagation characteristics and mechanism ... Sound speed is essential for leakage detection in liquid pipelines when using acoustic methods,which can be significantly influenced by gas bubbles generated from leakage.The propagation characteristics and mechanism of acoustic waves in horizontal liquid pipelines containing gas bubbles are studied in detail in the present paper.The effect of sound wave frequency,bubble size and bubble distribution pattern on sound speed is studied through numerical simulations.The results show that the acoustic wave generated by leakage of liquid pipelines containing gas bubbles is a multi-frequency signal,and the energy of the signal is mainly concentrated within 200 Hz.In the low-frequency range,the propagation of sound waves has almost no dispersion in bubbly liquid.Sound speed at a certain void fraction is not constant,which is related to the bubble size and distribution pattern.The bubble size affects the gasliquid heat transfer equilibrium,during which sound speed is affected.For this reason,a thermodynamic correction factor is proposed,which enables the accuracy of the sound speed calculation to reach98.2%.What's more,sound speed increases non-linearly with the reduction of the bubble distribution space in the pipeline axial direction.This paper establishes a theoretical calculation model of sound speed based on the bubble distribution pattern in the pipeline axial direction,which is in good agreement with the numerical calculation results.The results of this paper provide the basis for applying acoustic leak detection technology in liquid pipelines containing gas bubbles. 展开更多
关键词 Liquid pipelines Gas bubbles Sound speed Leak detection Computational fluid dynamics
原文传递
Monetary policy shocks and multi‑scale positive and negative bubbles in an emerging country:the case of India
6
作者 Oguzhan Cepni Rangan Gupta +1 位作者 Jacobus Nel Joshua Nielsen 《Financial Innovation》 2025年第1期1109-1133,共25页
We employ the Multi-Scale Log-Periodic Power Law Singularity Confidence Indicator(MS-LPPLS-CI)approach to identify positive and negative bubbles in the short-,medium,and long-term for the Indian stock market,using wee... We employ the Multi-Scale Log-Periodic Power Law Singularity Confidence Indicator(MS-LPPLS-CI)approach to identify positive and negative bubbles in the short-,medium,and long-term for the Indian stock market,using weekly data from November 2003 to December 2020.We use a nonparametric causality-in-quantiles approach to analyze the predictive impact of monetary policy shocks on bubble indicators.We find,in general,strong evidence of predictability across the entire conditional distribution for the two monetary policy shock factors,with stronger impacts for negative bubbles.Our findings have critical implications for the Reserve Bank of India,academics,and investors. 展开更多
关键词 Multi-scale positive and negative bubbles Monetary policy shocks Nonparametric causality-in-quantiles test INDIA
在线阅读 下载PDF
Intra-granular fission gas bubbles growth in crystalline U_(3)Si_(2):Rate theory modeling
7
作者 Cong Ma Youheng Pei +6 位作者 Tianyuan Xin Dmitrii O.Kharchenko Vasyl O.Kharchenko Baoqin Fu Qing Hou Changqing Teng Lu Wu 《Chinese Physics B》 2025年第12期349-358,共10页
A model of intra-grain fission gas bubble growth in U_(3)Si_(2) coupled with defect microstructure is generalized to take into account the influence of point defect sinks and defect clustering.The dynamics of bubble g... A model of intra-grain fission gas bubble growth in U_(3)Si_(2) coupled with defect microstructure is generalized to take into account the influence of point defect sinks and defect clustering.The dynamics of bubble growth and defect structure properties are studied under different irradiation conditions.The influence of temperature and flux on bubble growth,defect ensemble evolution,and changes in material properties(elastic moduli and thermal degradation factor)are examined in detail.The universality of the bubble size distribution and the crossover of dynamical regimes of bubble growth are studied under various irradiation conditions.It is shown that a change in the dominant(fission gas atom-or vacancymediated)mechanism of bubble growth results in a crossover from a parabolic to a sub-parabolic bubble size growth law.The proposed modification of the rate theory model provides more accurate predictions and more detailed insight into fuel performance,especially fission gas behavior in crystalline U_(3)Si_(2). 展开更多
关键词 U_(3)Si_(2) gas bubbles SWELLING elastic and thermal properties
原文传递
Cosmic Bubbles
8
作者 Vladimir S. Netchitailo 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第1期438-453,共16页
The present paper is inspired by the article “Ho’oleilana: An Individual Baryon Acoustic Oscillation?” published by R. B. Tully, C. Howlett, and D. Pomarède on Sep. 2023 [1]. They claim: Evidence is presented ... The present paper is inspired by the article “Ho’oleilana: An Individual Baryon Acoustic Oscillation?” published by R. B. Tully, C. Howlett, and D. Pomarède on Sep. 2023 [1]. They claim: Evidence is presented here for the discovery of a remarkably strong individual contribution to the baryon acoustic oscillation (BAO) signal at z = 0.068, an entity that is given the name Ho’oleilana. K. Dawson, co-spokesperson for Dark Energy Spectroscopic Instrument is more inclined to believe that this latest finding is something of a coincidence, a chance alignment that simply looks like a sphere with a radius around what you’d expect for a BAO [2]. In this paper, we provide a short summary of experimental observations of Boötes Void and Superclusters;discuss the main features of the developed Hypersphere World-Universe Model;introduce notions “Cosmic Voids” and “Cosmic Bubbles”;elaborate a mathematical framework for different types of Cosmic Bubbles (Hubble Spherical Bubble for the World, Disk Bubbles for Galaxies;Spherical Bubbles for Extrasolar Systems, Dark Matter (DM) Spherical Bubbles for Galaxies and Superclusters);make a conclusion that the Boötes is a DM Cosmic Bubble and suggest experiments, which confirm our conclusion. 展开更多
关键词 World-Universe Model Boötes Void Boötes Superclusters Macroobjects bubbles Dark Matter bubbles Fermi bubbles Boötes bubbles
在线阅读 下载PDF
Deformation and migration characteristics of bubbles moving in gas-liquid countercurrent flow in annulus
9
作者 YIN Bangtang DING Tianbao +4 位作者 WANG Shulong WANG Zhiyuan SUN Baojiang ZHANG Wei ZHANG Xuliang 《Petroleum Exploration and Development》 2025年第2期471-484,共14页
The gas-liquid countercurrent flow pattern is complex and the bubble migration velocity is difficult to predict in the process of bullheading well killing.The experiment on bubble migration in gas-liquid countercurren... The gas-liquid countercurrent flow pattern is complex and the bubble migration velocity is difficult to predict in the process of bullheading well killing.The experiment on bubble migration in gas-liquid countercurrent flow in annulus is carried out under different working conditions to reveal how the wellbore inclination angle,liquid phase property and countercurrent liquid velocity affect the bubble deformation and bubble migration trajectory/velocity,and to establish a bubble migration velocity prediction model.The bubbles in the countercurrent flow mainly migrate in two modes:free rising of isolated bubbles,and interactive rising of multiple bubbles.The bubbles migrate by an S-shaped trajectory in the countercurrent flow.With the increase of countercurrent liquid velocity,the lateral oscillation of bubbles is intensified.The increases of wellbore inclination angle,liquid density and liquid viscosity make the bubble migration trajectory gradually to be linear.The bubble is generally ellipsoidal during its rising.The wellbore inclination angle has little effect on the degree of bubble deformation.The bubbles are ellipsoidal during rising,with little influence of wellbore inclination angle on bubble deformation.With the increase of liquid viscosity and density,the aspect ratio of the bubble decreases.As the wellbore inclination angle increases,the bubble migration velocity gradually decreases.As the liquid viscosity increases,the bubble migration velocity decreases.As the liquid density increases,the bubble migration velocity increases slightly.The established bubble migration velocity prediction model yields errors within±15%,and demonstrates broad applicability across a wide range of operating conditions. 展开更多
关键词 bullheading well killing method gas-liquid countercurrent flow bubble aspect ratio bubble migration trajectory bubble migration velocity
在线阅读 下载PDF
Computational study on the fluid-structure interaction between explosion-induced bubbles and submarine pipes
10
作者 Lei Gao Junjie Zhao +2 位作者 Maoyu Qi Wentao Ma Shunxiang Cao 《Theoretical & Applied Mechanics Letters》 2025年第6期618-629,共12页
Submarine pipelines are critical infrastructures for offshore energy transport and communications. Understanding their structural response to near-field explosions is crucial for enhancing their blast resistance and o... Submarine pipelines are critical infrastructures for offshore energy transport and communications. Understanding their structural response to near-field explosions is crucial for enhancing their blast resistance and operational safety. This study presents a computational study on the interaction between explosion-induced bubbles and a seabed-mounted pipeline. A recently developed computational framework is employed, which couples a compressible fluid solver with a finite element structural solver via a partitioned procedure. An embedded boundary method and a level-set method are employed to handle the fluid-structure and gas-liquid interfaces. Using this framework, we analyze the flow field evolution, bubble dynamics, and transient pipe deformation. Two distinct response modes are identified: periodic oscillation under low-pressure loading and downward collapse triggered by high-pressure loading and bubble jet impact. Specifically, under high-pressure conditions, the pipe initially deforms inward, generating a localized high-pressure zone within the concave region. During structural rebound, the trapped fluid is expelled upward, giving rise to a bubble jet. Further parametric studies on the pipe's internal pressure, wall thickness, and support angle reveal several key insights. A higher internal pressure delays structural collapse, and a greater pipe thickness results in more uniform implosion morphologies. The support angle strongly influences the collapse dynamics, with the shortest collapse time occurring at 60 °. These findings offer new insights for the protective design of submarine pipelines. 展开更多
关键词 Fluid-structure interaction Underwater explosion Submarine pipeline Bubble dynamics
在线阅读 下载PDF
Effects of operating parameters on size and distribution of bubbles in coarse-particle flotation column
11
作者 Ying-sheng JIN Wei SUN +6 位作者 Jian PENG Zheng-chang SHEN Hai-sheng HAN Lei SUN Yao XIAO Yuan-jia LUO Yi CHEN 《Transactions of Nonferrous Metals Society of China》 2025年第9期3120-3133,共14页
The size and distribution patterns of bubbles within a laboratory-scale coarse-particle flotation column were examined using a high-speed camera-based dynamic measurement system.The effects of operational parameters s... The size and distribution patterns of bubbles within a laboratory-scale coarse-particle flotation column were examined using a high-speed camera-based dynamic measurement system.The effects of operational parameters such as superficial water velocity,air-flow rate,and frother dosage on bubble-size and distribution characteristics were investigated.This study aims to provide theoretical support for enabling fluidized-bed flotation within coarse-particle flotation columns.The results show that negative pressure for air inspiratory and bubble formation is generated by passing a high-speed jet through a throat,and the greatest number of bubbles are observed under natural inspiratory state at an air-liquid ratio of 1:3-1:2.5.Increasing the air-flow rate transforms the bubble diameter distribution from a peaked distribution to a more uniform distribution.Furthermore,the frother narrows the range of bubble-size distribution.A positive correlation exists between the bubble Sauter diameter and air-flow rate,with the bubble Sauter diameter bearing a negative correlation with the superficial water velocity and frother concentration. 展开更多
关键词 coarse-particle flotation fluidized-bed flotation bubble size superficial water velocity
在线阅读 下载PDF
Formation mechanism and microstructural evolution of bubbles during ultra-high temperature oxidation of multicomponent carbides
12
作者 Shiyan Chen Zhaoke Chen +4 位作者 Weilong Song Yi Zeng Fengminyu Xie Zhennan Xu Xiang Xiong 《Journal of Materials Science & Technology》 2025年第33期122-135,共14页
Bubbles are prevalent defects on the oxidized surfaces of ultra-high temperature carbides,compromis-ing structural stability and oxidation resistance.Despite their significance,the formation mechanisms and microstruct... Bubbles are prevalent defects on the oxidized surfaces of ultra-high temperature carbides,compromis-ing structural stability and oxidation resistance.Despite their significance,the formation mechanisms and microstructural evolution of bubbles during ultra-high temperature oxidation remain inadequately understood.To address this gap,the bubble behaviors of multicomponent carbides,including(Hf,Ti)C,(Hf,Zr,Ti)C,(Hf,Zr,Ti,Ta)C,and(Hf,Zr,Ti,Nb)C,were investigated under oxidation conditions at 2500℃.The roles of various elements were elucidated through first-principles calculations.Results show that the for-mation of a dense composite oxide layer is essential for bubble generation,with the release of gaseous products serving as the primary driving force.The microstructure of the bubbles is influenced by the ma-trix composition.The addition of Ti,Ta,and Nb significantly lowers the surface energy of the shell oxides,providing preferential nucleation sites for bubbles.The progressive oxidation of Ti leads to the formation of a“TiO_(2)-TiO-HfO_(2)”multilayerstructureat thebubbletop,which evolvesintoadendriticstructurewith prolonged oxidation.Ta and Nb further modulate the size and number of bubbles by altering the compo-sition and surface energy of the shell oxides. 展开更多
关键词 BUBBLE Ultra-high temperature ceramics Multicomponent carbides Ultra-high temperature oxidation Thermal protection materials
原文传递
Optimization of cavitation venturi tube design for pico and nano bubbles generation 被引量:17
13
作者 Xiong Yu Peng Felicia 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第4期523-529,共7页
Hydrodynamic cavitaion venturi tube technique is used for pico and nano bubble generations in coal column flotation. In order to determine the optimal design of hydrodynamic cavitation venture tube for pico and nano b... Hydrodynamic cavitaion venturi tube technique is used for pico and nano bubble generations in coal column flotation. In order to determine the optimal design of hydrodynamic cavitation venture tube for pico and nano bubble generation, a four-factor three-level Central Composite Design of Experimental was conducted for investigating four important design parameters of cavitation venturi tube governing the median size and the volume of pico and nano bubbles. The test results showed that maximum volume of pico and nano bubbles, 65–75%, and minimum mean pico and nano bubble size,150–240 nm, were achieved at the medium ratio of the diameter of outlet of the venturi-tube and diameter of throat(3–4), medium outlet angle(11–13°), high inlet angle(26–27°) and high ratio of the length of the throat and the diameter of throat(2.3–3). Study the effects of the producing pico and nano bubbles on fine coal flotation was performed in a 5 cm diameter 260 cm height flotation column. The optimal percentage of pico and nano bubbles was about 70%, which produced maximum combustible material recovery of 86% with clean coal ash content of 11.7%. 展开更多
关键词 Hydrodynamic cavitation venture tub edesign Pico and nano bubbles Bubble volume and mean size distributions Coal Column Froth flotation
在线阅读 下载PDF
Study on the Flow Field around Two Parallel Moving Bubbles and Interaction Between Bubbles Rising in CMC Solutions by PIV 被引量:15
14
作者 范文元 马友光 +1 位作者 李小磊 李怀志 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2009年第6期904-913,共10页
The flow fields surrounding two parallel moving bubbles rising from two identical orifices submerged in non-Newtonian fluid of carboxymethylcellulose (CMC) solution of three different mass concentration were measure... The flow fields surrounding two parallel moving bubbles rising from two identical orifices submerged in non-Newtonian fluid of carboxymethylcellulose (CMC) solution of three different mass concentration were measured experimentally by the use of particle image velocimetry (PIV). The influences of gas flowrate, solution mass concentration, orifice interval and the angle between two bubble centers line and vertical direction on the flow field surrounding bubbles were discussed respectively by analyzing the velocity vector, velocity contours as well as individual velocity components. The results show that the liquid velocity both in front of two bubbles and behind increases with gas flowrate duo to shear-thinning effect of previous bubbles, whereas decreases with the increase of CMC concentration due to the increase of drag force acting on bubbles. The effect of the orifice interval on the flow field around two moving bubbles becomes gradually obvious as the interval becomes closer. Moreover, two adjacent side-by-side bubbles repulse each other during rising, leading to the practical interval between them increased somewhat above the orifice interval. When the distance between bubbles is less than the orifice interval 10 mm, the interaction between two neighboring bubbles changed from mutual repellence to attraction with the decrease of the angle of the line of linking two bubble centers to the vertical direction. 展开更多
关键词 parallel bubbles particle image velocimetry non-Newtonian fluid flow field distribution
在线阅读 下载PDF
Finite element analysis of effect of interfacial bubbles on performance of epoxy coatings under alternating hydrostatic pressure 被引量:9
15
作者 Rui Liu Li Liu +2 位作者 Wenliang Tian Yu Cui Fuhui Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第5期233-240,共8页
The stresses around bubbles formed on a coating/substrate interface under hydrostatic pressure(HP)and alternating hydrostatic pressure(AHP)were calculated using the finite element method.The results reveal that HP pro... The stresses around bubbles formed on a coating/substrate interface under hydrostatic pressure(HP)and alternating hydrostatic pressure(AHP)were calculated using the finite element method.The results reveal that HP promotes coating failure but does not mechanically destroy the interface,whereas AHP can provide tensile stress on bubbles formed at the interface and accelerate disbonding of the coating.Because of water resistance,a lag time exists for the coating that serves in an AHP environment.The coating can have a better protective performance if the lag time suits the AHP to minimize the impact of the AHP on the interface. 展开更多
关键词 Finite element method Organic coatings Alternating hydrostatic pressure Interfacial bubbles ADHESION
原文传递
On the interaction between bubbles and the free surface with high density ratio 3D lattice Boltzmann method 被引量:6
16
作者 Guo-Qing Chen A-Man Zhang Xiao Huang 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2018年第4期252-256,299,共6页
The bubbles rise up and burst at the free surface is a complex two-phase process.A free energy lattice Boltzmann method(LBM)model is adopted in this paper to study this phenomenon.The interface capturing technique[Zhe... The bubbles rise up and burst at the free surface is a complex two-phase process.A free energy lattice Boltzmann method(LBM)model is adopted in this paper to study this phenomenon.The interface capturing technique[Zheng et al.,2006]is used to deal with the high density ratio problem.The Laplace law and the air-water interface capturing ability are validated for the multiphase model.The interaction between the single bubble or multiple bubbles and the free surface are studied by the multiphase model.The force acting on the bubble and the evolution of the free surface is studied.Meanwhile,effect of the initial distance between two adjacent bubbles on interaction effects of multiple bubbles is investigated as well. 展开更多
关键词 LATTICE BOLTZMANN method Free energy model High density RATIO Multiple bubbles
在线阅读 下载PDF
Simulation study on factors influencing the entrainment behavior of liquid steel as bubbles pass through the steel/slag interface 被引量:5
17
作者 Xiang Li Yan-ping Bao +1 位作者 Min Wang Lu Lin 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第5期511-519,共9页
In this study, a water/silicone oil interface was used to simulate the steel/slag interface in a converter. A high-speed camera was used to record the entrainment process of droplets when air bubbles were passed throu... In this study, a water/silicone oil interface was used to simulate the steel/slag interface in a converter. A high-speed camera was used to record the entrainment process of droplets when air bubbles were passed through the water/silicone oil interface. Motion parameters of the bubbles and droplets were obtained using particle kinematic analysis software, and the entrainment rate of the droplets was calculated. It was found that the entrainment rate decreased from 29.5% to 0 when the viscosity of the silicone oil was increased from 60 mPa.s to 820 mPa.s in the case of bubbles with a 5 mm equivalent diameter passing through the water/silicone oil interface. The results indicate that in- creasing the viscosity of the silicone oil is conducive to reducing the entrainment rate. The entrainment rate increased from 0 to 136.3% in the case of silicone oil with a viscosity of 60 mPa.s when the equivalent diameter of the bubbles was increased from 3 mm to 7 ram. We there- fore conclude that small bubbles are also conductive to reducing the entrainment rate. The force analysis results for the water colmnn indicate that the entrainment rate of droplets is affected by the velocity of the bubble passing through the water/silicone oil interface and that the en- trainment rate decreases with the bubble velocity. 展开更多
关键词 STEELMAKING bubbles INTERFACES ENTRAINMENT influencing factors simulation studies
在线阅读 下载PDF
Breakup of Cavitation Bubbles within the Diesel Droplet 被引量:4
18
作者 L Ming NING Zhi +3 位作者 YAN Kai FU Juan SONG Yunchao SUN Chunhua 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第1期198-204,共7页
Supercavitation in the diesel nozzle increases the instability of droplets in part due to the two-phase mixture, while the effect of cavitation bubbles on the instability of drops is still unclear. In order to investi... Supercavitation in the diesel nozzle increases the instability of droplets in part due to the two-phase mixture, while the effect of cavitation bubbles on the instability of drops is still unclear. In order to investigate the breakup of cavitation bubbles within the diesel droplet, a new mathematical model describing the disturbance growth rate of the diesel bubble instability is developed. The new mathematical model is applied to predict the effects of fluids viscosity on the stability of cavitation bubbles. The predicted values reveal that the comprehensive effect of fluids viscosity makes cavitation bubbles more stable. Compared with the viscosities of air and cavitation bubble, the diesel droplet's viscosity plays a dominant role on the stability of cavitation bubbles. Furthermore, based on the modified bubble breakup criterion, the effects of bubble growth speed, sound speed, droplet viscosity, droplet density, and bubble-droplet radius ratio on the breakup time and the breakup radius of cavitation bubbles are studied respectively. It is found that a bubble with large bubble-droplet radius ratio has the initial condition for breaking easily. For a given bubble-droplet radius ratio (0.2), as the bubble growth speed increases (from 2 m/s to 60 m/s), the bubble breakup time decreases(from 3.59 gs to 0.17 ps) rapidly. Both the greater diesel droplet viscosity and the greater diesel droplet density result in the increase of the breakup time. With increasing initial bubble-droplet radius ratio (from 0.2 to 0.8), the bubble breakup radius decreases (from 8.86 trn to 6.23 tm). There is a limited breakup radius for a bubble with a certain initial bubble-droplet radius ratio. The mathematical model and the modified bubble breakup criterion are helpful to improve the study on the breakup mechanism of the secondary diesel droplet under the condition of supercavitation. 展开更多
关键词 SUPERCAVITATION INSTABILITY diesel droplet cavitation bubbles secondary breakup
在线阅读 下载PDF
Behaviors of fine bubbles in the shroud nozzle of ladle and tundish 被引量:8
19
作者 Yanping Boo, Jianhua Liu, and Baomei XuMetallurgical Engineering School, University of Science and Technology Beijing, Beijing 100083, China 《Journal of University of Science and Technology Beijing》 CSCD 2003年第4期20-23,共4页
Fine bubbles will create when the inert gas is introduced to the high rapidsteel stream within the shroud nozzle between ladle and tundish. The collision and attachment amongthe bubbles and fine inclusions will promot... Fine bubbles will create when the inert gas is introduced to the high rapidsteel stream within the shroud nozzle between ladle and tundish. The collision and attachment amongthe bubbles and fine inclusions will promote the floatation efficiency of inclusions in the tundish.The behaviors of the bubbles, such as the dispersion in shroud, coalescence and floatation intundish, are studied. The results show that the maximum sizes of the bubbles in the water and steelflow within the shroud in the length of 1.2 m are 0.70-1.44 mm and 1.53-3.16 mm respectively whenthe flow rates are 0.006-0.016 m^3/s; the terminal velocities of fine bubbles in the water andmolten steel within the tundish are 0.02-0.2 and 0.05-0.6 m/s. 展开更多
关键词 fine bubbles shroud nozzle of the ladle flotation
在线阅读 下载PDF
Effect of bubbles addition on teetered bed separation 被引量:2
20
作者 Ni Chao Xie Guangyuan +3 位作者 Liu Bo Bu Xiangning Peng Yaoli Sha Jie 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第5期835-841,共7页
To improve the separation efficiency of a conventional Teetered Bed Separator(TBS) in beneficiation of fine coal with a wide size range,an Aeration TBS(A-TBS) was proposed in this investigation.The bubbles were introd... To improve the separation efficiency of a conventional Teetered Bed Separator(TBS) in beneficiation of fine coal with a wide size range,an Aeration TBS(A-TBS) was proposed in this investigation.The bubbles were introduced to A-TBS by a self-priming micro-bubble generator.This study theoretically analyzed the effect of bubbles on the difference in hindered settling terminal velocity between different density particles,investigated the impact of superficial water velocity(V_(SW)) and superficial gas velocity(V_(Sg)) on bed fluidization,and compared the performance of the TBS and A-TBS in treating 1-0.25 mm size fraction particles.The results show that the expansion degree of fluidized bed which was formed by different size particles or has different initial height,is increased by the introduction of bubbles.Compared with the TBS,at the same level of clean coal ash content,the A-TBS shows an increase in the combustible recovery of clean coal,ash content of tailings,and practical separation density by 5.26%,6.56%,and 0.088 g/cm3 respectively,while it shows a decrease in the probable error(E_p) and V_(SW) by 0.031 and 3.51 mm/s,respectively.The addition of bubbles at a proper amount not only improves the separation performance of TBS,but also reduces the upward water velocity. 展开更多
关键词 Teetered bed separator Fine coal bubbles Superficial water velocity Superficial gas velocity
在线阅读 下载PDF
上一页 1 2 67 下一页 到第
使用帮助 返回顶部