Rice blast,caused by the fungus Magnaporthe oryzae,reduces rice yields by 10%to 35%.Incorporating blast resistance genes into breeding programs is an effective strategy to combat this disease.Understanding the genetic...Rice blast,caused by the fungus Magnaporthe oryzae,reduces rice yields by 10%to 35%.Incorporating blast resistance genes into breeding programs is an effective strategy to combat this disease.Understanding the genetic variants that confer resistance is crucial to this strategy.The gene Bsr-d1 encodes a C2H2-like transcription factor,and its recessive allele confers broad-spectrum resistance against infections by various strains of M.oryzae.In this study,we investigated the molecular evolution of the rice blast resistance gene bsr-d1 in a representative population consisting of 827 cultivated and wild rice accessions.Our results revealed that wild rice exhibited significantly higher nucleotide diversity,with polymorphic regions primarily concentrated in the promoter region,in contrast to indica and japonica rice varieties.The Bsr-d1 gene displayed significant differentiation between indica and japonica rice varieties,with the bsr-d1 resistance allele being unique to indica rice.Haplotype network and phylogenetic analyses suggested that the bsr-d1 resistance allele most likely originated from Oryza nivara in the region adjacent to the Indian Peninsula and the Indochina Peninsula.Moreover,we explored the utilization of bsr-d1 resistance alleles in China and designed a pair of DNA primers based on the polymorphic sites for the detection of the bsr-d1 resistance gene.In summary,our study uncovering the origin and evolution of bsr-d1 will enhance our understanding of resistance gene variation and expedite the resistance breeding process.展开更多
Subject Code:C14With support from the National Natural Science Foundation of China,a collaborative research group led by Prof.Chen Xuewei(陈学伟)of the Rice Research Institute,Sichuan Agricultural University,published...Subject Code:C14With support from the National Natural Science Foundation of China,a collaborative research group led by Prof.Chen Xuewei(陈学伟)of the Rice Research Institute,Sichuan Agricultural University,published an article entitled“A natural allele of a transcription factor in rice confers broad-spectrum展开更多
基金supported by the National Key Research and Development Program of China (Grant No.2023YFD1202600)the Zhejiang Lab independently establishes research projects (Research and Development of Intelligent Technologies and Platforms for Rice Breeding,Grant No.2021PE0AC05)the Natural Science Foundation of Zhejiang Province,China (Grant No.LQ22C130006)。
文摘Rice blast,caused by the fungus Magnaporthe oryzae,reduces rice yields by 10%to 35%.Incorporating blast resistance genes into breeding programs is an effective strategy to combat this disease.Understanding the genetic variants that confer resistance is crucial to this strategy.The gene Bsr-d1 encodes a C2H2-like transcription factor,and its recessive allele confers broad-spectrum resistance against infections by various strains of M.oryzae.In this study,we investigated the molecular evolution of the rice blast resistance gene bsr-d1 in a representative population consisting of 827 cultivated and wild rice accessions.Our results revealed that wild rice exhibited significantly higher nucleotide diversity,with polymorphic regions primarily concentrated in the promoter region,in contrast to indica and japonica rice varieties.The Bsr-d1 gene displayed significant differentiation between indica and japonica rice varieties,with the bsr-d1 resistance allele being unique to indica rice.Haplotype network and phylogenetic analyses suggested that the bsr-d1 resistance allele most likely originated from Oryza nivara in the region adjacent to the Indian Peninsula and the Indochina Peninsula.Moreover,we explored the utilization of bsr-d1 resistance alleles in China and designed a pair of DNA primers based on the polymorphic sites for the detection of the bsr-d1 resistance gene.In summary,our study uncovering the origin and evolution of bsr-d1 will enhance our understanding of resistance gene variation and expedite the resistance breeding process.
文摘Subject Code:C14With support from the National Natural Science Foundation of China,a collaborative research group led by Prof.Chen Xuewei(陈学伟)of the Rice Research Institute,Sichuan Agricultural University,published an article entitled“A natural allele of a transcription factor in rice confers broad-spectrum