Bromine has attracted significant attention as a cathode material for aqueous batteries due to its high reduction potential of 1.05 V(Br_(3)^(-)+2e~-■3Br~-),impressive theoretical specific capacity of 223 mA h g^(-1)...Bromine has attracted significant attention as a cathode material for aqueous batteries due to its high reduction potential of 1.05 V(Br_(3)^(-)+2e~-■3Br~-),impressive theoretical specific capacity of 223 mA h g^(-1),and rapid reaction kinetics in the electrolyte.However,searching for compatible anode materials to match with bromine has posed a challenge due to its highly corrosive nature.In this study,we developed oxygen-deficient MoO_(3) with TiO_(2) coating(referred to as MoO_(3-x)@TiO_(2))as an anode material to pair with a bromine cathode in static full batteries.The oxygen deficiency contributes to enhanced electronic and protonic diffusion within the MoO_(3-x)lattice,while the TiO_(2) coating mitigates structural dissolution and proton trapping during cycling.The MoO_(3-x)@TiO_(2) demonstrates fast charge storage kinetics and excellent resistance to bromine corrosion.The impressive compatibility between MoO_(3-x)@TiO_(2) and bromine enables the construction of membrane-less full batteries with exceptional rate capability and cyclic stability.The MoO_(3-x)@TiO_(2)-bromine battery achieves an energy density of70.8 W h kg^(-1)at a power density of 328.1 W kg^(-1),showcasing an impressive long-term cyclic life of 20,000 cycles.Our study provides valuable insights for the development of high-performance aqueous secondary batteries.展开更多
Bromine-based flow batteries(Br-FBs)are well suitable for stationary energy storage owing to their high energy density and low cost.However,their power density and lifespan are limited by relatively low reaction kinet...Bromine-based flow batteries(Br-FBs)are well suitable for stationary energy storage owing to their high energy density and low cost.However,their power density and lifespan are limited by relatively low reaction kinetics of Br_(2)/Br-couple and serious self-discharge caused by bromine migration.Herein,lamella-like porous carbon nitride nanosheets(PCNS)with adsorption and spatial confinement effects are used to modify cathodes for Br-FBs.The large specific surface area and plentiful N-containing groups enable PCNS with excellent adsorption capacity,which captures bromine species into the pores on PCNS layers.The captured bromine species is subsequently confined in PCNS interlayers due to the strong interaction between bromine species and N-containing groups,thus effectively depressing bromine diffusion/migration.Moreover,the strong bromine adsorption capacity significantly improves the electrochemical activity of PCNS.Consequently,a zinc-bromine flow battery(ZBFB)employing PCNS-modified cathode achieves a high current density of 180 m A cm^(-2),with an ultra-high coulombic efficiency of 99.22%.It also exhibits better self-discharge performance and a long cycle life of 500 cycles.Furthermore,a complexing agent-free ZBFB is successfully realized based on the superior bromineentrapping/retaining capacity of the PCNS-modified cathode.Consequently,this work provides a promising strategy toward electrode modifications for high-performance and long-lifespan Br-FBs.展开更多
基金the financial support from the National Key Research and Development Program of China(2022YFB2502003)the Guangdong Basic and Applied Basic Research Foundation(2023B1515040011)。
文摘Bromine has attracted significant attention as a cathode material for aqueous batteries due to its high reduction potential of 1.05 V(Br_(3)^(-)+2e~-■3Br~-),impressive theoretical specific capacity of 223 mA h g^(-1),and rapid reaction kinetics in the electrolyte.However,searching for compatible anode materials to match with bromine has posed a challenge due to its highly corrosive nature.In this study,we developed oxygen-deficient MoO_(3) with TiO_(2) coating(referred to as MoO_(3-x)@TiO_(2))as an anode material to pair with a bromine cathode in static full batteries.The oxygen deficiency contributes to enhanced electronic and protonic diffusion within the MoO_(3-x)lattice,while the TiO_(2) coating mitigates structural dissolution and proton trapping during cycling.The MoO_(3-x)@TiO_(2) demonstrates fast charge storage kinetics and excellent resistance to bromine corrosion.The impressive compatibility between MoO_(3-x)@TiO_(2) and bromine enables the construction of membrane-less full batteries with exceptional rate capability and cyclic stability.The MoO_(3-x)@TiO_(2)-bromine battery achieves an energy density of70.8 W h kg^(-1)at a power density of 328.1 W kg^(-1),showcasing an impressive long-term cyclic life of 20,000 cycles.Our study provides valuable insights for the development of high-performance aqueous secondary batteries.
基金supported by CAS Strategic Leading Science&Technology Program(A)(XDA21070100)CAS Engineering Laboratory for Electrochemical Energy Storage(KFJ-PTXM-027)+1 种基金DICP funding(DICP I202026 DICP I201928)Liaoning Natural Science Foundation(2021-MS-024)。
文摘Bromine-based flow batteries(Br-FBs)are well suitable for stationary energy storage owing to their high energy density and low cost.However,their power density and lifespan are limited by relatively low reaction kinetics of Br_(2)/Br-couple and serious self-discharge caused by bromine migration.Herein,lamella-like porous carbon nitride nanosheets(PCNS)with adsorption and spatial confinement effects are used to modify cathodes for Br-FBs.The large specific surface area and plentiful N-containing groups enable PCNS with excellent adsorption capacity,which captures bromine species into the pores on PCNS layers.The captured bromine species is subsequently confined in PCNS interlayers due to the strong interaction between bromine species and N-containing groups,thus effectively depressing bromine diffusion/migration.Moreover,the strong bromine adsorption capacity significantly improves the electrochemical activity of PCNS.Consequently,a zinc-bromine flow battery(ZBFB)employing PCNS-modified cathode achieves a high current density of 180 m A cm^(-2),with an ultra-high coulombic efficiency of 99.22%.It also exhibits better self-discharge performance and a long cycle life of 500 cycles.Furthermore,a complexing agent-free ZBFB is successfully realized based on the superior bromineentrapping/retaining capacity of the PCNS-modified cathode.Consequently,this work provides a promising strategy toward electrode modifications for high-performance and long-lifespan Br-FBs.