We explored a distinct mechanism for matter creation via electron-positron pair production during bound-bound transitions in the deexcitation of muonic atoms.For ions with nuclear charges Z≥24,transitions from low-ly...We explored a distinct mechanism for matter creation via electron-positron pair production during bound-bound transitions in the deexcitation of muonic atoms.For ions with nuclear charges Z≥24,transitions from low-lying excited states to the 1s-muon state can lead to the production of electron-positron pairs.We show that the Breit interaction determines the transition probabilities for states with nonzero orbital momentum.We show that the pair production arises mainly from the decay of the 2p states.Thus,the Breit interaction governs electron-positron pair production in bound-bound muon transitions.This process offers a unique opportunity to explore quantum electrodynamics in strong fields,as well as a class of nonradiative transitions involving electron-positron pair production.展开更多
The transition energies, E1 transitional oscillator strengths of the spin-allowed as well as the spin-forbidden and the corresponding transition rates, and complete M1, E2, M2 forbidden transition rates for 1s^(2), 1s...The transition energies, E1 transitional oscillator strengths of the spin-allowed as well as the spin-forbidden and the corresponding transition rates, and complete M1, E2, M2 forbidden transition rates for 1s^(2), 1s2s, and 1s2p states of He I, are investigated using the multi-configuration Dirac–Hartree–Fock method. In the subsequent relativistic configuration interaction computations, the Breit interaction and the QED effect are considered as perturbation, separately. Our transition energies, oscillator strengths, and transition rates are in good agreement with the experimental and other theoretical results. As a result, the QED effect is not important for helium atoms, however, the effect of the Breit interaction plays a significant role in the transition energies, the oscillator strengths and transition rates.展开更多
For the observed line at 799.23°A in tungsten EBIT experiment,which was assigned to be^(3)F_(4)^(o)−^(3)F_(3)^(o)([Ar]4s^(2)4p^(5)4d)of W^(38+)ion,there were noticeable deviations for most calculated wavelengths ...For the observed line at 799.23°A in tungsten EBIT experiment,which was assigned to be^(3)F_(4)^(o)−^(3)F_(3)^(o)([Ar]4s^(2)4p^(5)4d)of W^(38+)ion,there were noticeable deviations for most calculated wavelengths from the measured value.To clarify this issue,we carry out an extensive calculation for energy levels and transition properties of W^(38+)ion using the multi-configuration Dirac–Hartree–Fock and relativistic configuration interaction method,in which more deeper inner core electron correlations are included,and different forms of Breit interaction as well as quantum electrodynamics corrections are investigated.It is found that the inner core electron correlations can affect the total energy of levels,while only slightly modify the excited energy of levels in 4s^(2)4p^(5)4d complex.The present calculated wavelengths agree with the corresponding measured values excellently except the line at 799.23Å.Thus we are strongly suspicious this line should be misidentified,and suggest that new experiment with higher resolution and spectra analysis based on more accurate atomic data should be performed for W^(38+)ion.展开更多
Using the multi-configuration Dirac-Fock self-consistent field method and the relativistic configuration-interaction method, calculations of transition energies, oscillator strengths and rates are performed for the 3s...Using the multi-configuration Dirac-Fock self-consistent field method and the relativistic configuration-interaction method, calculations of transition energies, oscillator strengths and rates are performed for the 3s2 1S0-3s3p 1P1 spinallowed transition, 3s2 1S0-3s3p 3P1,2 intercombination and magnetic quadrupole transition in the Mg isoelectronic sequence (Mg I, A1 II, Si III, P IV and S V). Electron correlations are treated adequately, including intravalence electron correlations. The influence of the Breit interaction on oscillator strengths and transition energies are investigated. Quantum eleetrodynamics corrections are added as corrections. The calculation results are found to be in good agreement with the experimental data and other theoretical calculations.展开更多
In this work, the KLL dielectronic recombination (DR) processes of highly charged He-like to O-like xenon ions are studied systematically by using a DR program, which is based on the multi-configuration Dirac-Fock ...In this work, the KLL dielectronic recombination (DR) processes of highly charged He-like to O-like xenon ions are studied systematically by using a DR program, which is based on the multi-configuration Dirac-Fock (MCDF) method. The KLL DR resonant energies and the corresponding resonant strengths are calculated, emphasizing especially the effect of the Breit interaction on the DR strengths. The theoretical KLL DR spectra are obtained and compared with the latest experimental results obtained in the Shanghai Electron Beam Ion Trap.展开更多
基金supported by the National Key Research and Development Program of China(Grant No.2022YFA1602501)the National Natural Science Foundation of China(Grant No.12011530060)+1 种基金supported solely by the Russian Science Foundation(Grant No.22-12-00043)supported by the Chinese Academy of Sciences(CAS)Presidents International Fellowship Initiative(PIFI)(Grant Nos.2018VMB0016 and 2022VMC0002),respectively。
文摘We explored a distinct mechanism for matter creation via electron-positron pair production during bound-bound transitions in the deexcitation of muonic atoms.For ions with nuclear charges Z≥24,transitions from low-lying excited states to the 1s-muon state can lead to the production of electron-positron pairs.We show that the Breit interaction determines the transition probabilities for states with nonzero orbital momentum.We show that the pair production arises mainly from the decay of the 2p states.Thus,the Breit interaction governs electron-positron pair production in bound-bound muon transitions.This process offers a unique opportunity to explore quantum electrodynamics in strong fields,as well as a class of nonradiative transitions involving electron-positron pair production.
基金Supported by the National Key Research and Development Program of China (Grant No. 2017YFA0402300)the National Natural Science Foundation of China (Grant Nos. 11774344 and 11474033)。
文摘The transition energies, E1 transitional oscillator strengths of the spin-allowed as well as the spin-forbidden and the corresponding transition rates, and complete M1, E2, M2 forbidden transition rates for 1s^(2), 1s2s, and 1s2p states of He I, are investigated using the multi-configuration Dirac–Hartree–Fock method. In the subsequent relativistic configuration interaction computations, the Breit interaction and the QED effect are considered as perturbation, separately. Our transition energies, oscillator strengths, and transition rates are in good agreement with the experimental and other theoretical results. As a result, the QED effect is not important for helium atoms, however, the effect of the Breit interaction plays a significant role in the transition energies, the oscillator strengths and transition rates.
基金supported by the Science Challenge Project of China Academy of Engineering Physics(CAEP)(Grant No.TZ2018005)the National Natural Science Foundation of China(Grant Nos.12474277,12374259,12104095,12074081,and 12074082).
文摘For the observed line at 799.23°A in tungsten EBIT experiment,which was assigned to be^(3)F_(4)^(o)−^(3)F_(3)^(o)([Ar]4s^(2)4p^(5)4d)of W^(38+)ion,there were noticeable deviations for most calculated wavelengths from the measured value.To clarify this issue,we carry out an extensive calculation for energy levels and transition properties of W^(38+)ion using the multi-configuration Dirac–Hartree–Fock and relativistic configuration interaction method,in which more deeper inner core electron correlations are included,and different forms of Breit interaction as well as quantum electrodynamics corrections are investigated.It is found that the inner core electron correlations can affect the total energy of levels,while only slightly modify the excited energy of levels in 4s^(2)4p^(5)4d complex.The present calculated wavelengths agree with the corresponding measured values excellently except the line at 799.23Å.Thus we are strongly suspicious this line should be misidentified,and suggest that new experiment with higher resolution and spectra analysis based on more accurate atomic data should be performed for W^(38+)ion.
基金supported by the Key Program of Science and Technology Research of Ministry of Education of China (Grant No. 306020)the National Natural Science Foundation of China (Grant Nos. 10905040 and 10734040)+2 种基金the National High-Tech ICF Committee in Chinathe Yin-He Super-computer Center,Institute of Applied Physics and Mathematics,Beijing,Chinathe National Basic Research Program of China (Grant Nos. 2010CB922900 and 2011CB921501)
文摘Using the multi-configuration Dirac-Fock self-consistent field method and the relativistic configuration-interaction method, calculations of transition energies, oscillator strengths and rates are performed for the 3s2 1S0-3s3p 1P1 spinallowed transition, 3s2 1S0-3s3p 3P1,2 intercombination and magnetic quadrupole transition in the Mg isoelectronic sequence (Mg I, A1 II, Si III, P IV and S V). Electron correlations are treated adequately, including intravalence electron correlations. The influence of the Breit interaction on oscillator strengths and transition energies are investigated. Quantum eleetrodynamics corrections are added as corrections. The calculation results are found to be in good agreement with the experimental data and other theoretical calculations.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10774122 and 10876028)the Natural ScienceFoundation of Gansu Province,China(Grant No.1010RJZA014)the Foundation of Northwest Normal University,China(Grant No.NWNU-KJCXGC-03-72)
文摘In this work, the KLL dielectronic recombination (DR) processes of highly charged He-like to O-like xenon ions are studied systematically by using a DR program, which is based on the multi-configuration Dirac-Fock (MCDF) method. The KLL DR resonant energies and the corresponding resonant strengths are calculated, emphasizing especially the effect of the Breit interaction on the DR strengths. The theoretical KLL DR spectra are obtained and compared with the latest experimental results obtained in the Shanghai Electron Beam Ion Trap.