This paper presents a novel method for reconstructing a highly accurate 3D nose model of the human from 2D images and pre-marked landmarks based on algorithmic methods.The study focuses on the reconstruction of a 3D n...This paper presents a novel method for reconstructing a highly accurate 3D nose model of the human from 2D images and pre-marked landmarks based on algorithmic methods.The study focuses on the reconstruction of a 3D nose model tailored for applications in healthcare and cosmetic surgery.The approach leverages advanced image processing techniques,3D Morphable Models(3DMM),and deformation techniques to overcome the limita-tions of deep learning models,particularly addressing the interpretability issues commonly encountered in medical applications.The proposed method estimates the 3D coordinates of landmark points using a 3D structure estimation algorithm.Sub-landmarks are extracted through image processing techniques and interpolation.The initial surface is generated using a 3DMM,though its accuracy remains limited.To enhance precision,deformation techniques are applied,utilizing the coordinates of 76 identified landmarks and sub-landmarks.The resulting 3D nose model is constructed based on algorithmic methods and pre-marked landmarks.Evaluation of the 3D model is conducted by comparing landmark distances and shape similarity with expert-determined ground truth on 30 Vietnamese volunteers aged 18 to 47,all of whom were either preparing for or required nasal surgery.Experimental results demonstrate a strong agreement between the reconstructed 3D model and the ground truth.The method achieved a mean landmark distance error of 0.631 mm and a shape error of 1.738 mm,demonstrating its potential for medical applications.展开更多
BACKGROUND Eyelid reconstruction is an intricate process,addressing both aesthetic and functional aspects post-trauma or oncological surgery.Aesthetic concerns and oncological radicality guide personalized approaches....BACKGROUND Eyelid reconstruction is an intricate process,addressing both aesthetic and functional aspects post-trauma or oncological surgery.Aesthetic concerns and oncological radicality guide personalized approaches.The complex anatomy,involving anterior and posterior lamellae,requires tailored reconstruction for optimal functionality.AIM To formulate an eyelid reconstruction algorithm through an extensive literature review and to validate it by juxtaposing surgical outcomes from Cattinara Hos-in dry eye and tears,which may lead to long-term consequences such as chronic conjunctivitis,discomfort,or photo-phobia.To prevent this issue,scars should be oriented vertically or perpendicularly to the free eyelid margin when the size of the tumor allows.In employing a malar flap to repair a lower eyelid defect,the malar incision must ascend diagonally;this facilitates enhanced flap advancement and mitigates ectropion by restricting vertical traction.Conse-quently,it is imperative to maintain that the generated tension remains consistently horizontal and never vertical[9].Lagophthalmos is a disorder characterized by the inability to completely close the eyelids,leading to corneal exposure and an increased risk of keratitis or ulceration;it may arise following upper eyelid surgery.To avert this issue,it is essential to preserve a minimum of 1 cm of skin between the superior edge of the excision and the inferior boundary of the eyebrow.Epiphora may occur in cancers involving the lacrimal puncta,requiring their removal.As previously stated,when employing a glabellar flap to rectify medial canthal abnormalities,it is essential to prevent a trapdoor effect or thickening of the flap relative to the eyelid skin to which it is affixed.Constraints about our proposed algorithm enco-mpass limited sample sizes and possible publication biases in existing studies.Subsequent investigations ought to examine long-term results to further refine the algorithm.Future research should evaluate the algorithm across varied populations and examine the impact of novel graft materials on enhancing reconstructive outcomes.CONCLUSION Eyelid reconstruction remains one of the most intriguing challenges for a plastic surgeon today.The most fascinating aspect of this discipline is the need to restore the functionality of such an essential structure while maintaining its aesthetics.In our opinion,creating decision-making algorithms can facilitate reaching this goal by allowing for the individualization of the reconstructive path while minimizing the incidence of complications.The fact that we have decreased the incidence of severe complications is a sign that the work is moving in the right direction.The fact that there has been no need for reintervention,neither for reconstructive issues nor for inadequate oncological radicality,overall signifies greater patient satisfaction as they do not have to undergo the stress of new surgeries.Even the minor complic-ations recorded are in line with those reported in the literature,and,even more importantly for patients,they are of limited duration.In our experience,after a year of application,we can say that the objective has been achieved,but much more can still be done.Behind every work,a scientific basis must be continually renewed and refreshed to maintain high-quality standards.Therefore,searching for possible alternative solutions to be included in one’s surgical armamentarium is fundamental to providing the patient with a fully personalized option.展开更多
In order to derive the linac photon spectrum accurately both the prior constrained model and the genetic algorithm GA are employed using the measured percentage depth dose PDD data and the Monte Carlo simulated monoen...In order to derive the linac photon spectrum accurately both the prior constrained model and the genetic algorithm GA are employed using the measured percentage depth dose PDD data and the Monte Carlo simulated monoenergetic PDDs where two steps are involved.First the spectrum is modeled as a prior analytical function with two parameters αand Ep optimized with the GA.Secondly the linac photon spectrum is modeled as a discretization constrained model optimized with the GA. The solved analytical function in the first step is used to generate initial solutions for the GA’s first run in this step.The method is applied to the Varian iX linear accelerator to derive the energy spectra of its 6 and 15 MV photon beams.The experimental results show that both the reconstructed spectrums and the derived PDDs with the proposed method are in good agreement with those calculated using the Monte Carlo simulation.展开更多
With the development of the compressive sensing theory, the image reconstruction from the projections viewed in limited angles is one of the hot problems in the research of computed tomography technology. This paper d...With the development of the compressive sensing theory, the image reconstruction from the projections viewed in limited angles is one of the hot problems in the research of computed tomography technology. This paper develops an iterative algorithm for image reconstruction, which can fit the most cases. This method gives an image reconstruction flow with the difference image vector, which is based on the concept that the difference image vector between the reconstructed and the reference image is sparse enough. Then the l1-norm minimization method is used to reconstruct the difference vector to recover the image for flat subjects in limited angles. The algorithm has been tested with a thin planar phantom and a real object in limited-view projection data. Moreover, all the studies showed the satisfactory results in accuracy at a rather high reconstruction speed.展开更多
Underwater imaging is widely used in ocean,river and lake exploration,but it is affected by properties of water and the optics.In order to solve the lower-resolution underwater image formed by the influence of water a...Underwater imaging is widely used in ocean,river and lake exploration,but it is affected by properties of water and the optics.In order to solve the lower-resolution underwater image formed by the influence of water and light,the image super-resolution reconstruction technique is applied to the underwater image processing.This paper addresses the problem of generating super-resolution underwater images by convolutional neural network framework technology.We research the degradation model of underwater images,and analyze the lower-resolution factors of underwater images in different situations,and compare different traditional super-resolution image reconstruction algorithms.We further show that the algorithm of super-resolution using deep convolution networks(SRCNN)which applied to super-resolution underwater images achieves good results.展开更多
In conventional computed tomography (CT) reconstruction based on fixed voltage, the projective data often ap- pear overexposed or underexposed, as a result, the reconstructive results are poor. To solve this problem...In conventional computed tomography (CT) reconstruction based on fixed voltage, the projective data often ap- pear overexposed or underexposed, as a result, the reconstructive results are poor. To solve this problem, variable voltage CT reconstruction has been proposed. The effective projective sequences of a structural component are obtained through the variable voltage. The total variation is adjusted and minimized to optimize the reconstructive results on the basis of iterative image using algebraic reconstruction technique (ART). In the process of reconstruction, the reconstructive image of low voltage is used as an initial value of the effective proiective reconstruction of the adjacent high voltage, and so on until to the highest voltage according to the gray weighted algorithm. Thereby the complete structural information is reconstructed. Simulation results show that the proposed algorithm can completely reflect the information of a complicated structural com- ponent, and the pixel values are more stable than those of the conventional.展开更多
An intuitive 2D model of circular electrical impedance tomography (EIT) sensor with small size electrodes is established based on the theory of analytic functions. The validation of the model is proved using the res...An intuitive 2D model of circular electrical impedance tomography (EIT) sensor with small size electrodes is established based on the theory of analytic functions. The validation of the model is proved using the result from the solution of Laplace equation. Suggestions on to electrode optimization and explanation to the ill-condition property of the sensitivity matrix are provided based on the model, which takes electrode distance into account and can be generalized to the sensor with any simple connected region through a conformal transformation. Image reconstruction algorithms based on the model are implemented to show feasibility of the model using experimental data collected from the EIT system developed in Tianjin University. In the simulation with a human chestlike configuration, electrical conductivity distributions are reconstructed using equi-potential backprojection (EBP) and Tikhonov regularization (TR) based on a conformal transformation of the model. The algorithms based on the model are suitable for online image reconstruction and the reconstructed results are aood both in size and position.展开更多
In this paper, an approximate analytical algorithm in the form of direct Fourier reconstruction is obtained for the recon- struction of data functions arisen from ^-scheme short-scan sin- gle-photon emission computed ...In this paper, an approximate analytical algorithm in the form of direct Fourier reconstruction is obtained for the recon- struction of data functions arisen from ^-scheme short-scan sin- gle-photon emission computed tomography(SPECT) with uniform attenuation, and the modified central slice theorem is developed. Numerical simulations are conducted to demonstrate the effec- tiveness of the developed method.展开更多
The signal processing problem has become increasingly complex and demand high acquisition system,this paper proposes a new method to reconstruct the structure phased array structural health monitoring signal.The metho...The signal processing problem has become increasingly complex and demand high acquisition system,this paper proposes a new method to reconstruct the structure phased array structural health monitoring signal.The method is derived from the compressive sensing theory and the signal is reconstructed by using the basis pursuit algorithm to process the ultrasonic phased array signals.According to the principles of the compressive sensing and signal processing method,non-sparse ultrasonic signals are converted to sparse signals by using sparse transform.The sparse coefficients are obtained by sparse decomposition of the original signal,and then the observation matrix is constructed according to the corresponding sparse coefficients.Finally,the original signal is reconstructed by using basis pursuit algorithm,and error analysis is carried on.Experimental research analysis shows that the signal reconstruction method can reduce the signal complexity and required the space efficiently.展开更多
3D image reconstruction for weather radar data can not only help the weatherman to improve the forecast efficiency and accuracy, but also help people to understand the weather conditions easily and quickly. Marching C...3D image reconstruction for weather radar data can not only help the weatherman to improve the forecast efficiency and accuracy, but also help people to understand the weather conditions easily and quickly. Marching Cubes (MC) algorithm in the surface rendering has more excellent applicability in 3D reconstruction for the slice images;it may shorten the time to find and calculate the isosurface from raw volume data, reflect the shape structure more accurately. In this paper, we discuss a method to reconstruct the 3D weather cloud image by using the proposed Cube Weighting Interpolation (CWI) and MC algorithm. Firstly, we detail the steps of CWI, apply it to project the raw radar data into the cubes and obtain the equally spaced cloud slice images, then employ MC algorithm to draw the isosurface. Some experiments show that our method has a good effect and simple operation, which may provide an intuitive and effective reference for realizing the 3D surface reconstruction and meteorological image stereo visualization.展开更多
Fluorescence molecular tomography(FMT)is a fast-developing optical imaging modalitythat has great potential in early diagnosis of disease and drugs development.However,recon-struction algorithms have to address a high...Fluorescence molecular tomography(FMT)is a fast-developing optical imaging modalitythat has great potential in early diagnosis of disease and drugs development.However,recon-struction algorithms have to address a highly ill-posed problem to fulfll 3D reconstruction inFMT.In this contribution,we propose an efficient iterative algorithm to solve the large-scalereconstruction problem,in which the sparsity of fluorescent targets is taken as useful a prioriinformation in designing the reconstruction algorithm.In the implementation,a fast sparseapproximation scheme combined with a stage-wise learning strategy enable the algorithm to dealwith the ill-posed inverse problem at reduced computational costs.We validate the proposed fastiterative method with numerical simulation on a digital mouse model.Experimental results demonstrate that our method is robust for different finite element meshes and different Poissonnoise levels.展开更多
Compton camera-based prompt gamma(PG) imaging has been proposed for range verification during proton therapy. However, a deviation between the PG and dose distributions, as well as the difference between the reconstru...Compton camera-based prompt gamma(PG) imaging has been proposed for range verification during proton therapy. However, a deviation between the PG and dose distributions, as well as the difference between the reconstructed PG and exact values, limit the effectiveness of the approach in accurate range monitoring during clinical applications. The aim of the study was to realize a PG-based dose reconstruction with a Compton camera, thereby further improving the prediction accuracy of in vivo range verification and providing a novel method for beam monitoring during proton therapy. In this paper, we present an approach based on a subset-driven origin ensemble with resolution recovery and a double evolutionary algorithm to reconstruct the dose depth profile(DDP) from the gamma events obtained by a cadmium-zinc-telluride Compton camera with limited position and energy resolution. Simulations of proton pencil beams with clinical particle rate irradiating phantoms made of different materials and the CT-based thoracic phantom were used to evaluate the feasibility of the proposed method. The results show that for the monoenergetic proton pencil beam irradiating homogeneous-material box phantom,the accuracy of the reconstructed DDP was within 0.3 mm for range prediction and within 5.2% for dose prediction. In particular, for 1.6-Gy irradiation in the therapy simulation of thoracic tumors, the range deviation of the reconstructed spreadout Bragg peak was within 0.8 mm, and the relative dose deviation in the peak area was less than 7% compared to the exact values. The results demonstrate the potential and feasibility of the proposed method in future Compton-based accurate dose reconstruction and range verification during proton therapy.展开更多
In application of tomography imaging, limited-angle problem is a quite practical and important issue.In this paper, an iterative reprojection-reconstruction(IRR) algorithm using a modified Papoulis-Gerchberg(PG)iterat...In application of tomography imaging, limited-angle problem is a quite practical and important issue.In this paper, an iterative reprojection-reconstruction(IRR) algorithm using a modified Papoulis-Gerchberg(PG)iterative scheme is developed for reconstruction from limited-angle projections which contain noise. The proposed algorithm has two iterative update processes, one is the extrapolation of unknown data, and the other is the modification of the known noisy observation data. And the algorithm introduces scaling factors to control the two processes, respectively. The convergence of the algorithm is guaranteed, and the method of choosing the scaling factors is given with energy constraints. The simulation result demonstrates our conclusions and indicates that the algorithm proposed in this paper can obviously improve the reconstruction quality.展开更多
A large number of sparse signal reconstruction algorithms have been continuously proposed, but almost all greedy algorithms add a fixed number of indices to the support set in each iteration. Although the mechanism of...A large number of sparse signal reconstruction algorithms have been continuously proposed, but almost all greedy algorithms add a fixed number of indices to the support set in each iteration. Although the mechanism of selecting the fixed number of indexes improves the reconstruction efficiency, it also brings the problem of low index selection accuracy. Based on the full study of the theory of compressed sensing, we propose a dynamic indexes selection strategy based on residual update to improve the performance of the compressed sampling matching pursuit algorithm (CoSaMP). As an extension of CoSaMP algorithm, the proposed algorithm adopts a residual comparison strategy to improve the accuracy of backtracking selected indexes. This backtracking strategy can efficiently select backtracking indexes. And without increasing the computational complexity, the proposed improvement algorithm has a higher exact reconstruction rate and peak signal to noise ratio (PSNR). Simulation results demonstrate the proposed algorithm significantly outperforms the CoSaMP for image recovery and one-dimensional signal.展开更多
The order of the projection in the algebraic reconstruction technique(ART)method has great influence on the rate of the convergence.Although many scholars have studied the order of the projection,few theoretical proof...The order of the projection in the algebraic reconstruction technique(ART)method has great influence on the rate of the convergence.Although many scholars have studied the order of the projection,few theoretical proofs are given.Thomas Strohmer and Roman Vershynin introduced a randomized version of the Kaczmarz method for consistent,and over-determined linear systems and proved whose rate does not depend on the number of equations in the systems in 2009.In this paper,we apply this method to computed tomography(CT)image reconstruction and compared images generated by the sequential Kaczmarz method and the randomized Kaczmarz method.Experiments demonstrates the feasibility of the randomized Kaczmarz algorithm in CT image reconstruction and its exponential curve convergence.展开更多
In this paper,a genetic algorithm based Tikhonov regularization method is proposed for determination of globally optimal regularization factor in displacement reconstruction.Optimization mathematic models are built by...In this paper,a genetic algorithm based Tikhonov regularization method is proposed for determination of globally optimal regularization factor in displacement reconstruction.Optimization mathematic models are built by using the generalized cross-validation(GCV)criterion,L-curve criterion and Engl’s error minimization(EEM)criterion as the objective functions to prevent the regularization factor sinking into the locally optimal solution.The validity of the proposed algorithm is demonstrated through a numerical study of the frame structure model.Additionally,the influence of the noise level and the number of sampling points on the optimal regularization factor is analyzed.The results show that the proposed algorithm improves the robustness of the algorithm effectively,and reconstructs the displacement accurately.展开更多
Structural shape monitoring plays a vital role in the structural health monitoring systems.The inverse finite element method(iFEM)has been demonstrated to be a practical method of deformation reconstruction owing to i...Structural shape monitoring plays a vital role in the structural health monitoring systems.The inverse finite element method(iFEM)has been demonstrated to be a practical method of deformation reconstruction owing to its unique advantages.Current iFEM formulations have been applied to small deformation of structures based on the small-displacement assumption of linear theory.However,this assumption may be inapplicable to some structures with large displacements in practical applications.Therefore,geometric nonlinearity needs to be considered.In this study,to expand the practical utility of iFEM for large displacement monitoring,we propose a nonlinear iFEM algorithm based on a four-node inverse quadrilateral shell element iQS4.Taking the advantage of an iterative iFEM algorithm,a nonlinear response is linearized to compute the geometrically nonlinear deformation reconstruction,like the basic concept of nonlinear FE analysis.Several examples are solved to verify the proposed approach.It is demonstrated that large displacements can be accurately estimated even if the in-situ sensor data includes different levels of randomly generated noise.It is proven that the nonlinear iFEM algorithm provides a more accurate displacement response as compared to the linear iFEM methodology for structures undergoing large displacement.Hence,the proposed approach can be utilized as a viable tool to effectively characterize geometrically nonlinear deformations of structures in real-time applications.展开更多
Objective To evaluate the feasibility of using a low concentration of contrast medium (Visipaque 270 mgl/mL), low tube voltage, and an advanced image reconstruction algorithm in head and neck computed tomography ang...Objective To evaluate the feasibility of using a low concentration of contrast medium (Visipaque 270 mgl/mL), low tube voltage, and an advanced image reconstruction algorithm in head and neck computed tomography angiography (CTA). Methods Forty patients (22 men and 18 women; average age 48.7 ± 14.25 years; average body mass index 23.9 ± 3.7 kg/m^2) undergoing CTA for suspected vascular diseases were randomly assigned into two groups. Group A (n = 20) was administered 370 mgl/mL contrast medium, and group B (n = 20) was administered 270 mgl/mL contrast medium. Both groups were administered at a rate of 4.8 mL/s and an injection volume of 0.8 mL/kg. Images of group A were obtained with 120 kVp and filtered back projection (FBP) reconstruction, whereas images of group B were obtained with 80 kVp and 80% adaptive iterative statistical reconstruction algorithm (ASiR). The CT values and standard deviations of intracranial arteries and image noise on the corona radiata were measured to calculate the contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR). The beam-hardening artifacts (BHAs) around the skull base were calculated. Two readers evaluated the image quality with volume rendered images using scores from 1 to 5. The values between the two groups were statistically compared. Results The mean CT value of the intracranial arteries in group B was significantly higher than that in group A (P 〈 0.001). The CNR and SNR values in group B were also statistically higher than those in group A (P 〈 0.001). Image noise and BHAs were not significantly different between the two groups. The image quality score of VR images of in group B was significantly higher than that in group A (P = 0.001). However, the quality scores of axial enhancement images in group B became significantly smaller than those in group A (P〈 0.001). The CT dose index volume and dose-length product were decreased by 63.8% and 64%, respectively, in group B (P 〈 0.001 for both). Conclusion Visipaque combined with 80 kVp and 80% ASiR provided similar image quality in intracranial CTA with 64% radiation dose reduction compared with the use of lopamidol, 120 kVp, and FBP reconstruc-tion.展开更多
The dense and accurate measurement of 3D texture is helpful in evaluating the pavement function.To form dense mandatory constraints and improve matching accuracy,the traditional binocular reconstruction technology was...The dense and accurate measurement of 3D texture is helpful in evaluating the pavement function.To form dense mandatory constraints and improve matching accuracy,the traditional binocular reconstruction technology was improved threefold.First,a single moving laser line was introduced to carry out global scanning constraints on the target,which would well overcome the difficulty of installing and recognizing excessive laser lines.Second,four kinds of improved algorithms,namely,disparity replacement,superposition synthesis,subregion segmentation,and subregion segmentation centroid enhancement,were established based on different constraint mechanism.Last,the improved binocular reconstruction test device was developed to realize the dual functions of 3D texture measurement and precision self-evaluation.Results show that compared with traditional algorithms,the introduction of a single laser line scanning constraint is helpful in improving the measurement’s accuracy.Among various improved algorithms,the improvement effect of the subregion segmentation centroid enhancement method is the best.It has a good effect on both overall measurement and single pointmeasurement,which can be considered to be used in pavement function evaluation.展开更多
An algorithm for grain reconstruction based on electron backscatter diffraction data was proposed in this paper. This algorithm can well record the original data arrangement when an external file for the reconstructed...An algorithm for grain reconstruction based on electron backscatter diffraction data was proposed in this paper. This algorithm can well record the original data arrangement when an external file for the reconstructed grain(s) was exported for further post-processing. Assisted by an in-house MATLAB program, grain reconstruction, lattice rotations, orientation spreads, and slip system analysis can be performed. The validity of this algorithm has been successfully tested by polycrystalline Ni before and after channel die compression.展开更多
文摘This paper presents a novel method for reconstructing a highly accurate 3D nose model of the human from 2D images and pre-marked landmarks based on algorithmic methods.The study focuses on the reconstruction of a 3D nose model tailored for applications in healthcare and cosmetic surgery.The approach leverages advanced image processing techniques,3D Morphable Models(3DMM),and deformation techniques to overcome the limita-tions of deep learning models,particularly addressing the interpretability issues commonly encountered in medical applications.The proposed method estimates the 3D coordinates of landmark points using a 3D structure estimation algorithm.Sub-landmarks are extracted through image processing techniques and interpolation.The initial surface is generated using a 3DMM,though its accuracy remains limited.To enhance precision,deformation techniques are applied,utilizing the coordinates of 76 identified landmarks and sub-landmarks.The resulting 3D nose model is constructed based on algorithmic methods and pre-marked landmarks.Evaluation of the 3D model is conducted by comparing landmark distances and shape similarity with expert-determined ground truth on 30 Vietnamese volunteers aged 18 to 47,all of whom were either preparing for or required nasal surgery.Experimental results demonstrate a strong agreement between the reconstructed 3D model and the ground truth.The method achieved a mean landmark distance error of 0.631 mm and a shape error of 1.738 mm,demonstrating its potential for medical applications.
文摘BACKGROUND Eyelid reconstruction is an intricate process,addressing both aesthetic and functional aspects post-trauma or oncological surgery.Aesthetic concerns and oncological radicality guide personalized approaches.The complex anatomy,involving anterior and posterior lamellae,requires tailored reconstruction for optimal functionality.AIM To formulate an eyelid reconstruction algorithm through an extensive literature review and to validate it by juxtaposing surgical outcomes from Cattinara Hos-in dry eye and tears,which may lead to long-term consequences such as chronic conjunctivitis,discomfort,or photo-phobia.To prevent this issue,scars should be oriented vertically or perpendicularly to the free eyelid margin when the size of the tumor allows.In employing a malar flap to repair a lower eyelid defect,the malar incision must ascend diagonally;this facilitates enhanced flap advancement and mitigates ectropion by restricting vertical traction.Conse-quently,it is imperative to maintain that the generated tension remains consistently horizontal and never vertical[9].Lagophthalmos is a disorder characterized by the inability to completely close the eyelids,leading to corneal exposure and an increased risk of keratitis or ulceration;it may arise following upper eyelid surgery.To avert this issue,it is essential to preserve a minimum of 1 cm of skin between the superior edge of the excision and the inferior boundary of the eyebrow.Epiphora may occur in cancers involving the lacrimal puncta,requiring their removal.As previously stated,when employing a glabellar flap to rectify medial canthal abnormalities,it is essential to prevent a trapdoor effect or thickening of the flap relative to the eyelid skin to which it is affixed.Constraints about our proposed algorithm enco-mpass limited sample sizes and possible publication biases in existing studies.Subsequent investigations ought to examine long-term results to further refine the algorithm.Future research should evaluate the algorithm across varied populations and examine the impact of novel graft materials on enhancing reconstructive outcomes.CONCLUSION Eyelid reconstruction remains one of the most intriguing challenges for a plastic surgeon today.The most fascinating aspect of this discipline is the need to restore the functionality of such an essential structure while maintaining its aesthetics.In our opinion,creating decision-making algorithms can facilitate reaching this goal by allowing for the individualization of the reconstructive path while minimizing the incidence of complications.The fact that we have decreased the incidence of severe complications is a sign that the work is moving in the right direction.The fact that there has been no need for reintervention,neither for reconstructive issues nor for inadequate oncological radicality,overall signifies greater patient satisfaction as they do not have to undergo the stress of new surgeries.Even the minor complic-ations recorded are in line with those reported in the literature,and,even more importantly for patients,they are of limited duration.In our experience,after a year of application,we can say that the objective has been achieved,but much more can still be done.Behind every work,a scientific basis must be continually renewed and refreshed to maintain high-quality standards.Therefore,searching for possible alternative solutions to be included in one’s surgical armamentarium is fundamental to providing the patient with a fully personalized option.
文摘In order to derive the linac photon spectrum accurately both the prior constrained model and the genetic algorithm GA are employed using the measured percentage depth dose PDD data and the Monte Carlo simulated monoenergetic PDDs where two steps are involved.First the spectrum is modeled as a prior analytical function with two parameters αand Ep optimized with the GA.Secondly the linac photon spectrum is modeled as a discretization constrained model optimized with the GA. The solved analytical function in the first step is used to generate initial solutions for the GA’s first run in this step.The method is applied to the Varian iX linear accelerator to derive the energy spectra of its 6 and 15 MV photon beams.The experimental results show that both the reconstructed spectrums and the derived PDDs with the proposed method are in good agreement with those calculated using the Monte Carlo simulation.
基金Project supported by the National Basic Research Program of China(Grant No.2006CB7057005)the National High Technology Research and Development Program of China(Grant No.2009AA012200)the National Natural Science Foundation of China (Grant No.60672104)
文摘With the development of the compressive sensing theory, the image reconstruction from the projections viewed in limited angles is one of the hot problems in the research of computed tomography technology. This paper develops an iterative algorithm for image reconstruction, which can fit the most cases. This method gives an image reconstruction flow with the difference image vector, which is based on the concept that the difference image vector between the reconstructed and the reference image is sparse enough. Then the l1-norm minimization method is used to reconstruct the difference vector to recover the image for flat subjects in limited angles. The algorithm has been tested with a thin planar phantom and a real object in limited-view projection data. Moreover, all the studies showed the satisfactory results in accuracy at a rather high reconstruction speed.
基金This work is supported by Hainan Provincial Natural Science Foundation of China(project number:20166235)project supported by the Education Department of Hainan Province(project number:Hnky2017-57).
文摘Underwater imaging is widely used in ocean,river and lake exploration,but it is affected by properties of water and the optics.In order to solve the lower-resolution underwater image formed by the influence of water and light,the image super-resolution reconstruction technique is applied to the underwater image processing.This paper addresses the problem of generating super-resolution underwater images by convolutional neural network framework technology.We research the degradation model of underwater images,and analyze the lower-resolution factors of underwater images in different situations,and compare different traditional super-resolution image reconstruction algorithms.We further show that the algorithm of super-resolution using deep convolution networks(SRCNN)which applied to super-resolution underwater images achieves good results.
文摘In conventional computed tomography (CT) reconstruction based on fixed voltage, the projective data often ap- pear overexposed or underexposed, as a result, the reconstructive results are poor. To solve this problem, variable voltage CT reconstruction has been proposed. The effective projective sequences of a structural component are obtained through the variable voltage. The total variation is adjusted and minimized to optimize the reconstructive results on the basis of iterative image using algebraic reconstruction technique (ART). In the process of reconstruction, the reconstructive image of low voltage is used as an initial value of the effective proiective reconstruction of the adjacent high voltage, and so on until to the highest voltage according to the gray weighted algorithm. Thereby the complete structural information is reconstructed. Simulation results show that the proposed algorithm can completely reflect the information of a complicated structural com- ponent, and the pixel values are more stable than those of the conventional.
基金Supported by National Natural Science Foundation of China (No.60532020,60301008,60472077,50337020), the High Tech-nique Research and Development Program of China (No.2001AA413210).
文摘An intuitive 2D model of circular electrical impedance tomography (EIT) sensor with small size electrodes is established based on the theory of analytic functions. The validation of the model is proved using the result from the solution of Laplace equation. Suggestions on to electrode optimization and explanation to the ill-condition property of the sensitivity matrix are provided based on the model, which takes electrode distance into account and can be generalized to the sensor with any simple connected region through a conformal transformation. Image reconstruction algorithms based on the model are implemented to show feasibility of the model using experimental data collected from the EIT system developed in Tianjin University. In the simulation with a human chestlike configuration, electrical conductivity distributions are reconstructed using equi-potential backprojection (EBP) and Tikhonov regularization (TR) based on a conformal transformation of the model. The algorithms based on the model are suitable for online image reconstruction and the reconstructed results are aood both in size and position.
基金Supported by the National Natural Science Foundation of China(61271398)the Natural Science Foundation of Ningbo(2012A610031)
文摘In this paper, an approximate analytical algorithm in the form of direct Fourier reconstruction is obtained for the recon- struction of data functions arisen from ^-scheme short-scan sin- gle-photon emission computed tomography(SPECT) with uniform attenuation, and the modified central slice theorem is developed. Numerical simulations are conducted to demonstrate the effec- tiveness of the developed method.
基金This project is supported by the National Natural Science Foundation of China(Grant No.51305211)Natural Science Foundation of Jiangsu(Grant No.BK20160955)Jiangsu Government Scholarship for Overseas Studies,College students practice and innovation training project of Jiangsu province(Grant No.201710300218),and the PAPD。
文摘The signal processing problem has become increasingly complex and demand high acquisition system,this paper proposes a new method to reconstruct the structure phased array structural health monitoring signal.The method is derived from the compressive sensing theory and the signal is reconstructed by using the basis pursuit algorithm to process the ultrasonic phased array signals.According to the principles of the compressive sensing and signal processing method,non-sparse ultrasonic signals are converted to sparse signals by using sparse transform.The sparse coefficients are obtained by sparse decomposition of the original signal,and then the observation matrix is constructed according to the corresponding sparse coefficients.Finally,the original signal is reconstructed by using basis pursuit algorithm,and error analysis is carried on.Experimental research analysis shows that the signal reconstruction method can reduce the signal complexity and required the space efficiently.
文摘3D image reconstruction for weather radar data can not only help the weatherman to improve the forecast efficiency and accuracy, but also help people to understand the weather conditions easily and quickly. Marching Cubes (MC) algorithm in the surface rendering has more excellent applicability in 3D reconstruction for the slice images;it may shorten the time to find and calculate the isosurface from raw volume data, reflect the shape structure more accurately. In this paper, we discuss a method to reconstruct the 3D weather cloud image by using the proposed Cube Weighting Interpolation (CWI) and MC algorithm. Firstly, we detail the steps of CWI, apply it to project the raw radar data into the cubes and obtain the equally spaced cloud slice images, then employ MC algorithm to draw the isosurface. Some experiments show that our method has a good effect and simple operation, which may provide an intuitive and effective reference for realizing the 3D surface reconstruction and meteorological image stereo visualization.
基金supported by the National Natural Science Foundation of China(Grant No.61372046)the Research Fund for the Doctoral Program ofHigher Education of China(New Teachers)(Grant No.20116101120018)+4 种基金the China Postdoctoral Sci-ence_Foundation_Funded Project(Grant_Nos.2011M501467 and 2012T50814)the Natural Sci-ence Basic Research Plan in Shaanxi Province of China(Grant No.2011JQ1006)the Fund amental Research Funds for the Central Universities(Grant No.GK201302007)Science and Technology Plan Program in Shaanxi Province of China(Grant Nos.2012 KJXX-29 and 2013K12-20-12)the Scienceand Technology Plan Program in Xi'an of China(Grant No.CXY 1348(2)).
文摘Fluorescence molecular tomography(FMT)is a fast-developing optical imaging modalitythat has great potential in early diagnosis of disease and drugs development.However,recon-struction algorithms have to address a highly ill-posed problem to fulfll 3D reconstruction inFMT.In this contribution,we propose an efficient iterative algorithm to solve the large-scalereconstruction problem,in which the sparsity of fluorescent targets is taken as useful a prioriinformation in designing the reconstruction algorithm.In the implementation,a fast sparseapproximation scheme combined with a stage-wise learning strategy enable the algorithm to dealwith the ill-posed inverse problem at reduced computational costs.We validate the proposed fastiterative method with numerical simulation on a digital mouse model.Experimental results demonstrate that our method is robust for different finite element meshes and different Poissonnoise levels.
基金supported by Natural Science Foundation of Beijing Municipality (Beijing Natural Science Foundation)(No.7191005)。
文摘Compton camera-based prompt gamma(PG) imaging has been proposed for range verification during proton therapy. However, a deviation between the PG and dose distributions, as well as the difference between the reconstructed PG and exact values, limit the effectiveness of the approach in accurate range monitoring during clinical applications. The aim of the study was to realize a PG-based dose reconstruction with a Compton camera, thereby further improving the prediction accuracy of in vivo range verification and providing a novel method for beam monitoring during proton therapy. In this paper, we present an approach based on a subset-driven origin ensemble with resolution recovery and a double evolutionary algorithm to reconstruct the dose depth profile(DDP) from the gamma events obtained by a cadmium-zinc-telluride Compton camera with limited position and energy resolution. Simulations of proton pencil beams with clinical particle rate irradiating phantoms made of different materials and the CT-based thoracic phantom were used to evaluate the feasibility of the proposed method. The results show that for the monoenergetic proton pencil beam irradiating homogeneous-material box phantom,the accuracy of the reconstructed DDP was within 0.3 mm for range prediction and within 5.2% for dose prediction. In particular, for 1.6-Gy irradiation in the therapy simulation of thoracic tumors, the range deviation of the reconstructed spreadout Bragg peak was within 0.8 mm, and the relative dose deviation in the peak area was less than 7% compared to the exact values. The results demonstrate the potential and feasibility of the proposed method in future Compton-based accurate dose reconstruction and range verification during proton therapy.
文摘In application of tomography imaging, limited-angle problem is a quite practical and important issue.In this paper, an iterative reprojection-reconstruction(IRR) algorithm using a modified Papoulis-Gerchberg(PG)iterative scheme is developed for reconstruction from limited-angle projections which contain noise. The proposed algorithm has two iterative update processes, one is the extrapolation of unknown data, and the other is the modification of the known noisy observation data. And the algorithm introduces scaling factors to control the two processes, respectively. The convergence of the algorithm is guaranteed, and the method of choosing the scaling factors is given with energy constraints. The simulation result demonstrates our conclusions and indicates that the algorithm proposed in this paper can obviously improve the reconstruction quality.
文摘A large number of sparse signal reconstruction algorithms have been continuously proposed, but almost all greedy algorithms add a fixed number of indices to the support set in each iteration. Although the mechanism of selecting the fixed number of indexes improves the reconstruction efficiency, it also brings the problem of low index selection accuracy. Based on the full study of the theory of compressed sensing, we propose a dynamic indexes selection strategy based on residual update to improve the performance of the compressed sampling matching pursuit algorithm (CoSaMP). As an extension of CoSaMP algorithm, the proposed algorithm adopts a residual comparison strategy to improve the accuracy of backtracking selected indexes. This backtracking strategy can efficiently select backtracking indexes. And without increasing the computational complexity, the proposed improvement algorithm has a higher exact reconstruction rate and peak signal to noise ratio (PSNR). Simulation results demonstrate the proposed algorithm significantly outperforms the CoSaMP for image recovery and one-dimensional signal.
基金National Natural Science Foundation of China(No.61171179,No.61171178)Natural Science Foundation of Shanxi Province(No.2010011002-1,No.2010011002-2and No.2012021011-2)
文摘The order of the projection in the algebraic reconstruction technique(ART)method has great influence on the rate of the convergence.Although many scholars have studied the order of the projection,few theoretical proofs are given.Thomas Strohmer and Roman Vershynin introduced a randomized version of the Kaczmarz method for consistent,and over-determined linear systems and proved whose rate does not depend on the number of equations in the systems in 2009.In this paper,we apply this method to computed tomography(CT)image reconstruction and compared images generated by the sequential Kaczmarz method and the randomized Kaczmarz method.Experiments demonstrates the feasibility of the randomized Kaczmarz algorithm in CT image reconstruction and its exponential curve convergence.
基金the National Natural Science Foundation of China(No.11602214)the China Postdoctoral Science Foundation(No.2017M622593)+1 种基金the Hunan Provincial Natural Science Foundation(No.2016JJ3117)the Scientific Research Project of Department of Education of Hunan Province(Nos.15C1318 and 18B079)
文摘In this paper,a genetic algorithm based Tikhonov regularization method is proposed for determination of globally optimal regularization factor in displacement reconstruction.Optimization mathematic models are built by using the generalized cross-validation(GCV)criterion,L-curve criterion and Engl’s error minimization(EEM)criterion as the objective functions to prevent the regularization factor sinking into the locally optimal solution.The validity of the proposed algorithm is demonstrated through a numerical study of the frame structure model.Additionally,the influence of the noise level and the number of sampling points on the optimal regularization factor is analyzed.The results show that the proposed algorithm improves the robustness of the algorithm effectively,and reconstructs the displacement accurately.
基金supported by the NationalNatural Science Foundation of China(Grant No.11902253)the Fundamental Research Funds for the Central Universities of China.The authors are grateful for this support.
文摘Structural shape monitoring plays a vital role in the structural health monitoring systems.The inverse finite element method(iFEM)has been demonstrated to be a practical method of deformation reconstruction owing to its unique advantages.Current iFEM formulations have been applied to small deformation of structures based on the small-displacement assumption of linear theory.However,this assumption may be inapplicable to some structures with large displacements in practical applications.Therefore,geometric nonlinearity needs to be considered.In this study,to expand the practical utility of iFEM for large displacement monitoring,we propose a nonlinear iFEM algorithm based on a four-node inverse quadrilateral shell element iQS4.Taking the advantage of an iterative iFEM algorithm,a nonlinear response is linearized to compute the geometrically nonlinear deformation reconstruction,like the basic concept of nonlinear FE analysis.Several examples are solved to verify the proposed approach.It is demonstrated that large displacements can be accurately estimated even if the in-situ sensor data includes different levels of randomly generated noise.It is proven that the nonlinear iFEM algorithm provides a more accurate displacement response as compared to the linear iFEM methodology for structures undergoing large displacement.Hence,the proposed approach can be utilized as a viable tool to effectively characterize geometrically nonlinear deformations of structures in real-time applications.
文摘Objective To evaluate the feasibility of using a low concentration of contrast medium (Visipaque 270 mgl/mL), low tube voltage, and an advanced image reconstruction algorithm in head and neck computed tomography angiography (CTA). Methods Forty patients (22 men and 18 women; average age 48.7 ± 14.25 years; average body mass index 23.9 ± 3.7 kg/m^2) undergoing CTA for suspected vascular diseases were randomly assigned into two groups. Group A (n = 20) was administered 370 mgl/mL contrast medium, and group B (n = 20) was administered 270 mgl/mL contrast medium. Both groups were administered at a rate of 4.8 mL/s and an injection volume of 0.8 mL/kg. Images of group A were obtained with 120 kVp and filtered back projection (FBP) reconstruction, whereas images of group B were obtained with 80 kVp and 80% adaptive iterative statistical reconstruction algorithm (ASiR). The CT values and standard deviations of intracranial arteries and image noise on the corona radiata were measured to calculate the contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR). The beam-hardening artifacts (BHAs) around the skull base were calculated. Two readers evaluated the image quality with volume rendered images using scores from 1 to 5. The values between the two groups were statistically compared. Results The mean CT value of the intracranial arteries in group B was significantly higher than that in group A (P 〈 0.001). The CNR and SNR values in group B were also statistically higher than those in group A (P 〈 0.001). Image noise and BHAs were not significantly different between the two groups. The image quality score of VR images of in group B was significantly higher than that in group A (P = 0.001). However, the quality scores of axial enhancement images in group B became significantly smaller than those in group A (P〈 0.001). The CT dose index volume and dose-length product were decreased by 63.8% and 64%, respectively, in group B (P 〈 0.001 for both). Conclusion Visipaque combined with 80 kVp and 80% ASiR provided similar image quality in intracranial CTA with 64% radiation dose reduction compared with the use of lopamidol, 120 kVp, and FBP reconstruc-tion.
基金supported by National Natural Science Foundation of China (52178422)Doctoral Research Foundation of Hubei University of Arts and Science (2059047)National College Students’Innovation and Entrepreneurship Training Program (202210519021).
文摘The dense and accurate measurement of 3D texture is helpful in evaluating the pavement function.To form dense mandatory constraints and improve matching accuracy,the traditional binocular reconstruction technology was improved threefold.First,a single moving laser line was introduced to carry out global scanning constraints on the target,which would well overcome the difficulty of installing and recognizing excessive laser lines.Second,four kinds of improved algorithms,namely,disparity replacement,superposition synthesis,subregion segmentation,and subregion segmentation centroid enhancement,were established based on different constraint mechanism.Last,the improved binocular reconstruction test device was developed to realize the dual functions of 3D texture measurement and precision self-evaluation.Results show that compared with traditional algorithms,the introduction of a single laser line scanning constraint is helpful in improving the measurement’s accuracy.Among various improved algorithms,the improvement effect of the subregion segmentation centroid enhancement method is the best.It has a good effect on both overall measurement and single pointmeasurement,which can be considered to be used in pavement function evaluation.
基金the financial support of the Ministry of Science and Technology of China (Grant No. 2012CB932201)the National Natural Science Foundation of China (Grant Nos. 51231006 and 51171182)the Danish-Chinese Center for Nanometals (Grant Nos. 51261130091 and DNRF86-5)
文摘An algorithm for grain reconstruction based on electron backscatter diffraction data was proposed in this paper. This algorithm can well record the original data arrangement when an external file for the reconstructed grain(s) was exported for further post-processing. Assisted by an in-house MATLAB program, grain reconstruction, lattice rotations, orientation spreads, and slip system analysis can be performed. The validity of this algorithm has been successfully tested by polycrystalline Ni before and after channel die compression.