In integrated circuit(IC)manufacturing,fast,nondestructive,and precise detection of defects in patterned wafers,realized by bright-field microscopy,is one of the critical factors for ensuring the final performance and...In integrated circuit(IC)manufacturing,fast,nondestructive,and precise detection of defects in patterned wafers,realized by bright-field microscopy,is one of the critical factors for ensuring the final performance and yields of chips.With the critical dimensions of IC nanostructures continuing to shrink,directly imaging or classifying deep-subwavelength defects by bright-field microscopy is challenging due to the well-known diffraction barrier,the weak scattering effect,and the faint correlation between the scattering cross-section and the defect morphology.Herein,we propose an optical far-field inspection method based on the form-birefringence scattering imaging of the defective nanostructure,which can identify and classify various defects without requiring optical super-resolution.The technique is built upon the principle of breaking the optical form birefringence of the original periodic nanostructures by the defect perturbation under the anisotropic illumination modes,such as the orthogonally polarized plane waves,then combined with the high-order difference of far-field images.We validated the feasibility and effectiveness of the proposed method in detecting deep subwavelength defects through rigid vector imaging modeling and optical detection experiments of various defective nanostructures based on polarization microscopy.On this basis,an intelligent classification algorithm for typical patterned defects based on a dual-channel AlexNet neural network has been proposed,stabilizing the classification accuracy ofλ/16-sized defects with highly similar features at more than 90%.The strong classification capability of the two-channel network on typical patterned defects can be attributed to the high-order difference image and its transverse gradient being used as the network’s input,which highlights the polarization modulation difference between different patterned defects more significantly than conventional bright-field microscopy results.This work will provide a new but easy-to-operate method for detecting and classifying deep-subwavelength defects in patterned wafers or photomasks,which thus endows current online inspection equipment with more missions in advanced IC manufacturing.展开更多
Insect-derived traditional Chinese medicine(TCM)constitutes an essential component of TCM,with the earliest records found in“52 Bingfang”(Prescriptions of fifty-two diseases,which is one of the earliest Chinese medi...Insect-derived traditional Chinese medicine(TCM)constitutes an essential component of TCM,with the earliest records found in“52 Bingfang”(Prescriptions of fifty-two diseases,which is one of the earliest Chinese medical prescriptions).展开更多
The integration of machine learning and electrocatalysis presents nota ble advancements in designing and predicting the performance of chiral materials for hydrogen evolution reactions(HER).This study utilizes theoret...The integration of machine learning and electrocatalysis presents nota ble advancements in designing and predicting the performance of chiral materials for hydrogen evolution reactions(HER).This study utilizes theoretical calculations and machine learning techniques to assess the HER performance of both chiral and achiral M-N-SWCNTs(M=In,Bi,and Sb)single-atom catalysts(SACs).The stability preferences of metal atoms are dependent on chirality when interacting with chiral SWCNTs.The HER activity of the right-handed In-N-SWCNT is 5.71 times greater than its achiral counterpart,whereas the left-handed In-N-SWCNT exhibits a 5.12-fold enhancement.The calculated hydrogen adsorption free energy for the right-handed In-N-SWCNT reaches as low as-0.02 eV.This enhancement is attributed to the symmetry breaking in spin density distribution,transitioning from C_(2V)in achiral SACs to C_(2)in chiral SACs,which facilitates active site transfer and enhances local spin density.Right-handed M-N-SWCNTs exhibit superiorα-electron separation and transport efficiency relative to left-handed variants,owing to the chiral induced spin selectivity(CISS)effect,with spin-upα-electron density reaching 3.43×10^(-3)e/Bohr^(3)at active sites.Machine learning provides deeper insights,revealing that the interplay of weak spatial electronic effects and appropriate curvature-chirality effects significantly enhances HER performance.A weaker spatial electronic effect correlates with higher HER activity,larger exchange current density,and higher turnover frequency.The curvature-chirality effect undersco res the influence of intrinsic structures on HER performance.These findings offer critical insights into the role of chirality in electrocatalysis and propose innovative approaches for optimizing HER through chirality.展开更多
Starting from the perspective of formula and efficacy,orthogonal experiments were first performed to explore the optimal ratio of three raw materials that potentially affect breaking force of lipsticks,verification ex...Starting from the perspective of formula and efficacy,orthogonal experiments were first performed to explore the optimal ratio of three raw materials that potentially affect breaking force of lipsticks,verification experiment on humans was then conducted to test the efficacy of the lipstick formula.Results showed that when the ratio of carnauba wax,shea butter and myristyl isopropyl ester was 3∶7∶3,the breaking force was optimal.After the subjects used the lipstick formula for 14 days,the moisture content of the lip stratum corneum significantly increased by 23.51% (P﹤0.05),the transepidermal water loss (TEWL) rate significantly decreased by 20.61%,the skin glossiness increased significantly by 9.88%,and the skin scale index decreased significantly by 55.76%.展开更多
Based on the finite-discrete element method,a three-dimensional numerical model for axial impact rock breaking was established and validated.A computational method for energy conversion during impact rock breaking was...Based on the finite-discrete element method,a three-dimensional numerical model for axial impact rock breaking was established and validated.A computational method for energy conversion during impact rock breaking was proposed,and the effects of conical tooth forward rake angle,rock temperature,and impact velocity on rock breaking characteristics and energy transfer laws were analyzed.The results show that during single impact rock breaking with conical tooth bits,merely 7.52%to 12.51%of the energy is utilized for rock breaking,while a significant 57.26%to 78.10%is dissipated as frictional loss.An insufficient forward rake angle increases tooth penetration depth and frictional loss,whereas an excessive forward rake angle reduces penetration capability,causing bit rebound and greater energy absorption by the drill rod.Thus,an optimal forward rake angle exists.Regarding environmental factors,high temperatures significantly enhance impact-induced rock breaking.Thermal damage from high temperatures reduces rock strength and inhibits its energy absorption.Finally,higher impact velocities intensify rock damage,yet excessively high velocities increase frictional loss and reduce the proportion of energy absorbed by the rock,thereby failing to substantially improve rock breaking efficiency.An optimal impact velocity exists.展开更多
Radial jet drilling(RJD)technology is expected to be a technology for the efficient exploitation of geothermal resources.However,the low rock-breaking efficiency is the major obstacle hindering the development of RJD ...Radial jet drilling(RJD)technology is expected to be a technology for the efficient exploitation of geothermal resources.However,the low rock-breaking efficiency is the major obstacle hindering the development of RJD technology.The flow field characteristics and rock breaking ability of cone-straight abrasive jet,rotary abrasive jet,and straight-rotating mixed abrasive jet are analyzed by numerical simulations and experiments.Results show that the axial velocity of the cone-straight abrasive jet is high,the tangential velocity is basically zero,the radial velocity is also small,and the jet impact area is concentrated in the center.A deep hole with a diameter of only 25 mm is formed when the cone-straight abrasive jet breaks the granite.Due to the presence of the guiding impeller,the rotary abrasive jet basically has no axial velocity and has the highest tangential and radial velocity,so it can break the granite to form a hole with a diameter of about 55 mm and a central bulge.The straight-rotating mixed abrasive jet has a large axial/tangential/radial velocity at the same time,so it can break the granite to form a hole with a diameter of about 52 mm with a low bulge.The results show that the straight-rotating mixed abrasive jet combines the advantages of the cone-straight jet and the rotary jet,and is more suitable for the RJD technology.The research results can provide reference for the development of efficient rock-breaking and hole-forming technology,and promote the development of RJD technology in the field of geothermal development.展开更多
At its core,Urbanization and Production of Space provides a comprehensive analysis of the intricate relationship between urbanization and the production of space,particularly within the rapidly evolving context of Chi...At its core,Urbanization and Production of Space provides a comprehensive analysis of the intricate relationship between urbanization and the production of space,particularly within the rapidly evolving context of China's urban transformation.As one of the most populous and dynamically urbanizing nations,China serves as a compelling case for understanding the broader global implications of spatial restructuring.展开更多
Rechargeable zinc-air batteries(ZABs) have recently drawn great attention in energy research due to their high theoretical capacity,low costs, and inherently safe nature [1–3]. However, the sluggish cathode reactions...Rechargeable zinc-air batteries(ZABs) have recently drawn great attention in energy research due to their high theoretical capacity,low costs, and inherently safe nature [1–3]. However, the sluggish cathode reactions necessitate the development of bifunctional oxygen electrocatalysts with lower ΔE indicator values. The ΔE indicator is commonly employed to quantitatively evaluate the electrocatalytic activity of a bifunctional oxygen electrocatalyst,representing the overall overpotential from oxygen reduction reaction(ORR) to oxygen evolution reaction(OER).展开更多
The complex symmetry breaking states in AV3Sb5 family have attracted extreme research attention,but controversy still exists,especially in the question of time reversal symmetry breaking of the charge density wave(CDW...The complex symmetry breaking states in AV3Sb5 family have attracted extreme research attention,but controversy still exists,especially in the question of time reversal symmetry breaking of the charge density wave(CDW).Most recently,a chiral CDW has been suggested in kagome magnet FeGe,but the related study is very rare.Here,we use a scanning tunneling microscope to study the symmetry breaking behavior of both the short-and long-range CDWs in FeGe.Different from previous studies,our study reveals an isotropic long-range CDW without obvious symmetry breaking,while local rotational symmetry breaking appears in the short-range CDW,which may be related to the existence of strong structural disorders.Moreover,the charge distribution of the short-range CDW is inert to the applied external magnetic fields and the detailed spin arrangements of FeGe,inconsistent with the expectation of a chiral CDW associated with chiral flux.Our results rule out the existence of spontaneous chiral and rotational symmetry breaking in the CDW state of FeGe,putting strong constraints on the further understanding of CDW mechanism.展开更多
Vibrational strong coupling(VSC)provides a promising way towards not only enhanced control of infrared light but also reshaping of molecular properties,which opens up unprecedented opportunities in ultrasensitive infr...Vibrational strong coupling(VSC)provides a promising way towards not only enhanced control of infrared light but also reshaping of molecular properties,which opens up unprecedented opportunities in ultrasensitive infrared spectroscopy,modification of chemical reactions,and exploration of nonlinear quantum effects.Surface plasmon resonance,excited on simple plasmonic resonators in the infrared,has been demonstrated as a means to realize VSC,but suffers from either limited quality factor for realizing large Rabi splitting or poor reconfigurability for precise detuning control.Here we propose and experimentally demonstrate,for the first time,an on-chip plasmonic resonator based on degeneracy breaking of Wood’s anomaly for VSC.Leveraging the low damping rate of the surface state induced by this degeneracy breaking,we achieve a plasmonic resonance with a high-Q factor exceeding~110,resulting in a Rabi splitting up to~112 cm^(-1) with a subwavelength molecular layer.Additionally,the dispersion of the surface state allows for precise control over VSC detuning by simply adjusting the incident angle of excitation light,even in the absence of photons,enabling a broad detuning range up to 300 cm^(-1).These experimental results align well with our analytical model and numerical simulation.This work provides a promising integrated platform for VSC,with various potential applications in on-chip spectroscopy,polariton chemistry,and polariton devices.展开更多
The tunneling conductance of two kinds of tunnel junctions with time-reversal symmetry breaking,normal metal/insulator/ferromagnetic metal/dx_(2-y2)+is-wave superconductor(NM/I/FM/dx_(2-y2)+is-wave SC)and NM/I/FM/dx_(...The tunneling conductance of two kinds of tunnel junctions with time-reversal symmetry breaking,normal metal/insulator/ferromagnetic metal/dx_(2-y2)+is-wave superconductor(NM/I/FM/dx_(2-y2)+is-wave SC)and NM/I/FM/dx_(2-y2)+idxy-wave SC,is calculated using the extended Blonder-Tinkham-Klapwijk theoretical method.The ratio of the subdominant s-wave and dxy-wave components to the dominant dx_(2-y2)-wave component is expressed byΔ_(s)/Δ_(D)andΔ_(d)/Δ_(D),respectively.Results show that for NM/I/FM/dx_(2-y2)+is-wave SC tunnel junctions,the splitting of the zero-bias conductance peak(ZBCP)is obtained and the splitting peaks appear at eV/Δ_(0)=±Δ_(s)/Δ_(D)with eV the applied bias voltage andΔ_(0)the zero temperature energy gap of SC.For NM/I/FM/dx_(2-y2)+idxy-wave SC tunnel junctions,there are also conductance peaks at eV/Δ_(0)=±Δ_(d)/Δ_(D)but the ZBCP does not split.For the two types of tunnel junctions,the completely reversed tunnel conductance spectrum indicates that when the exchange energy in FM is increased to a certain value,the proximity effect transforms the tunnel junctions from the'0 state'to the'πstate'.The shortening of the transport quasiparticle lifetime can weaken the proximity effect to smooth out the dips and peaks in the tunnel spectrum.This is considered a possible reason that the ZBCP splitting was not observed in some previous experiments.It is expected that these analysis results can serve as a guide for future experiments and the relevant conclusions can be confirmed.展开更多
A submerged cavitation water jet(SCWJ)is an effective method to recycle solid propellant from obsolete solid engines by the breaking method.Solid propellant's breaking modes and mechanical process under SCWJ impac...A submerged cavitation water jet(SCWJ)is an effective method to recycle solid propellant from obsolete solid engines by the breaking method.Solid propellant's breaking modes and mechanical process under SCWJ impact are unclear.This study aims to understand those impact breaking mechanisms.The hydroxyl-terminated polybutadiene(HTPB)propellant was chosen as the research material,and a self-designed test system was used to conduct impact tests at four different working pressures.The high-speed camera characterized crack propagation,and the DIC method calculated strain change during the impact process.Besides,micro and macro fracture morphologies were characterized by scanning electron microscope(SEM)and computed tomography(CT)scanning.The results reveal that the compressive strain concentration region locates right below the nozzle,and the shear strain region distributes symmetrically with the jet axis,which increases to 4% at first 16th ms,the compressive strain rises to 2% and 6% in the axial and transverse direction,respectively.The two tensile cracks formed first at the compression strain concentrate region,and there generate many shear cracks around the tensile cracks,and those shear cracks that develop and aggregate cause the cracks to become wider and cut through the tensile cracks,forming the tensile-shear cracks and the impact parts eventually fail.The HTPB propellant forms a breaking hole shaped conical after impact 10 s.The mass loss increases by 17 times at maximum,with the working pressure increasing by three times.Meanwhile,the damage value of the breaking hole remaining on the surface increases by 7.8 times while 2.9 times in the depth of the breaking hole.The breaking efficiency is closely affected by working pressures.The failure modes of HTPB impacted by SCWJ are classified as tensile crack-dominated and tensile-shear crack-dominated damage mechanisms.展开更多
Ferroelastic hybrid perovskite materials have been revealed the significance in the applications of switches,sensors,actuators,etc.However,it remains a challenge to design high-temperature ferroelastic to meet the req...Ferroelastic hybrid perovskite materials have been revealed the significance in the applications of switches,sensors,actuators,etc.However,it remains a challenge to design high-temperature ferroelastic to meet the requirements for the practical applications.Herein,we reported an one-dimensional organicinorganic hybrid perovskites(OIHP)(3-methylpyrazolium)CdCl_(3)(3-MBCC),which possesses a mmmF2/m ferroelastic phase transition at 263 K.Moreover,utilizing crystal engineering,we replace-CH_(3) with-NH_(2) and-H,which increases the intermolecular force between organic cations and inorganic frameworks.The phase transition temperature of(3-aminopyrazolium)CdCl_(3)(3-ABCC),and(pyrazolium)CdCl_(3)(BCC)increased by 73 K and 10 K,respectively.Particularly,BCC undergoes an unconventional inverse temperature symmetry breaking(ISTB)ferroelastic phase transition around 273 K.Differently,it transforms from a high symmetry low-temperature paraelastic phase(point group 2/m)to a low symmetry high-temperature ferroelastic phase(point group ī)originating from the rare mechanism of displacement of organic cations phase transition.It means that crystal BCC retains in ferroelastic phase above 273 K until melting point(446 K).Furthermore,characteristic ferroelastic domain patterns on crystal BCC are confirmed with polarized optical microscopy.Our study enriches the molecular mechanism of ferroelastics in the family of organic-inorganic hybrids and opens up a new avenue for exploring high-temperature ferroic materials.展开更多
The cavitation cloud impingement of the jet in the rock breaking process was experimentally investigated to reveal the jet erosion mechanism in drilling of petroleum exploitation. Serial erosion tests and flow visuali...The cavitation cloud impingement of the jet in the rock breaking process was experimentally investigated to reveal the jet erosion mechanism in drilling of petroleum exploitation. Serial erosion tests and flow visualization were performed, where the cavitation cloud motion in the erosion crater was obtained with the designed transparent specimen. Various erosion patterns were identified in the whole erosion process based on the eroded specimen topography. The shallow eroded crater with a shrinking erosion area is generated by the combination of impinging and scattering cavitation clouds. The increase of l_(d) promotes the development of cavitation cloud σ_(c) but reduces the impingement frequency f_(d), suggesting that the jet aggressive ability is enhanced when the balance between σ_(c) and f_(d) is reached. The cavitation cloud motion in the erosion crater was investigated with the transparent specimen. The erosion in the crater at shorter exposure periods T_(e) is generated by the combination of impingement and restricted scattering of cavitation clouds. With the continuous development of the erosion damage, the jet's aggressive ability is diminished due to the erosion expansion on sandstone, where the cavitation clouds impinge on the target and then collapse and vanish without restricted scattering.展开更多
Topologically nontrivial Fe-based superconductors attract extensive attentions due to their ability of hosting Majorana zero modes(MZMs)which could be used for topological quantum computation.Topological defects such ...Topologically nontrivial Fe-based superconductors attract extensive attentions due to their ability of hosting Majorana zero modes(MZMs)which could be used for topological quantum computation.Topological defects such as vortex lines are required to generate MZMs.Here,we observe the robust edge states along the surface steps of CaKFe_(4)As_(4).Remarkably,the tunneling spectra show a sharp zero-bias peak(ZBP)with multiple integerquantized states at the step edge under zero magnetic field.We propose that the increasing hole doping around step edges may drive the local superconductivity into a state with possible spontaneous time-reversal symmetry breaking.Consequently,the ZBP can be interpreted as an MZM in an effective vortex in the superconducting topological surface state by proximity to the center of a tri-junction with different superconducting order parameters.Our results provide new insights into the interplay between topology and unconventional superconductivity,and pave a new path to generate MZMs without magnetic field.展开更多
We present a lattice quantum chromodynamics(QCD)simulation with 2+1+1 flavor full QCD ensembles using near-physical quark masses and different spatial sizes L,at a~0.055 fm.The results show that the scalar and pesudos...We present a lattice quantum chromodynamics(QCD)simulation with 2+1+1 flavor full QCD ensembles using near-physical quark masses and different spatial sizes L,at a~0.055 fm.The results show that the scalar and pesudoscalar 2-point correlator with a valence pion mass of approximately 230 MeV become degenerated at L≤1.0 fm,and such an observation suggests that the spontaneous chiral symmetry breaking disappears effectively at this point.At the same time,the mass gap between the nucleon and pion masses remains larger thanΛQCDin the entire L∈[0.2,0.7]fm range.展开更多
Wave breaking at the bow of a high-speed ship is of great importance to the hydrodynamic performance of high-speed ships,accompanied by complex flow field deformation.In this study,the smoothed particle hydrodynamics(...Wave breaking at the bow of a high-speed ship is of great importance to the hydrodynamic performance of high-speed ships,accompanied by complex flow field deformation.In this study,the smoothed particle hydrodynamics(SPH)method under the Lagrange framework is adopted to simulate the breaking bow wave of the KCS ship model.In order to improve the computational efficiency,the inflow and outflow boundary model is used to establish a numerical tank of current,and a numerical treatment for free surface separation is implemented.Numerical simulations are carried out at Fr=0.35,0.40,0.5,0.6,and different types of wave breaking such as spilling breaker,plunging breaker,and scars are captured by the SPH method,which is consistent with the experimental result,demonstrating that the present SPH method can be robust and reliable in accurately predicting the breaking bow wave phenomenon of high-speed ships.Furthermore,the wave elevation and velocity field in the bow wave region are analyzed,and the evolution of the bow wave breaking is provided.展开更多
The purpose of our work is to analyze the effect of wave breaking on dual-polarized(vertical-vertical(VV)and vertical-horizontal(VH))synthetic aperture radar(SAR)image in the C-band during tropical cyclones(TCs)based ...The purpose of our work is to analyze the effect of wave breaking on dual-polarized(vertical-vertical(VV)and vertical-horizontal(VH))synthetic aperture radar(SAR)image in the C-band during tropical cyclones(TCs)based on the machine learning method.In this study,more than 1300 Sentinel-1(S-1)interferometric-wide(IW)and extra wide(EW)mode SAR images are collocated with wave simulations from the WAVEWATCH-III(WW3)model during 400 TCs.The validation of the significant wave height(SWH)simulated using the WW3 model against Jason-2 altimeter data.The winds for S-1 SAR images are reconstructed using wind retrievals in VV and VH polarization.The non-polarized(NP)contributionσ_(wb)caused by wave breaking is assumed to be the result of the SAR-measured normalized radar cross-section(NRCS)σ_(0)minus the Bragg resonant roughnessσbr without the distortion of rain cells during TCs.Theσbr is simulated by imputing wave spectra from the WW3 model into the theoretical backscattering model.It is found that the ratio(σ_(wb)/σ_(0))in VV polarization is related to the wind speed,the wind direction relative with the flight orientation,and radar incidence angle.Following this rationale,the Adaptive Boosting(AdaBoost)model was used for the estimation of NP contributionσ_(wb)during TCs and are implemented for more than 300 dual-polarized S-1 images to validate the model.It is found that for the comparison between the sum of simulation NRCS and SAR observations,the root mean squared error(RMSE)is 1.95 dB and the coefficient(COR)is 0.86,which is better than a 2.83 dB RMSE and a 0.67 COR by empirical model.It is concluded that the AdaBoost model has a good performance on NP component simulation during TCs.展开更多
China’s Olympic delegation at the Paris 2024,with 404 athletes competing in 232 events across 30 sports,clinched 40 gold,27 silver,and 24 bronze medals,marking their best performance at an Olympics held abroad.The su...China’s Olympic delegation at the Paris 2024,with 404 athletes competing in 232 events across 30 sports,clinched 40 gold,27 silver,and 24 bronze medals,marking their best performance at an Olympics held abroad.The success of these athletes across various disciplines demonstrates the country’s efforts to expand its athletic prowess while also marks a new chapter for Chinese sportsmanship on the international stage.展开更多
Smartex,a trailblazing leader in textile industry innovation,was proud to announce its return to ITM 2024,showcasing unparalleled advancements in quality control and production efficiency.Building on the success of pr...Smartex,a trailblazing leader in textile industry innovation,was proud to announce its return to ITM 2024,showcasing unparalleled advancements in quality control and production efficiency.Building on the success of previous exhibitions at ITM 2022 and ITMA Milan 2023,Smartex emerges stronger than ever,presenting its complete Smartex System tailored to transform textile manufacturing.展开更多
基金funded by National Natural Science Foundation of China(Grant Nos.52130504,52305577,and 52175509)the Key Research and Development Plan of Hubei Province(Grant No.2022BAA013)+4 种基金the Major Program(JD)of Hubei Province(Grant No.2023BAA008-2)the Interdisciplinary Research Program of Huazhong University of Science and Technology(2023JCYJ047)the Innovation Project of Optics Valley Laboratory(Grant No.OVL2023PY003)the Postdoctoral Fellowship Program(Grade B)of China Postdoctoral Science Foundation(Grant No.GZB20230244)the fellowship from the China Postdoctoral Science Foundation(2024M750995)。
文摘In integrated circuit(IC)manufacturing,fast,nondestructive,and precise detection of defects in patterned wafers,realized by bright-field microscopy,is one of the critical factors for ensuring the final performance and yields of chips.With the critical dimensions of IC nanostructures continuing to shrink,directly imaging or classifying deep-subwavelength defects by bright-field microscopy is challenging due to the well-known diffraction barrier,the weak scattering effect,and the faint correlation between the scattering cross-section and the defect morphology.Herein,we propose an optical far-field inspection method based on the form-birefringence scattering imaging of the defective nanostructure,which can identify and classify various defects without requiring optical super-resolution.The technique is built upon the principle of breaking the optical form birefringence of the original periodic nanostructures by the defect perturbation under the anisotropic illumination modes,such as the orthogonally polarized plane waves,then combined with the high-order difference of far-field images.We validated the feasibility and effectiveness of the proposed method in detecting deep subwavelength defects through rigid vector imaging modeling and optical detection experiments of various defective nanostructures based on polarization microscopy.On this basis,an intelligent classification algorithm for typical patterned defects based on a dual-channel AlexNet neural network has been proposed,stabilizing the classification accuracy ofλ/16-sized defects with highly similar features at more than 90%.The strong classification capability of the two-channel network on typical patterned defects can be attributed to the high-order difference image and its transverse gradient being used as the network’s input,which highlights the polarization modulation difference between different patterned defects more significantly than conventional bright-field microscopy results.This work will provide a new but easy-to-operate method for detecting and classifying deep-subwavelength defects in patterned wafers or photomasks,which thus endows current online inspection equipment with more missions in advanced IC manufacturing.
基金funded by the National Natural Science Foundation of China(Grant Nos.:82222068,82070423,82270348,and 82173779)the Innovation Team and Talents Cultivation Pro-gram of National Administration of Traditional Chinese Medicine,China(Grant No:ZYYCXTD-D-202206)+1 种基金Fujian Province Science and Technology Project,China(Grant Nos.:2021J01420479,2021J02058,2022J011374,and 2022J02057)Fundamental Research Funds for the Chinese Central Universities,China(Grant No.:20720230070).
文摘Insect-derived traditional Chinese medicine(TCM)constitutes an essential component of TCM,with the earliest records found in“52 Bingfang”(Prescriptions of fifty-two diseases,which is one of the earliest Chinese medical prescriptions).
基金the full support of the National Natural Science Foundation of China(62071154,51272052 and50902040)the Natural Science Foundation of Heilongjiang Province of China(LH2020B011 and LH2019B006)the Scientific Research Projects of Basic Scientific Research Operational Expenses of Heilongjiang Provincial Colleges and Universities(2021-KYYWF-0171)。
文摘The integration of machine learning and electrocatalysis presents nota ble advancements in designing and predicting the performance of chiral materials for hydrogen evolution reactions(HER).This study utilizes theoretical calculations and machine learning techniques to assess the HER performance of both chiral and achiral M-N-SWCNTs(M=In,Bi,and Sb)single-atom catalysts(SACs).The stability preferences of metal atoms are dependent on chirality when interacting with chiral SWCNTs.The HER activity of the right-handed In-N-SWCNT is 5.71 times greater than its achiral counterpart,whereas the left-handed In-N-SWCNT exhibits a 5.12-fold enhancement.The calculated hydrogen adsorption free energy for the right-handed In-N-SWCNT reaches as low as-0.02 eV.This enhancement is attributed to the symmetry breaking in spin density distribution,transitioning from C_(2V)in achiral SACs to C_(2)in chiral SACs,which facilitates active site transfer and enhances local spin density.Right-handed M-N-SWCNTs exhibit superiorα-electron separation and transport efficiency relative to left-handed variants,owing to the chiral induced spin selectivity(CISS)effect,with spin-upα-electron density reaching 3.43×10^(-3)e/Bohr^(3)at active sites.Machine learning provides deeper insights,revealing that the interplay of weak spatial electronic effects and appropriate curvature-chirality effects significantly enhances HER performance.A weaker spatial electronic effect correlates with higher HER activity,larger exchange current density,and higher turnover frequency.The curvature-chirality effect undersco res the influence of intrinsic structures on HER performance.These findings offer critical insights into the role of chirality in electrocatalysis and propose innovative approaches for optimizing HER through chirality.
文摘Starting from the perspective of formula and efficacy,orthogonal experiments were first performed to explore the optimal ratio of three raw materials that potentially affect breaking force of lipsticks,verification experiment on humans was then conducted to test the efficacy of the lipstick formula.Results showed that when the ratio of carnauba wax,shea butter and myristyl isopropyl ester was 3∶7∶3,the breaking force was optimal.After the subjects used the lipstick formula for 14 days,the moisture content of the lip stratum corneum significantly increased by 23.51% (P﹤0.05),the transepidermal water loss (TEWL) rate significantly decreased by 20.61%,the skin glossiness increased significantly by 9.88%,and the skin scale index decreased significantly by 55.76%.
基金Supported by Major Instrument Project of National Natural Science Foundation of China(52327803)Major Project of National Natural Science Foundation of China(52192622).
文摘Based on the finite-discrete element method,a three-dimensional numerical model for axial impact rock breaking was established and validated.A computational method for energy conversion during impact rock breaking was proposed,and the effects of conical tooth forward rake angle,rock temperature,and impact velocity on rock breaking characteristics and energy transfer laws were analyzed.The results show that during single impact rock breaking with conical tooth bits,merely 7.52%to 12.51%of the energy is utilized for rock breaking,while a significant 57.26%to 78.10%is dissipated as frictional loss.An insufficient forward rake angle increases tooth penetration depth and frictional loss,whereas an excessive forward rake angle reduces penetration capability,causing bit rebound and greater energy absorption by the drill rod.Thus,an optimal forward rake angle exists.Regarding environmental factors,high temperatures significantly enhance impact-induced rock breaking.Thermal damage from high temperatures reduces rock strength and inhibits its energy absorption.Finally,higher impact velocities intensify rock damage,yet excessively high velocities increase frictional loss and reduce the proportion of energy absorbed by the rock,thereby failing to substantially improve rock breaking efficiency.An optimal impact velocity exists.
基金funded by the National Natural Science Foundation of China(No.52374018)Science Foundation of China University of Petroleum,Beijing(No.2462021YJRC009)。
文摘Radial jet drilling(RJD)technology is expected to be a technology for the efficient exploitation of geothermal resources.However,the low rock-breaking efficiency is the major obstacle hindering the development of RJD technology.The flow field characteristics and rock breaking ability of cone-straight abrasive jet,rotary abrasive jet,and straight-rotating mixed abrasive jet are analyzed by numerical simulations and experiments.Results show that the axial velocity of the cone-straight abrasive jet is high,the tangential velocity is basically zero,the radial velocity is also small,and the jet impact area is concentrated in the center.A deep hole with a diameter of only 25 mm is formed when the cone-straight abrasive jet breaks the granite.Due to the presence of the guiding impeller,the rotary abrasive jet basically has no axial velocity and has the highest tangential and radial velocity,so it can break the granite to form a hole with a diameter of about 55 mm and a central bulge.The straight-rotating mixed abrasive jet has a large axial/tangential/radial velocity at the same time,so it can break the granite to form a hole with a diameter of about 52 mm with a low bulge.The results show that the straight-rotating mixed abrasive jet combines the advantages of the cone-straight jet and the rotary jet,and is more suitable for the RJD technology.The research results can provide reference for the development of efficient rock-breaking and hole-forming technology,and promote the development of RJD technology in the field of geothermal development.
文摘At its core,Urbanization and Production of Space provides a comprehensive analysis of the intricate relationship between urbanization and the production of space,particularly within the rapidly evolving context of China's urban transformation.As one of the most populous and dynamically urbanizing nations,China serves as a compelling case for understanding the broader global implications of spatial restructuring.
基金National Research Foundation (NRF Investigatorship NRF-NRFI09-0002)Agency for Science,Technology and Research (MTC Programmatic Fund M23L9b0052)。
文摘Rechargeable zinc-air batteries(ZABs) have recently drawn great attention in energy research due to their high theoretical capacity,low costs, and inherently safe nature [1–3]. However, the sluggish cathode reactions necessitate the development of bifunctional oxygen electrocatalysts with lower ΔE indicator values. The ΔE indicator is commonly employed to quantitatively evaluate the electrocatalytic activity of a bifunctional oxygen electrocatalyst,representing the overall overpotential from oxygen reduction reaction(ORR) to oxygen evolution reaction(OER).
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12374140,12494593,11790312,12004056,11774060,and 92065201)the National Key R&D Program of China(Grant No.2023YFA1406304)+2 种基金the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0302803)the Fundamental Research Funds for the Central Universities of China(Grant Nos.2022CDJXY-002 and WK9990000103)the New Cornerstone Science Foundation.
文摘The complex symmetry breaking states in AV3Sb5 family have attracted extreme research attention,but controversy still exists,especially in the question of time reversal symmetry breaking of the charge density wave(CDW).Most recently,a chiral CDW has been suggested in kagome magnet FeGe,but the related study is very rare.Here,we use a scanning tunneling microscope to study the symmetry breaking behavior of both the short-and long-range CDWs in FeGe.Different from previous studies,our study reveals an isotropic long-range CDW without obvious symmetry breaking,while local rotational symmetry breaking appears in the short-range CDW,which may be related to the existence of strong structural disorders.Moreover,the charge distribution of the short-range CDW is inert to the applied external magnetic fields and the detailed spin arrangements of FeGe,inconsistent with the expectation of a chiral CDW associated with chiral flux.Our results rule out the existence of spontaneous chiral and rotational symmetry breaking in the CDW state of FeGe,putting strong constraints on the further understanding of CDW mechanism.
基金supported by the National Key Research and Development Program of China(Grant No.2024YFE0105200)the National Nature Science Foundation of China(Grant No.62405284)+2 种基金the Key Research and Development Program of Henan Province(Grant No.241111220600)the JSPS KAKENHI(Grant No.JP20K14785)the Murata Science Foundation.
文摘Vibrational strong coupling(VSC)provides a promising way towards not only enhanced control of infrared light but also reshaping of molecular properties,which opens up unprecedented opportunities in ultrasensitive infrared spectroscopy,modification of chemical reactions,and exploration of nonlinear quantum effects.Surface plasmon resonance,excited on simple plasmonic resonators in the infrared,has been demonstrated as a means to realize VSC,but suffers from either limited quality factor for realizing large Rabi splitting or poor reconfigurability for precise detuning control.Here we propose and experimentally demonstrate,for the first time,an on-chip plasmonic resonator based on degeneracy breaking of Wood’s anomaly for VSC.Leveraging the low damping rate of the surface state induced by this degeneracy breaking,we achieve a plasmonic resonance with a high-Q factor exceeding~110,resulting in a Rabi splitting up to~112 cm^(-1) with a subwavelength molecular layer.Additionally,the dispersion of the surface state allows for precise control over VSC detuning by simply adjusting the incident angle of excitation light,even in the absence of photons,enabling a broad detuning range up to 300 cm^(-1).These experimental results align well with our analytical model and numerical simulation.This work provides a promising integrated platform for VSC,with various potential applications in on-chip spectroscopy,polariton chemistry,and polariton devices.
基金supported by the Fundamental Research Funds for the Central Universities(Grant Nos.23CX03016A and 24CX030009A)。
文摘The tunneling conductance of two kinds of tunnel junctions with time-reversal symmetry breaking,normal metal/insulator/ferromagnetic metal/dx_(2-y2)+is-wave superconductor(NM/I/FM/dx_(2-y2)+is-wave SC)and NM/I/FM/dx_(2-y2)+idxy-wave SC,is calculated using the extended Blonder-Tinkham-Klapwijk theoretical method.The ratio of the subdominant s-wave and dxy-wave components to the dominant dx_(2-y2)-wave component is expressed byΔ_(s)/Δ_(D)andΔ_(d)/Δ_(D),respectively.Results show that for NM/I/FM/dx_(2-y2)+is-wave SC tunnel junctions,the splitting of the zero-bias conductance peak(ZBCP)is obtained and the splitting peaks appear at eV/Δ_(0)=±Δ_(s)/Δ_(D)with eV the applied bias voltage andΔ_(0)the zero temperature energy gap of SC.For NM/I/FM/dx_(2-y2)+idxy-wave SC tunnel junctions,there are also conductance peaks at eV/Δ_(0)=±Δ_(d)/Δ_(D)but the ZBCP does not split.For the two types of tunnel junctions,the completely reversed tunnel conductance spectrum indicates that when the exchange energy in FM is increased to a certain value,the proximity effect transforms the tunnel junctions from the'0 state'to the'πstate'.The shortening of the transport quasiparticle lifetime can weaken the proximity effect to smooth out the dips and peaks in the tunnel spectrum.This is considered a possible reason that the ZBCP splitting was not observed in some previous experiments.It is expected that these analysis results can serve as a guide for future experiments and the relevant conclusions can be confirmed.
基金supported by the Program for National Defense Science and Technology Foundation Strengtheningthe Youth Foundation of Rocket Force University of Engineering(Grant No.2021QN-B014)。
文摘A submerged cavitation water jet(SCWJ)is an effective method to recycle solid propellant from obsolete solid engines by the breaking method.Solid propellant's breaking modes and mechanical process under SCWJ impact are unclear.This study aims to understand those impact breaking mechanisms.The hydroxyl-terminated polybutadiene(HTPB)propellant was chosen as the research material,and a self-designed test system was used to conduct impact tests at four different working pressures.The high-speed camera characterized crack propagation,and the DIC method calculated strain change during the impact process.Besides,micro and macro fracture morphologies were characterized by scanning electron microscope(SEM)and computed tomography(CT)scanning.The results reveal that the compressive strain concentration region locates right below the nozzle,and the shear strain region distributes symmetrically with the jet axis,which increases to 4% at first 16th ms,the compressive strain rises to 2% and 6% in the axial and transverse direction,respectively.The two tensile cracks formed first at the compression strain concentrate region,and there generate many shear cracks around the tensile cracks,and those shear cracks that develop and aggregate cause the cracks to become wider and cut through the tensile cracks,forming the tensile-shear cracks and the impact parts eventually fail.The HTPB propellant forms a breaking hole shaped conical after impact 10 s.The mass loss increases by 17 times at maximum,with the working pressure increasing by three times.Meanwhile,the damage value of the breaking hole remaining on the surface increases by 7.8 times while 2.9 times in the depth of the breaking hole.The breaking efficiency is closely affected by working pressures.The failure modes of HTPB impacted by SCWJ are classified as tensile crack-dominated and tensile-shear crack-dominated damage mechanisms.
基金support from the National Natural Science Foundation of China(No.22175079)support from the National Natural Science Foundation of China(No.22205087)+2 种基金the Open Project Program of Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry,Jiangxi University of Science and Technology(No.20212BCD42018)National Natural Science Foundation of China(No.22275075)Natural Science Foundation of Jiangxi Province(Nos.20204BCJ22015 and 20202ACBL203001).
文摘Ferroelastic hybrid perovskite materials have been revealed the significance in the applications of switches,sensors,actuators,etc.However,it remains a challenge to design high-temperature ferroelastic to meet the requirements for the practical applications.Herein,we reported an one-dimensional organicinorganic hybrid perovskites(OIHP)(3-methylpyrazolium)CdCl_(3)(3-MBCC),which possesses a mmmF2/m ferroelastic phase transition at 263 K.Moreover,utilizing crystal engineering,we replace-CH_(3) with-NH_(2) and-H,which increases the intermolecular force between organic cations and inorganic frameworks.The phase transition temperature of(3-aminopyrazolium)CdCl_(3)(3-ABCC),and(pyrazolium)CdCl_(3)(BCC)increased by 73 K and 10 K,respectively.Particularly,BCC undergoes an unconventional inverse temperature symmetry breaking(ISTB)ferroelastic phase transition around 273 K.Differently,it transforms from a high symmetry low-temperature paraelastic phase(point group 2/m)to a low symmetry high-temperature ferroelastic phase(point group ī)originating from the rare mechanism of displacement of organic cations phase transition.It means that crystal BCC retains in ferroelastic phase above 273 K until melting point(446 K).Furthermore,characteristic ferroelastic domain patterns on crystal BCC are confirmed with polarized optical microscopy.Our study enriches the molecular mechanism of ferroelastics in the family of organic-inorganic hybrids and opens up a new avenue for exploring high-temperature ferroic materials.
基金funded by the National Key R&D Program of China (Grant No. 2021YFB3401500)Engineering research 2023-GCKY-001the National Natural Science Foundation of China(Grant Nos. 52004018, 52304119)。
文摘The cavitation cloud impingement of the jet in the rock breaking process was experimentally investigated to reveal the jet erosion mechanism in drilling of petroleum exploitation. Serial erosion tests and flow visualization were performed, where the cavitation cloud motion in the erosion crater was obtained with the designed transparent specimen. Various erosion patterns were identified in the whole erosion process based on the eroded specimen topography. The shallow eroded crater with a shrinking erosion area is generated by the combination of impinging and scattering cavitation clouds. The increase of l_(d) promotes the development of cavitation cloud σ_(c) but reduces the impingement frequency f_(d), suggesting that the jet aggressive ability is enhanced when the balance between σ_(c) and f_(d) is reached. The cavitation cloud motion in the erosion crater was investigated with the transparent specimen. The erosion in the crater at shorter exposure periods T_(e) is generated by the combination of impingement and restricted scattering of cavitation clouds. With the continuous development of the erosion damage, the jet's aggressive ability is diminished due to the erosion expansion on sandstone, where the cavitation clouds impinge on the target and then collapse and vanish without restricted scattering.
基金supported by the National Key Research and Development Program of China(Grant No.2019YFA0308500)the National Natural Science Foundation of China(Grant Nos.62488201,52072401,11888101,12234016,and 12174317)+4 种基金the Chinese Academy of Sciences(Grant No.YSBR-003)the Innovation Program of Quantum Science and Technology(Grant No.2021ZD0302700)the New Cornerstone Science Foundationthe China Postdoctoral Science Foundation(Grant No.2022M723111)the Fellowship of China National Postdoctoral Program for Innovative Talents(Grant No.BX20230358)。
文摘Topologically nontrivial Fe-based superconductors attract extensive attentions due to their ability of hosting Majorana zero modes(MZMs)which could be used for topological quantum computation.Topological defects such as vortex lines are required to generate MZMs.Here,we observe the robust edge states along the surface steps of CaKFe_(4)As_(4).Remarkably,the tunneling spectra show a sharp zero-bias peak(ZBP)with multiple integerquantized states at the step edge under zero magnetic field.We propose that the increasing hole doping around step edges may drive the local superconductivity into a state with possible spontaneous time-reversal symmetry breaking.Consequently,the ZBP can be interpreted as an MZM in an effective vortex in the superconducting topological surface state by proximity to the center of a tri-junction with different superconducting order parameters.Our results provide new insights into the interplay between topology and unconventional superconductivity,and pave a new path to generate MZMs without magnetic field.
基金supported in part by NSFC Grant Nos.12293060,12293062,12293065 and 12047503the science and education integration young faculty project of the University of Chinese Academy of Sciences,the Strategic Priority Research Program of the Chinese Academy of Sciences,Grant Nos.XDB34030303 and YSBR-101NSFC-DFG joint grant under Grant Nos.12061131006 and SCHA 458/22。
文摘We present a lattice quantum chromodynamics(QCD)simulation with 2+1+1 flavor full QCD ensembles using near-physical quark masses and different spatial sizes L,at a~0.055 fm.The results show that the scalar and pesudoscalar 2-point correlator with a valence pion mass of approximately 230 MeV become degenerated at L≤1.0 fm,and such an observation suggests that the spontaneous chiral symmetry breaking disappears effectively at this point.At the same time,the mass gap between the nucleon and pion masses remains larger thanΛQCDin the entire L∈[0.2,0.7]fm range.
基金The Guangdong Basic and Applied Basic Research Foundation(2024B1515020107)the National Natural Science Foundation of China(Grant Nos.52171329)+1 种基金the State Key Laboratory of Disaster Prevention&Mitigation of Explosion&Impact(Grant No.NOLGD-SKL-202201)the Fundamental Research Funds for the Central Universities,Sun Yat-sen University(Grant No.231gbi023).
文摘Wave breaking at the bow of a high-speed ship is of great importance to the hydrodynamic performance of high-speed ships,accompanied by complex flow field deformation.In this study,the smoothed particle hydrodynamics(SPH)method under the Lagrange framework is adopted to simulate the breaking bow wave of the KCS ship model.In order to improve the computational efficiency,the inflow and outflow boundary model is used to establish a numerical tank of current,and a numerical treatment for free surface separation is implemented.Numerical simulations are carried out at Fr=0.35,0.40,0.5,0.6,and different types of wave breaking such as spilling breaker,plunging breaker,and scars are captured by the SPH method,which is consistent with the experimental result,demonstrating that the present SPH method can be robust and reliable in accurately predicting the breaking bow wave phenomenon of high-speed ships.Furthermore,the wave elevation and velocity field in the bow wave region are analyzed,and the evolution of the bow wave breaking is provided.
基金supported by the National Natural Science Foundation of China[Grant 42076238 and 42376174]the Natural Science Foundation of Shanghai[Grant 23ZR1426900]and Science Foundation of Donghai Laboratory[Grant DH-2022KF01019].
文摘The purpose of our work is to analyze the effect of wave breaking on dual-polarized(vertical-vertical(VV)and vertical-horizontal(VH))synthetic aperture radar(SAR)image in the C-band during tropical cyclones(TCs)based on the machine learning method.In this study,more than 1300 Sentinel-1(S-1)interferometric-wide(IW)and extra wide(EW)mode SAR images are collocated with wave simulations from the WAVEWATCH-III(WW3)model during 400 TCs.The validation of the significant wave height(SWH)simulated using the WW3 model against Jason-2 altimeter data.The winds for S-1 SAR images are reconstructed using wind retrievals in VV and VH polarization.The non-polarized(NP)contributionσ_(wb)caused by wave breaking is assumed to be the result of the SAR-measured normalized radar cross-section(NRCS)σ_(0)minus the Bragg resonant roughnessσbr without the distortion of rain cells during TCs.Theσbr is simulated by imputing wave spectra from the WW3 model into the theoretical backscattering model.It is found that the ratio(σ_(wb)/σ_(0))in VV polarization is related to the wind speed,the wind direction relative with the flight orientation,and radar incidence angle.Following this rationale,the Adaptive Boosting(AdaBoost)model was used for the estimation of NP contributionσ_(wb)during TCs and are implemented for more than 300 dual-polarized S-1 images to validate the model.It is found that for the comparison between the sum of simulation NRCS and SAR observations,the root mean squared error(RMSE)is 1.95 dB and the coefficient(COR)is 0.86,which is better than a 2.83 dB RMSE and a 0.67 COR by empirical model.It is concluded that the AdaBoost model has a good performance on NP component simulation during TCs.
文摘China’s Olympic delegation at the Paris 2024,with 404 athletes competing in 232 events across 30 sports,clinched 40 gold,27 silver,and 24 bronze medals,marking their best performance at an Olympics held abroad.The success of these athletes across various disciplines demonstrates the country’s efforts to expand its athletic prowess while also marks a new chapter for Chinese sportsmanship on the international stage.
文摘Smartex,a trailblazing leader in textile industry innovation,was proud to announce its return to ITM 2024,showcasing unparalleled advancements in quality control and production efficiency.Building on the success of previous exhibitions at ITM 2022 and ITMA Milan 2023,Smartex emerges stronger than ever,presenting its complete Smartex System tailored to transform textile manufacturing.