Alzheimer’s disease(AD)is a neurodegenerative disorder associated with brain aging,and the accumulation ofβ-amyloid(Aβ)and hyperphosphorylated Tau proteins are key pathological features.Currently,drugs for the trea...Alzheimer’s disease(AD)is a neurodegenerative disorder associated with brain aging,and the accumulation ofβ-amyloid(Aβ)and hyperphosphorylated Tau proteins are key pathological features.Currently,drugs for the treatment of AD are mainly single-targeted,but the complex pathogenesis of AD makes it difficult to achieve the desired results.Therefore,the development of multitargeted therapies is crucial for future interventions.Rice bran oil(RBO)has been recognized as an edible oil with several health benefits,but its effects on AD caused by brain aging remain underexplored.In this study,the effects of RBO on memory dysfunction in D-galactose(D-gal)mice and its molecular mechanisms were investigated via in vivo and in silico methods from the perspective of AD pathologies.Our results suggested that compounds in RBO could modulate the activities of Aβprecursor protein cleaving enzyme 1(BACE1),mitogen-activated protein kinase 3(MAPK3),matrix metalloproteinase 3(MMP3),and intercellular adhesion molecule 1(ICAM1),leading to inhibition of Aβaccumulation and Tau protein hyperphosphorylation.Moreover,RBO reduced Aβ-induced oxidative stress by inhibiting the activity of mouse double minute 2 homolog(MDM2)and cyclic adenosine monophosphate(cAMP)response element binding protein binding protein(CREBBP),and attenuated neuroinflammation by inhibiting the activity of nitric oxide synthase 2(NOS2)and reducing Aβaccumulation and Tau protein hyperphosphorylation.Additionally,α-linolenic acid in RBO exhibited inhibitory effects on D-gal-induced apoptosis in PC12 cells through modulation of NOS2,MDM2,ICAM1,and phospho-extracellular signal-regulated kinase 1/2(p-ERK1/2).Similarly,stigmastanol inhibited apoptosis in D-gal-induced PC12 cells through the regulation of NOS2.Thus,RBO can be considered as a potential functional food to attenuate AD owing to its multicomponent and multitarget effects.展开更多
Whole-grain foods have attracted emerging attention due to their health benefits.Whole grains are rich in bound polyphenols(BPs)linked with dietary fibers,which is largely underestimated compared with free polyphenols...Whole-grain foods have attracted emerging attention due to their health benefits.Whole grains are rich in bound polyphenols(BPs)linked with dietary fibers,which is largely underestimated compared with free polyphenols.In this study,in vitro simulated gastrointestinal digestion and colonic fermentation models were used to study the release profile and metabolism of BPs of oat bran.Significantly higher level of BPs was released during in vitro colon fermentation(3.05 mg GAE/g)than in gastrointestinal digestion(0.54 mg GAE/g).Five polyphenols were detected via LC-MS and their possible conversion pathways were speculated.Released BPs exhibited chemical antioxidant capacity.16S rRNA sequencing further revealed that Clostridium butyricum,Enterococcus faecalis,Bacteroides acidifaciens were the key bacteria involved in the release of BPs,and this was verified by whole-cell transformation.Our results helped to explain the possible mechanism of the health benefits of BPs in whole grains.展开更多
Emerging evidence of the beneficial effects of defatted rice bran(DFRB)on gut health has advanced the development of fermented defatted rice bran as a potential functional food.However,less is known about its effects ...Emerging evidence of the beneficial effects of defatted rice bran(DFRB)on gut health has advanced the development of fermented defatted rice bran as a potential functional food.However,less is known about its effects and underlying mechanisms on gut health.In this study,a mouse model together with fecal microbiota transplantation(FMT)was utilized to study the effects and mechanisms of fermented DFRB(FR)on gut barrier function.We found that FR improved the intestinal morphology,gut tight junction proteins,mucin,antimicrobial peptides,and interleukin 22(IL-22)and promoted the gut Clostridium butyricum and butyrate.Notably,correlation analysis indicated gut C.butyricum and butyrate were two FR-induced effectors that improved gut health.FMT results suggested that C.butyricum,butyrate,and fecal microbiota from the FR group all reduced prolyl hydroxylase 2(PHD2)expression by activating peroxisome proliferator-activated receptor gamma(PPARγ)in the mouse colon.This decrease in gut PHD2 subsequently upregulated the hypoxia-inducible factor-1 alpha(HIF-1α)expression,which in turn increased the expression of its targeted downstream tight junction proteins,mucin and antimicrobial peptides,and colonic IL-22 secretion.Overall,FR-derived C.butyricum and butyrate might improve gut barrier function through the HIF-1 signaling pathway,which provides a reference for the application of fermented DFRB as a potential functional food for improving of gut barrier function.展开更多
This study is the first investigation of the effects of polysaccharide extracted from rice bran(RBP)on ovalbumin(OVA)-induced allergy and the gut microbiota,which hasn’t been reported previously.RBP in the medium-dos...This study is the first investigation of the effects of polysaccharide extracted from rice bran(RBP)on ovalbumin(OVA)-induced allergy and the gut microbiota,which hasn’t been reported previously.RBP in the medium-dose was found to significantly reduce the symptoms of food allergy(FA)in mice,lower the levels of histamine and allergen-specific(immunoglobulin E),and attenuate intestinal inflammation.Further studies demonstrated that RBP decreased allergy-associated responses in intestinal epithelial cells and Th2 cells while regulating Th1/Th2 differentiation to reach a dynamic equilibrium and downregulating Th2 polarization caused by allergies.Short-chain fatty acids(SCFAs)content and 16S rRNA sequencing revealed that RBP enhanced the abundance and diversity of the gut microflora and raised the content of SCFAs.These results suggest that RBP may mitigate FA by modulating the gut microbiota.This study revealed the effective use of rice bran and served as a basis for the development of innovative functional foods with anti-allergic properties.展开更多
Rice bran(RB) is one of the nutrient-rich agricultural byproducts. It is a composite of carbohydrates, lipids, proteins, fibers, minerals, and trace elements such as phosphorus, potassium, magnesium, calcium and manga...Rice bran(RB) is one of the nutrient-rich agricultural byproducts. It is a composite of carbohydrates, lipids, proteins, fibers, minerals, and trace elements such as phosphorus, potassium, magnesium, calcium and manganese. The extraction and purification process influences the quality and quantity of rice bran oil, which is rich in tocopherols, tocotrienols, 毭-oryzanol, and unsaturated fatty acids. The bioactive components of RB have been reported for exhibiting antioxidant, anti-inflammatory, hypocholesterolemic, anti-cancer, anti-colitis, and antidiabetic properties. In vitro and in vivo studies, and clinical trials in human volunteers revealed the anti-hyperglycemic activity of RB derived compounds. An updated comprehensive review on the antidiabetic property of RB and its derivative is required to appraise the current knowledge in the particular field. Thus, the present paper covered the composition and bioactivities of RB, and influence of extraction methods on the biological property of rice bran oil and rice bran extract. And the current review also focused on the reported antihyperglycemia activity of rice bran derivatives, and its probable mechanism.展开更多
[ Objective ] This study aimed to optimize the extraction technology for rice bran oil. [ Method ] Using rice bran as raw material, effects of ultrasonicassisted extraction technology and different organic solvents, e...[ Objective ] This study aimed to optimize the extraction technology for rice bran oil. [ Method ] Using rice bran as raw material, effects of ultrasonicassisted extraction technology and different organic solvents, extraction durations, solid-liquid ratios and extraction temperatures on extraction results of rice bran oil were investigated. Based on the results of single-factor experiment, L9 (34 ) orthngonal experiment with three factors at three levels was conducted to optimize the extraction technological parameters, thus obtaining the optimal technological conditions for extracting rice bran oil. [ Result] Anhydrous ethanol led to the best extraction result; after ultrasonic treatment, the extraction rate of rice bran oil from raw material was not enhanced. The optimized technological parameters were : extraction temperature of 80 ℃, extraction duration of 20 rain and solid-liquid ratio of 1:24 ( g: ml). Under the optimized technological conditions, the extraction rate of rice bran oil reached 19.33%. [ Conclusion] This study laid solid foundation for further investigation and development of rice bran oil.展开更多
To find an effective method for ensiling peanut vine (PV), fermentation characteristics and nutritional values of PV silage and the mixture of PV with corn stover (CS) silage in a ratio of 1 : 1 fresh weight, pre...To find an effective method for ensiling peanut vine (PV), fermentation characteristics and nutritional values of PV silage and the mixture of PV with corn stover (CS) silage in a ratio of 1 : 1 fresh weight, prepared by adding lactic acid bacteria (LAB), 10% wheat bran (WB) and LAB+WB at ensiling were evaluated in 2009 and 2010. The fermentation qualities of PV silage ensiled with the LAB and WB additives were improved compared with those of the control (PV ensiled alone). However, the pH did not decline to the critical level of 4.2, and the nutritional values of the silage were not protected against losses in the LAB and WB addition silages. Ensiling PV in mixture with CS generated optimal moisture content and buffering capacity (BC) of ensiled materials. After adding the LAB and WB additives to mixture silage, especially adding LAB+WB, the fermentation qualities and nutritional values of the mixture silage were improved significantly (P〈0.05), and the Flieg's score reached to 99. The result suggested that it is a feasible method to ensile the mixed materials of PV with CS by adding LAB and high concentration of water soluble-carbohydrate materials for providing a good fermentation quality of PV silage.展开更多
Rice bran is a solid residue from rice polishing that is used in animal nutrition and rice oil production. Cultivation conditions with agro-toxics, lipids instability, and tendency for mycotoxin contamination restrict...Rice bran is a solid residue from rice polishing that is used in animal nutrition and rice oil production. Cultivation conditions with agro-toxics, lipids instability, and tendency for mycotoxin contamination restrict its application in human nutrition. Therefore, organic agriculture is an alternative to use the properties of rice bran. Rice bran beverage is a new cereal product from organic rice. This work presents the preliminary results of the chemical and rheological studies of a bath pasteurized rice bran beverage. Compared with integral defatted milk, soy extracts, and brown rice low-fat milk, the rice bran beverage studied in this work presents itself as an important source of minerals and unsaturated lipids. All essential amino acids were found in this product. Glutamic and aspartic acids were predominant. Bath pasteurization at boiling water temperature for 15 and 30 min was adequate for microbiological safety. Refrigeration storage for 20 days, evaluated by pH and acidity variations, was ideal for assessment of the beverage conservation time. The beverage viscosity was of the Newtonian standard behavior, and its viscosity during storage was not a good parameter to evaluate shelf life. Sensory preference tests showed positive perspectives for this new beverage.展开更多
Objective:To develop and validate an image analysis method for quantitative analysis ofγ-oryzanol in cold pressed rice bran oil.Methods:TLC-densitometric and TLC-image analysis methods were developed,validated,and us...Objective:To develop and validate an image analysis method for quantitative analysis ofγ-oryzanol in cold pressed rice bran oil.Methods:TLC-densitometric and TLC-image analysis methods were developed,validated,and used for quantitative analysis of γ-oryzanol in cold pressed rice bran oil.The results obtained by these two different quantification methods were compared by paired t-test.Results:Both assays provided good linearity,accuracy,reproducibility and selectivity for determination of γ-oryzanol.Conclusions:The TLC-densitomelric and TLC-image analysis methods providett a similar reproducibility,accuracy and selectivity for the quantitative determination of γ-oryzanol in cold pressed rice bran oil.A statistical comparison of the quantitative determinations of γ-oryzanol in samples did not show any statistically significant difference between TLC-densitometric and TLC-image analysis methods.As both methods were found to be equal,they therefore can be used for the determination of γ-oryzanol in cold pressed rice bran oil.展开更多
Rice bran oil(RBO)is unique among edible vegetable oils because of its unique fatty acid composition,phenolic compound(γ-oryzanol,ferulic acid)and vitamin E(tocopherol and tocotrienol).It has become a great choice of...Rice bran oil(RBO)is unique among edible vegetable oils because of its unique fatty acid composition,phenolic compound(γ-oryzanol,ferulic acid)and vitamin E(tocopherol and tocotrienol).It has become a great choice of cooking oil because of its very high burning point,neutral taste and delicate flavour.Non-conventional methods of RBO extraction are more efficient and environmentally friendly than conventional extraction methods.Advances in RBO extraction using innovative extraction strategies like super/sub-critical CO_(2),microwave-assisted,subcritical H_(2)O,enzyme-assisted aqueous and ultrasoundassisted aqueous extraction methods have proven to significantly improve the yields along with improved nutritional profile of RBO.The compositions and strategies for stabilization of RBO are well discussed.The constituents are present in the RBO contribute to antioxidative,anti-inflammatory,antimicrobial,antidiabetic and anti-cancerous properties to RBO.This has helped RBO to become an important substrate for the application in food(cooking oil,milk product and meat product)and non-food industries(polymer,lubricant,biofuel,structural lipid and cosmetic).This review provided comprehensive information on RBO extraction methods,oil stabilization,existing applications and health benefits.展开更多
The non-edible crude rice bran oil was extracted from white rice bran, and then was catalyzed by immobilized lipase for biodiesel production in this study. The effects of water content, oil/methanol molar ratio, tempe...The non-edible crude rice bran oil was extracted from white rice bran, and then was catalyzed by immobilized lipase for biodiesel production in this study. The effects of water content, oil/methanol molar ratio, temperature, enzyme amount, solvent,number of methanol added times and two-step methanolysis by using Candida sp. 99-125 as catalyst were investigated. The optimal conditions for processing 1 g rice bran oil were: 0.2 g immobilized lipase, 2 ml n-hexane as solvent, 20% water based on the rice bran oil mass, temperature of 40 °C and two-step addition of methanol. As a result, the fatty acid methyl esters yield was 87.4%. The immobilized lipase was proved to be stable when it was used repeatedly for 7 cycles.展开更多
Defatted rice bran dietary fiber (DRBDF) was modified by micronization, ultrasound, microwave and extrusion cooking. We investigated the impacts of these physical treatments on the fermentation ability and bile salts ...Defatted rice bran dietary fiber (DRBDF) was modified by micronization, ultrasound, microwave and extrusion cooking. We investigated the impacts of these physical treatments on the fermentation ability and bile salts binding capacity of DRBDF. In-vitro fermentation by human fecal bacteria of modified fibers showed that the major fermentation products were propionic, acetate and butyrate acid. Fermentation of extruded fiber gave the highest amounts of propionic and acetic acid 135.76 and 25.45 mmol/L respectively, while, the fermented product with microwaved fiber had the highest butyric acid content (10.75 mmol/L). The amount of short-chain fatty acid increased from 12 h to 24 h and propionic acid was the predominant. On the other hand,in-vitrobile salts binding showed that extruded fiber had higher affinity with sodium deoxycholate and sodium chenodeoxycholate (66.14% and 30.25% respectively) while microwaved fiber exhibited the highest affinity with sodium taurocholate (14.38%). In the light of obtained results we can affirmed that these physical treatments significantly improved the fermentation products and bile salts binding capacity of DRBDF. Extrusion compared to the other physical treatment methods used in this study has greatly and positively influenced the fermentation and bile binding capacity of DRBDF.展开更多
The appearance of rice bran 'cake' or discharge from a screw press corresponds to the level of oil produced in the extraction process. The relationships between operating settings, oil extraction level and cake appe...The appearance of rice bran 'cake' or discharge from a screw press corresponds to the level of oil produced in the extraction process. The relationships between operating settings, oil extraction level and cake appearance were studied. Cake characteristics reliably indicate the expected oil recovery extraction level. These conclusions applyed to both Chainat 1 rice bran and parboiled rice bran. Variables were the speed of the screw press (set at five levels from 8.5 to 19.8 r/min) and corresponding clearance distances between the screw and barrel (set between 1.0 and 1.9 cm). Results showed that the maximum levels of extraction were 4.17% for the rice bran and 8.20% for the parboiled rice bran. At the maximum extraction level, the apparatus continuously discharged cake that were hard, crispy, flaky, shiny and polished on one side but dull and coarse on the other.展开更多
Oat contains different components that possess antioxidant properties; no study to date has addressed the antioxidant effect of the extract of oat bran on the cellular level. Therefore, the present study focuses on th...Oat contains different components that possess antioxidant properties; no study to date has addressed the antioxidant effect of the extract of oat bran on the cellular level. Therefore, the present study focuses on the investi- gation of the protective effect of oat bran extract by enzymatic hydrolysates on human dermal fibroblast injury induced by hydrogen peroxide (H2O2). Kjeldahl determination, phenol-sulfuric acid method, and high-performance liquid chromatography (HPLC) analysis indicated that the enzymatic products of oat bran contain a protein amount of 71.93%, of which 97.43% are peptides with a molecular range from 438.56 to 1301.01 Da. Assays for 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity indicate that oat peptide-dch extract has a direct and concentration-dependent antioxidant activity. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) colorimetric assay and the TdT-mediated digoxigenin-dUTP nick-end labeling (TUNEL) assay for apoptosis showed that administration of H2O2 in human dermal fibroblasts caused cell damage and apoptosis. Pre-incubation of human dermal fibroblasts with the Oatp for 24 h markedly inhibited human dermal fibroblast injury induced by H2O2, but ap- plication oat peptides with H2O2 at same time did not. Pre-treatment of human dermal fibroblasts with Oatp significantly reversed the H2O2-induced decrease of superoxide dismutase (SOD) and the inhibition of malondialdehyde (MDA). The results demonstrate that oat peptides possess antioxidant activity and are effective against H2O2-induced human dermal fibroblast injury by the enhanced activity of SOD and decrease in MDA level. Our results suggest that oat bran will have the potential to be further explored as an antioxidant functional food in the prevention of aging-related skin injury.展开更多
This study was conducted to explore how the insoluble dietary fiber(IDF)of wheat bran with different particle size affects the texture properties,water distribution,protein secondary structure and microstructure of no...This study was conducted to explore how the insoluble dietary fiber(IDF)of wheat bran with different particle size affects the texture properties,water distribution,protein secondary structure and microstructure of noodles.The results suggested that IDF addition increased the cooking loss and decreased the sensory evaluation because of the damage on dough structure,while as the IDF particle size decreased,the sensory score increased from 78.8 to 82.3 and cooking loss decreased from 8.65%to 7.65%,which could be attributed to that small particle-sized IDF limited the damage on protein network structure,decreased the T22 and t-structure,and increased the β1-structure.Moreover,IDF particle size had a significant correlation with protein secondary structures,texture properties and evaluation score of noodles.In conclusion,adding appropriate particle sizewould be an effectiveway of enhancing the nutritional and textural properties of noodles.展开更多
基金supported by the Science and Technology Innovation Program of Hunan Province(2022RC1148)the Natural Science Foundation of Hunan Province(2022JJ31009,2022JJ50260)+4 种基金the Program for Science and Technology of Changsha,China(kh2301028)the Science and Technology Innovation Plan Project of Hunan Province(2023NK2033)the Innovation Leading Plan Project of Hunan Province(2021GK4022)the“Kemen Food”Graduate Science and Technology Innovation Project of Central South University of Forestry and Technology(2023KMCX02)the Graduate Science and Technology Innovation Fund Project of Hunan Province(QL20220182).
文摘Alzheimer’s disease(AD)is a neurodegenerative disorder associated with brain aging,and the accumulation ofβ-amyloid(Aβ)and hyperphosphorylated Tau proteins are key pathological features.Currently,drugs for the treatment of AD are mainly single-targeted,but the complex pathogenesis of AD makes it difficult to achieve the desired results.Therefore,the development of multitargeted therapies is crucial for future interventions.Rice bran oil(RBO)has been recognized as an edible oil with several health benefits,but its effects on AD caused by brain aging remain underexplored.In this study,the effects of RBO on memory dysfunction in D-galactose(D-gal)mice and its molecular mechanisms were investigated via in vivo and in silico methods from the perspective of AD pathologies.Our results suggested that compounds in RBO could modulate the activities of Aβprecursor protein cleaving enzyme 1(BACE1),mitogen-activated protein kinase 3(MAPK3),matrix metalloproteinase 3(MMP3),and intercellular adhesion molecule 1(ICAM1),leading to inhibition of Aβaccumulation and Tau protein hyperphosphorylation.Moreover,RBO reduced Aβ-induced oxidative stress by inhibiting the activity of mouse double minute 2 homolog(MDM2)and cyclic adenosine monophosphate(cAMP)response element binding protein binding protein(CREBBP),and attenuated neuroinflammation by inhibiting the activity of nitric oxide synthase 2(NOS2)and reducing Aβaccumulation and Tau protein hyperphosphorylation.Additionally,α-linolenic acid in RBO exhibited inhibitory effects on D-gal-induced apoptosis in PC12 cells through modulation of NOS2,MDM2,ICAM1,and phospho-extracellular signal-regulated kinase 1/2(p-ERK1/2).Similarly,stigmastanol inhibited apoptosis in D-gal-induced PC12 cells through the regulation of NOS2.Thus,RBO can be considered as a potential functional food to attenuate AD owing to its multicomponent and multitarget effects.
基金the support from the research grants by National Natural Science Foundation of China(32202051)National Key R&D Program of China(2022YFF1100104)the Major Project of Inner Mongolia Science and Technology Department,China(2021ZD0002)。
文摘Whole-grain foods have attracted emerging attention due to their health benefits.Whole grains are rich in bound polyphenols(BPs)linked with dietary fibers,which is largely underestimated compared with free polyphenols.In this study,in vitro simulated gastrointestinal digestion and colonic fermentation models were used to study the release profile and metabolism of BPs of oat bran.Significantly higher level of BPs was released during in vitro colon fermentation(3.05 mg GAE/g)than in gastrointestinal digestion(0.54 mg GAE/g).Five polyphenols were detected via LC-MS and their possible conversion pathways were speculated.Released BPs exhibited chemical antioxidant capacity.16S rRNA sequencing further revealed that Clostridium butyricum,Enterococcus faecalis,Bacteroides acidifaciens were the key bacteria involved in the release of BPs,and this was verified by whole-cell transformation.Our results helped to explain the possible mechanism of the health benefits of BPs in whole grains.
基金supported by grants from the National Key R&D Program(2023YFD1301303)National Natural Science Foundation of China(32472950,U21A20249)+1 种基金China Agriculture Research System of MOF and MARA(CARS-35)National Center of Technology Innovation for Pigs,Zhejiang Agricultural Talents,Taishan Industrial Leading Talents Project.
文摘Emerging evidence of the beneficial effects of defatted rice bran(DFRB)on gut health has advanced the development of fermented defatted rice bran as a potential functional food.However,less is known about its effects and underlying mechanisms on gut health.In this study,a mouse model together with fecal microbiota transplantation(FMT)was utilized to study the effects and mechanisms of fermented DFRB(FR)on gut barrier function.We found that FR improved the intestinal morphology,gut tight junction proteins,mucin,antimicrobial peptides,and interleukin 22(IL-22)and promoted the gut Clostridium butyricum and butyrate.Notably,correlation analysis indicated gut C.butyricum and butyrate were two FR-induced effectors that improved gut health.FMT results suggested that C.butyricum,butyrate,and fecal microbiota from the FR group all reduced prolyl hydroxylase 2(PHD2)expression by activating peroxisome proliferator-activated receptor gamma(PPARγ)in the mouse colon.This decrease in gut PHD2 subsequently upregulated the hypoxia-inducible factor-1 alpha(HIF-1α)expression,which in turn increased the expression of its targeted downstream tight junction proteins,mucin and antimicrobial peptides,and colonic IL-22 secretion.Overall,FR-derived C.butyricum and butyrate might improve gut barrier function through the HIF-1 signaling pathway,which provides a reference for the application of fermented DFRB as a potential functional food for improving of gut barrier function.
基金provided by the Shanghai Agricultural Science and Technology Innovation Program(Shanghai Agricultural Science I2023007)the Zhejiang Provincial Natural Science Foundation of China(LZ23C200001)+1 种基金Shanghai Agricultural Products Preservation and Processing Professional Technical Service Platform(21DZ2292200)Agri-food Storage and Processing Engineering Technology Research Center of Shanghai(19DZ2251600).
文摘This study is the first investigation of the effects of polysaccharide extracted from rice bran(RBP)on ovalbumin(OVA)-induced allergy and the gut microbiota,which hasn’t been reported previously.RBP in the medium-dose was found to significantly reduce the symptoms of food allergy(FA)in mice,lower the levels of histamine and allergen-specific(immunoglobulin E),and attenuate intestinal inflammation.Further studies demonstrated that RBP decreased allergy-associated responses in intestinal epithelial cells and Th2 cells while regulating Th1/Th2 differentiation to reach a dynamic equilibrium and downregulating Th2 polarization caused by allergies.Short-chain fatty acids(SCFAs)content and 16S rRNA sequencing revealed that RBP enhanced the abundance and diversity of the gut microflora and raised the content of SCFAs.These results suggest that RBP may mitigate FA by modulating the gut microbiota.This study revealed the effective use of rice bran and served as a basis for the development of innovative functional foods with anti-allergic properties.
基金supported by the CMU Post-Doctoral Fellowship(Ref:No.6592(11)/01501,dated 24 February 2017)
文摘Rice bran(RB) is one of the nutrient-rich agricultural byproducts. It is a composite of carbohydrates, lipids, proteins, fibers, minerals, and trace elements such as phosphorus, potassium, magnesium, calcium and manganese. The extraction and purification process influences the quality and quantity of rice bran oil, which is rich in tocopherols, tocotrienols, 毭-oryzanol, and unsaturated fatty acids. The bioactive components of RB have been reported for exhibiting antioxidant, anti-inflammatory, hypocholesterolemic, anti-cancer, anti-colitis, and antidiabetic properties. In vitro and in vivo studies, and clinical trials in human volunteers revealed the anti-hyperglycemic activity of RB derived compounds. An updated comprehensive review on the antidiabetic property of RB and its derivative is required to appraise the current knowledge in the particular field. Thus, the present paper covered the composition and bioactivities of RB, and influence of extraction methods on the biological property of rice bran oil and rice bran extract. And the current review also focused on the reported antihyperglycemia activity of rice bran derivatives, and its probable mechanism.
文摘[ Objective ] This study aimed to optimize the extraction technology for rice bran oil. [ Method ] Using rice bran as raw material, effects of ultrasonicassisted extraction technology and different organic solvents, extraction durations, solid-liquid ratios and extraction temperatures on extraction results of rice bran oil were investigated. Based on the results of single-factor experiment, L9 (34 ) orthngonal experiment with three factors at three levels was conducted to optimize the extraction technological parameters, thus obtaining the optimal technological conditions for extracting rice bran oil. [ Result] Anhydrous ethanol led to the best extraction result; after ultrasonic treatment, the extraction rate of rice bran oil from raw material was not enhanced. The optimized technological parameters were : extraction temperature of 80 ℃, extraction duration of 20 rain and solid-liquid ratio of 1:24 ( g: ml). Under the optimized technological conditions, the extraction rate of rice bran oil reached 19.33%. [ Conclusion] This study laid solid foundation for further investigation and development of rice bran oil.
基金funded by the National Key Technology Research and Development Program of China(2009BADA6B06)
文摘To find an effective method for ensiling peanut vine (PV), fermentation characteristics and nutritional values of PV silage and the mixture of PV with corn stover (CS) silage in a ratio of 1 : 1 fresh weight, prepared by adding lactic acid bacteria (LAB), 10% wheat bran (WB) and LAB+WB at ensiling were evaluated in 2009 and 2010. The fermentation qualities of PV silage ensiled with the LAB and WB additives were improved compared with those of the control (PV ensiled alone). However, the pH did not decline to the critical level of 4.2, and the nutritional values of the silage were not protected against losses in the LAB and WB addition silages. Ensiling PV in mixture with CS generated optimal moisture content and buffering capacity (BC) of ensiled materials. After adding the LAB and WB additives to mixture silage, especially adding LAB+WB, the fermentation qualities and nutritional values of the mixture silage were improved significantly (P〈0.05), and the Flieg's score reached to 99. The result suggested that it is a feasible method to ensile the mixed materials of PV with CS by adding LAB and high concentration of water soluble-carbohydrate materials for providing a good fermentation quality of PV silage.
文摘Rice bran is a solid residue from rice polishing that is used in animal nutrition and rice oil production. Cultivation conditions with agro-toxics, lipids instability, and tendency for mycotoxin contamination restrict its application in human nutrition. Therefore, organic agriculture is an alternative to use the properties of rice bran. Rice bran beverage is a new cereal product from organic rice. This work presents the preliminary results of the chemical and rheological studies of a bath pasteurized rice bran beverage. Compared with integral defatted milk, soy extracts, and brown rice low-fat milk, the rice bran beverage studied in this work presents itself as an important source of minerals and unsaturated lipids. All essential amino acids were found in this product. Glutamic and aspartic acids were predominant. Bath pasteurization at boiling water temperature for 15 and 30 min was adequate for microbiological safety. Refrigeration storage for 20 days, evaluated by pH and acidity variations, was ideal for assessment of the beverage conservation time. The beverage viscosity was of the Newtonian standard behavior, and its viscosity during storage was not a good parameter to evaluate shelf life. Sensory preference tests showed positive perspectives for this new beverage.
基金Supported by the Research Institute of Rangsit University,Pathum Thani,Thailand(Grant No.73/55)
文摘Objective:To develop and validate an image analysis method for quantitative analysis ofγ-oryzanol in cold pressed rice bran oil.Methods:TLC-densitometric and TLC-image analysis methods were developed,validated,and used for quantitative analysis of γ-oryzanol in cold pressed rice bran oil.The results obtained by these two different quantification methods were compared by paired t-test.Results:Both assays provided good linearity,accuracy,reproducibility and selectivity for determination of γ-oryzanol.Conclusions:The TLC-densitomelric and TLC-image analysis methods providett a similar reproducibility,accuracy and selectivity for the quantitative determination of γ-oryzanol in cold pressed rice bran oil.A statistical comparison of the quantitative determinations of γ-oryzanol in samples did not show any statistically significant difference between TLC-densitometric and TLC-image analysis methods.As both methods were found to be equal,they therefore can be used for the determination of γ-oryzanol in cold pressed rice bran oil.
文摘Rice bran oil(RBO)is unique among edible vegetable oils because of its unique fatty acid composition,phenolic compound(γ-oryzanol,ferulic acid)and vitamin E(tocopherol and tocotrienol).It has become a great choice of cooking oil because of its very high burning point,neutral taste and delicate flavour.Non-conventional methods of RBO extraction are more efficient and environmentally friendly than conventional extraction methods.Advances in RBO extraction using innovative extraction strategies like super/sub-critical CO_(2),microwave-assisted,subcritical H_(2)O,enzyme-assisted aqueous and ultrasoundassisted aqueous extraction methods have proven to significantly improve the yields along with improved nutritional profile of RBO.The compositions and strategies for stabilization of RBO are well discussed.The constituents are present in the RBO contribute to antioxidative,anti-inflammatory,antimicrobial,antidiabetic and anti-cancerous properties to RBO.This has helped RBO to become an important substrate for the application in food(cooking oil,milk product and meat product)and non-food industries(polymer,lubricant,biofuel,structural lipid and cosmetic).This review provided comprehensive information on RBO extraction methods,oil stabilization,existing applications and health benefits.
基金Supported by the National High Technology Research and Development Program of China (2006AA020101, 2007AA10Z360,2009AA03Z232)Key Projects in the National Science & Technology Pillar Program during the Eleventh Five-Year Plan Period (2008BA163B07)
文摘The non-edible crude rice bran oil was extracted from white rice bran, and then was catalyzed by immobilized lipase for biodiesel production in this study. The effects of water content, oil/methanol molar ratio, temperature, enzyme amount, solvent,number of methanol added times and two-step methanolysis by using Candida sp. 99-125 as catalyst were investigated. The optimal conditions for processing 1 g rice bran oil were: 0.2 g immobilized lipase, 2 ml n-hexane as solvent, 20% water based on the rice bran oil mass, temperature of 40 °C and two-step addition of methanol. As a result, the fatty acid methyl esters yield was 87.4%. The immobilized lipase was proved to be stable when it was used repeatedly for 7 cycles.
文摘Defatted rice bran dietary fiber (DRBDF) was modified by micronization, ultrasound, microwave and extrusion cooking. We investigated the impacts of these physical treatments on the fermentation ability and bile salts binding capacity of DRBDF. In-vitro fermentation by human fecal bacteria of modified fibers showed that the major fermentation products were propionic, acetate and butyrate acid. Fermentation of extruded fiber gave the highest amounts of propionic and acetic acid 135.76 and 25.45 mmol/L respectively, while, the fermented product with microwaved fiber had the highest butyric acid content (10.75 mmol/L). The amount of short-chain fatty acid increased from 12 h to 24 h and propionic acid was the predominant. On the other hand,in-vitrobile salts binding showed that extruded fiber had higher affinity with sodium deoxycholate and sodium chenodeoxycholate (66.14% and 30.25% respectively) while microwaved fiber exhibited the highest affinity with sodium taurocholate (14.38%). In the light of obtained results we can affirmed that these physical treatments significantly improved the fermentation products and bile salts binding capacity of DRBDF. Extrusion compared to the other physical treatment methods used in this study has greatly and positively influenced the fermentation and bile binding capacity of DRBDF.
基金the Thailand Research Fund (TRF) for their financial support
文摘The appearance of rice bran 'cake' or discharge from a screw press corresponds to the level of oil produced in the extraction process. The relationships between operating settings, oil extraction level and cake appearance were studied. Cake characteristics reliably indicate the expected oil recovery extraction level. These conclusions applyed to both Chainat 1 rice bran and parboiled rice bran. Variables were the speed of the screw press (set at five levels from 8.5 to 19.8 r/min) and corresponding clearance distances between the screw and barrel (set between 1.0 and 1.9 cm). Results showed that the maximum levels of extraction were 4.17% for the rice bran and 8.20% for the parboiled rice bran. At the maximum extraction level, the apparatus continuously discharged cake that were hard, crispy, flaky, shiny and polished on one side but dull and coarse on the other.
文摘Oat contains different components that possess antioxidant properties; no study to date has addressed the antioxidant effect of the extract of oat bran on the cellular level. Therefore, the present study focuses on the investi- gation of the protective effect of oat bran extract by enzymatic hydrolysates on human dermal fibroblast injury induced by hydrogen peroxide (H2O2). Kjeldahl determination, phenol-sulfuric acid method, and high-performance liquid chromatography (HPLC) analysis indicated that the enzymatic products of oat bran contain a protein amount of 71.93%, of which 97.43% are peptides with a molecular range from 438.56 to 1301.01 Da. Assays for 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity indicate that oat peptide-dch extract has a direct and concentration-dependent antioxidant activity. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) colorimetric assay and the TdT-mediated digoxigenin-dUTP nick-end labeling (TUNEL) assay for apoptosis showed that administration of H2O2 in human dermal fibroblasts caused cell damage and apoptosis. Pre-incubation of human dermal fibroblasts with the Oatp for 24 h markedly inhibited human dermal fibroblast injury induced by H2O2, but ap- plication oat peptides with H2O2 at same time did not. Pre-treatment of human dermal fibroblasts with Oatp significantly reversed the H2O2-induced decrease of superoxide dismutase (SOD) and the inhibition of malondialdehyde (MDA). The results demonstrate that oat peptides possess antioxidant activity and are effective against H2O2-induced human dermal fibroblast injury by the enhanced activity of SOD and decrease in MDA level. Our results suggest that oat bran will have the potential to be further explored as an antioxidant functional food in the prevention of aging-related skin injury.
基金funded by the Key Scientific and Technological Research Projects of Henan Province (Grant No. 162102210108)
文摘This study was conducted to explore how the insoluble dietary fiber(IDF)of wheat bran with different particle size affects the texture properties,water distribution,protein secondary structure and microstructure of noodles.The results suggested that IDF addition increased the cooking loss and decreased the sensory evaluation because of the damage on dough structure,while as the IDF particle size decreased,the sensory score increased from 78.8 to 82.3 and cooking loss decreased from 8.65%to 7.65%,which could be attributed to that small particle-sized IDF limited the damage on protein network structure,decreased the T22 and t-structure,and increased the β1-structure.Moreover,IDF particle size had a significant correlation with protein secondary structures,texture properties and evaluation score of noodles.In conclusion,adding appropriate particle sizewould be an effectiveway of enhancing the nutritional and textural properties of noodles.