期刊文献+
共找到286篇文章
< 1 2 15 >
每页显示 20 50 100
Microglia overexpressing brain-derived neurotrophic factor promote vascular repair and functional recovery in mice after spinal cord injury 被引量:2
1
作者 Fanzhuo Zeng Yuxin Li +6 位作者 Xiaoyu Li Xinyang Gu Yue Cao Shuai Cheng He Tian Rongcheng Mei Xifan Mei 《Neural Regeneration Research》 2026年第1期365-376,共12页
Spinal cord injury represents a severe form of central nervous system trauma for which effective treatments remain limited.Microglia is the resident immune cells of the central nervous system,play a critical role in s... Spinal cord injury represents a severe form of central nervous system trauma for which effective treatments remain limited.Microglia is the resident immune cells of the central nervous system,play a critical role in spinal cord injury.Previous studies have shown that microglia can promote neuronal survival by phagocytosing dead cells and debris and by releasing neuroprotective and anti-inflammatory factors.However,excessive activation of microglia can lead to persistent inflammation and contribute to the formation of glial scars,which hinder axonal regeneration.Despite this,the precise role and mechanisms of microglia during the acute phase of spinal cord injury remain controversial and poorly understood.To elucidate the role of microglia in spinal cord injury,we employed the colony-stimulating factor 1 receptor inhibitor PLX5622 to deplete microglia.We observed that sustained depletion of microglia resulted in an expansion of the lesion area,downregulation of brain-derived neurotrophic factor,and impaired functional recovery after spinal cord injury.Next,we generated a transgenic mouse line with conditional overexpression of brain-derived neurotrophic factor specifically in microglia.We found that brain-derived neurotrophic factor overexpression in microglia increased angiogenesis and blood flow following spinal cord injury and facilitated the recovery of hindlimb motor function.Additionally,brain-derived neurotrophic factor overexpression in microglia reduced inflammation and neuronal apoptosis during the acute phase of spinal cord injury.Furthermore,through using specific transgenic mouse lines,TMEM119,and the colony-stimulating factor 1 receptor inhibitor PLX73086,we demonstrated that the neuroprotective effects were predominantly due to brain-derived neurotrophic factor overexpression in microglia rather than macrophages.In conclusion,our findings suggest the critical role of microglia in the formation of protective glial scars.Depleting microglia is detrimental to recovery of spinal cord injury,whereas targeting brain-derived neurotrophic factor overexpression in microglia represents a promising and novel therapeutic strategy to enhance motor function recovery in patients with spinal cord injury. 展开更多
关键词 ANGIOGENESIS apoptosis brain-derived neurotrophic factor colony stimulating factor 1 receptor inflammation MICROGLIA motor function spinal cord injury vascular endothelial growth factor
暂未订购
Brain-derived extracellular vesicles:A promising avenue for Parkinson's disease pathogenesis,diagnosis,and treatment
2
作者 Shurui Zhang Jingwen Li +7 位作者 Xinyu Hu Hanshu Liu Qinwei Yu Guiying Kuang Long Liu Danfang Yu Zhicheng Lin Nian Xiong 《Neural Regeneration Research》 2026年第4期1447-1467,共21页
The misfolding,aggregation,and deposition of alpha-synuclein into Lewy bodies are pivotal events that trigger pathological changes in Parkinson's disease.Extracellular vesicles are nanosized lipidbilayer vesicles ... The misfolding,aggregation,and deposition of alpha-synuclein into Lewy bodies are pivotal events that trigger pathological changes in Parkinson's disease.Extracellular vesicles are nanosized lipidbilayer vesicles secreted by cells that play a crucial role in intercellular communication due to their diverse cargo.Among these,brain-derived extracellular vesicles,which are secreted by various brain cells such as neurons,glial cells,and Schwann cells,have garnered increasing attention.They serve as a promising tool for elucidating Parkinson's disease pathogenesis and for advancing diagnostic and therapeutic strategies.This review highlights the recent advancements in our understanding of brain-derived extracellular vesicles released into the blood and their role in the pathogenesis of Parkinson's disease,with specific emphasis on their involvement in the aggregation and spread of alpha-synuclein.Brain-derived extracellular vesicles contribute to disease progression through multiple mechanisms,including autophagy-lysosome dysfunction,neuroinflammation,and oxidative stress,collectively driving neurodegeneration in Parkinson's disease.Their application in Parkinson's disease diagnosis is a primary focus of this review.Recent studies have demonstrated that brainderived extracellular vesicles can be isolated from peripheral blood samples,as they carryα-synuclein and other key biomarkers such as DJ-1 and various micro RNAs.These findings highlight the potential of brain-derived extracellular vesicles,not only for the early diagnosis of Parkinson's disease but also for disease progression monitoring and differential diagnosis.Additionally,an overview of explorations into the potential therapeutic applications of brain-derived extracellular vesicles for Parkinson's disease is provided.Therapeutic strategies targeting brain-derived extracellular vesicles involve modulating the release and uptake of pathological alpha-synuclein-containing brain-derived extracellular vesicles to inhibit the spread of the protein.Moreover,brain-derived extracellular vesicles show immense promise as therapeutic delivery vehicles capable of transporting drugs into the central nervous system.Importantly,brain-derived extracellular vesicles also play a crucial role in neural regeneration by promoting neuronal protection,supporting axonal regeneration,and facilitating myelin repair,further enhancing their therapeutic potential in Parkinson's disease and other neurological disorders.Further clarification is needed of the methods for identifying and extracting brain-derived extracellular vesicles,and large-scale cohort studies are necessary to validate the accuracy and specificity of these biomarkers.Future research should focus on systematically elucidating the unique mechanistic roles of brain-derived extracellular vesicles,as well as their distinct advantages in the clinical translation of methods for early detection and therapeutic development. 展开更多
关键词 ALPHA-SYNUCLEIN biomarker brain-derived extracellular vesicles DIAGNOSIS EXOSOME extracellular vesicles nerve regeneration Parkinson's disease PATHOGENESIS therapeutics
暂未订购
The effects of exercise interventions on brain-derived neurotrophic factor levels in children and adolescents:a meta-analysis
3
作者 Xueyun Shao Longfei He Yangyang Liu 《Neural Regeneration Research》 SCIE CAS 2025年第5期1513-1520,共8页
Brain-derived neurotrophic factor is a crucial neurotrophic factor that plays a significant role in brain health. Although the vast majority of meta-analyses have confirmed that exercise interventions can increase bra... Brain-derived neurotrophic factor is a crucial neurotrophic factor that plays a significant role in brain health. Although the vast majority of meta-analyses have confirmed that exercise interventions can increase brain-derived neurotrophic factor levels in children and adolescents, the effects of specific types of exercise on brain-derived neurotrophic factor levels are still controversial. To address this issue, we used meta-analytic methods to quantitatively evaluate, analyze, and integrate relevant studies. Our goals were to formulate general conclusions regarding the use of exercise interventions, explore the physiological mechanisms by which exercise improves brain health and cognitive ability in children and adolescents, and provide a reliable foundation for follow-up research. We used the Pub Med, Web of Science, Science Direct, Springer, Wiley Online Library, Weipu, Wanfang, and China National Knowledge Infrastructure databases to search for randomized controlled trials examining the influences of exercise interventions on brain-derived neurotrophic factor levels in children and adolescents. The extracted data were analyzed using Review Manager 5.3. According to the inclusion criteria, we assessed randomized controlled trials in which the samples were mainly children and adolescents, and the outcome indicators were measured before and after the intervention. We excluded animal experiments, studies that lacked a control group, and those that did not report quantitative results. The mean difference(MD;before versus after intervention) was used to evaluate the effect of exercise on brain-derived neurotrophic factor levels in children and adolescents. Overall, 531 participants(60 children and 471 adolescents, 10.9–16.1 years) were included from 13 randomized controlled trials. Heterogeneity was evaluated using the Q statistic and I^(2) test provided by Review Manager software. The meta-analysis showed that there was no heterogeneity among the studies(P = 0.67, I^(2) = 0.00%). The combined effect of the interventions was significant(MD = 2.88, 95% CI: 1.53–4.22, P < 0.0001), indicating that the brain-derived neurotrophic factor levels of the children and adolescents in the exercise group were significantly higher than those in the control group. In conclusion, different types of exercise interventions significantly increased brain-derived neurotrophic factor levels in children and adolescents. However, because of the small sample size of this meta-analysis, more high-quality research is needed to verify our conclusions. This metaanalysis was registered at PROSPERO(registration ID: CRD42023439408). 展开更多
关键词 adolescents brain-derived neurotrophic factor CHILDREN EXERCISE META-ANALYSIS randomized controlled trials
暂未订购
Brain-derived neurotrophic factor signaling in the neuromuscular junction during developmental axonal competition and synapse elimination
4
作者 Josep Tomàs Víctor Cilleros-Mañé +7 位作者 Laia Just-Borràs Marta Balanyà-Segura Aleksandra Polishchuk Laura Nadal Marta Tomàs Carolina Silvera-Simón Manel M.Santafé Maria A.Lanuza 《Neural Regeneration Research》 SCIE CAS 2025年第2期394-401,共8页
During the development of the nervous system,there is an overproduction of neurons and synapses.Hebbian competition between neighboring nerve endings and synapses performing different activity levels leads to their el... During the development of the nervous system,there is an overproduction of neurons and synapses.Hebbian competition between neighboring nerve endings and synapses performing different activity levels leads to their elimination or strengthening.We have extensively studied the involvement of the brain-derived neurotrophic factor-Tropomyosin-related kinase B receptor neurotrophic retrograde pathway,at the neuromuscular junction,in the axonal development and synapse elimination process versus the synapse consolidation.The purpose of this review is to describe the neurotrophic influence on developmental synapse elimination,in relation to other molecular pathways that we and others have found to regulate this process.In particular,we summarize our published results based on transmitter release analysis and axonal counts to show the different involvement of the presynaptic acetylcholine muscarinic autoreceptors,coupled to downstream serine-threonine protein kinases A and C(PKA and PKC)and voltage-gated calcium channels,at different nerve endings in developmental competition.The dynamic changes that occur simultaneously in several nerve terminals and synapses converge across a postsynaptic site,influence each other,and require careful studies to individualize the mechanisms of specific endings.We describe an activity-dependent balance(related to the extent of transmitter release)between the presynaptic muscarinic subtypes and the neurotrophin-mediated TrkB/p75NTR pathways that can influence the timing and fate of the competitive interactions between the different axon terminals.The downstream displacement of the PKA/PKC activity ratio to lower values,both in competing nerve terminals and at postsynaptic sites,plays a relevant role in controlling the elimination of supernumerary synapses.Finally,calcium entry through L-and P/Q-subtypes of voltage-gated calcium channels(both channels are present,together with the N-type channel in developing nerve terminals)contributes to reduce transmitter release and promote withdrawal of the most unfavorable nerve terminals during elimination(the weakest in acetylcholine release and those that have already become silent).The main findings contribute to a better understanding of punishment-rewarding interactions between nerve endings during development.Identifying the molecular targets and signaling pathways that allow synapse consolidation or withdrawal of synapses in different situations is important for potential therapies in neurodegenerative diseases. 展开更多
关键词 acetylcholine release adenosine receptors axonal competition brain-derived neurotrophic factor calcium channels motor end-plate muscarinic acetylcholine receptors postnatal synapse elimination serine kinases tropomyosin-related kinase receptorB
暂未订购
Brain-derived neurotrophic factor alterations and cognitive decline in schizophrenia:Implications for early intervention
5
作者 Uchenna E Okpete Haewon Byeon 《World Journal of Psychiatry》 SCIE 2025年第1期189-193,共5页
This manuscript explores the recent study by Cui et al which assessed the interplay between inflammatory cytokines and brain-derived neurotrophic factor(BDNF)levels in first-episode schizophrenia patients.The study re... This manuscript explores the recent study by Cui et al which assessed the interplay between inflammatory cytokines and brain-derived neurotrophic factor(BDNF)levels in first-episode schizophrenia patients.The study revealed that higher levels of interleukin-6 and tumor necrosis factor-αcorrelated with reduced BDNF levels and poorer cognitive performance.Schizophrenia is a severe psy-chiatric disorder impacting approximately 1%of the global population,charac-terized by positive symptoms(hallucinations and delusions),negative symptoms(diminished motivation and cognitive impairments)and disorganized thoughts and behaviors.Emerging research highlights the role of BDNF as a potential biomarker for early diagnosis and therapeutic targeting.The findings from Cui et al’s study suggest that targeting neuroinflammation and enhancing BDNF levels may improve cognitive outcomes.Effective treatment approaches involve a com-bination of pharmacological and non-pharmacological interventions tailored to individual patient needs.Hence,monitoring cognitive and neuroinflammatory markers is essential for improving patient outcomes and quality of life.Conse-quently,this manuscript highlights the need for an integrated approach to schizo-phrenia management,considering both clinical symptoms and underlying neuro-biological changes. 展开更多
关键词 SCHIZOPHRENIA Cognitive impairment Neuroinflammatory markers brain-derived neurotrophic factor INTERLEUKIN Personalized treatment
暂未订购
A bibliometric analysis of the relationship between the brain-derived neurotrophic factor and cognitive dysfunction due to alcohol dependence syndrome
6
作者 Lin He Yan Deng +3 位作者 Xin Lyu Rongzhen Cui Jie Han Le Zhang 《Journal of Translational Neuroscience》 2025年第1期30-38,共9页
Objective:To evaluate the global liter-ature output on the relationship between brain-derived neurotrophic factor(BDNF)and cognitive function in al-cohol dependence syndrome using bibliometric methods and explore the ... Objective:To evaluate the global liter-ature output on the relationship between brain-derived neurotrophic factor(BDNF)and cognitive function in al-cohol dependence syndrome using bibliometric methods and explore the status and trends in this field.Method:The literature on the application of BDNF in cognitive impairment caused by alcohol dependence syndrome published from 1995 to 2023 were retrieved from Web of Science,and the relevant information(publication characteristics,country and institution,author,number of publications,citation,journal and research field,corresponding author,key words,etc.)was recorded.The bibliometrix R package was used for quantitative and qualitative analysis of publication output and author contributions.Result:A total of 99 articles were included.The overall number of publications in this field has increased over time.The countries and institutions that contributed the most to the field were the United States and the Academy of Medical Sciences of Iranian universities,respectively.Most of the authors were from the United States,followed by Spain,China,and Iran.Ceccanti M,Fiore M were the most productive authors.Publications with Ceccanti M had the highest h-index.The most cited reference author is Haenninen H(227 citations),and the number one published journal is Alcohol.Most articles were published in 2020(n=12)and 2022(n=11),followed by 2019 and 2021(n=10).The corresponding author has the largest number of publications from the United States,and more publications from a single country tend to have more cooperation from other countries.BDNF and alcohol appeared more frequently in various keyword clouds.However,significant differences remained in the author keyword cloud,keyword plus word cloud,and paper topic word cloud.Conclusion:BDNF has great potential in the application of cognitive dysfunction caused by alcohol dependence syndrome.Bibliometric methods and data visualization techniques can help understand the current state of research progress and enable relevant scholars and practitioners to predict the development trends in this field. 展开更多
关键词 alcohol dependence syndrome cognitive impairment brain-derived neurotrophic factor bibliometric analysis
暂未订购
Overexpression of brain-derived neurotrophic factor in the hippocampus protects against post-stroke depression 被引量:31
7
作者 Hao-hao Chen Ning Zhang +5 位作者 Wei-yun Li Ma-rong Fang Hui Zhang Yuan-shu Fang Ming-xing Ding Xiao-yan Fu 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第9期1427-1432,共6页
Post-stroke depression is associated with reduced expression of brain-derived neurotrophic factor (BDNF). In this study, we evaluated whether BDNF overexpression affects depression-like behavior in a rat model of po... Post-stroke depression is associated with reduced expression of brain-derived neurotrophic factor (BDNF). In this study, we evaluated whether BDNF overexpression affects depression-like behavior in a rat model of post-stroke depression. The middle cerebral artery was occluded to produce a model of focal cerebral ischemia. These rats were then subjected to isolation-housing combined with chronic unpredictable mild stress to generate a model of post-stroke depression. A BDNF gene lentiviral vector was injected into the hippocampus. At 7 days after injection, western blot assay and real-time quantitative PCR revealed that BDNF expression in the hippo- campus was increased in depressive rats injected with BDNF lentivirus compared with depressive rats injected with control vector. Furthermore, sucrose solution consumption was higher, and horizontal and vertical movement scores were increased in the open field test in these rats as well. These findings suggest that BDNF overexpression in the hippocampus of post-stroke depressive rats alleviates depression-like behaviors. 展开更多
关键词 nerve regeneration brain injury brain-derived neurotrophic factor LENTIVIRUS post-strokedepression depression-like behavior HIPPOCAMPUS cerebral ischemia sucrose solution consumption open field test chronic unpredictable mild stress western blot assay neural regeneration
暂未订购
Increased expression of brain-derived neurotrophic factor is correlated with visceral hypersensitivity in patients with diarrheapredominant irritable bowel syndrome 被引量:18
8
作者 Yu Zhang Geng Qin +2 位作者 De-Rong Liu Yan Wang Shu-Kun Yao 《World Journal of Gastroenterology》 SCIE CAS 2019年第2期269-281,共13页
BACKGROUND Visceral hypersensitivity is considered to play a vital role in the pathogenesis of irritable bowel syndrome(IBS). Neurotrophins have drawn much attention in IBS recently. Brain-derived neurotrophic factor(... BACKGROUND Visceral hypersensitivity is considered to play a vital role in the pathogenesis of irritable bowel syndrome(IBS). Neurotrophins have drawn much attention in IBS recently. Brain-derived neurotrophic factor(BDNF) was found to mediate visceral hypersensitivity via facilitating sensory nerve growth in pre-clinical studies. We hypothesized that BDNF might play a role in the pathogenesis of diarrhea-predominant IBS(IBS-D).AIM To investigate BDNF levels in IBS-D patients and its role in IBS-D pathophysiology.METHODS Thirty-one IBS-D patients meeting the Rome IV diagnostic criteria and 20 ageand sex-matched healthy controls were recruited. Clinical and psychological assessments were first conducted using standardized questionnaires. Visceral sensitivity to rectal distension was tested using a high-resolution manometry system. Colonoscopic examination was performed and four mucosal pinch biopsies were taken from the rectosigmoid junction. Mucosal BDNF expression and nerve fiber density were analyzed using immunohistochemistry. Mucosal BDNF mRNA levels were quantified by quantitative real-time polymerase chain reaction. Correlations between these parameters were examined.RESULTS The patients had a higher anxiety score [median(interquartile range), 6.0(2.0-10.0) vs 3.0(1.0-4.0), P = 0.003] and visceral sensitivity index score [54.0(44.0-61.0)vs 21.0(17.3-30.0), P < 0.001] than controls. The defecating sensation threshold[60.0(44.0-80.0) vs 80.0(61.0-100.0), P = 0.009], maximum tolerable threshold[103.0(90.0-128.0) vs 182.0(142.5-209.3), P < 0.001] and rectoanal inhibitory reflex threshold [30.0(20.0-30.0) vs 30.0(30.0-47.5), P = 0.032] were significantly lower in IBS-D patients. Intestinal mucosal BDNF protein [3.46 E-2(3.06 E-2-4.44 E-2) vs3.07 E-2(2.91 E-2-3.48 E-2), P = 0.031] and mRNA [1.57(1.31-2.61) vs 1.09(0.74-1.42), P = 0.001] expression and nerve fiber density [4.12 E-2(3.07 E-2-7.46 E-2) vs1.98 E-2(1.21 E-2-4.25 E-2), P = 0.002] were significantly elevated in the patients.Increased BDNF expression was positively correlated with abdominal pain and disease severity and negatively correlated with visceral sensitivity parameters.CONCLUSION Elevated mucosal BDNF may participate in the pathogenesis of IBS-D via facilitating mucosal nerve growth and increasing visceral sensitivity. 展开更多
关键词 IRRITABLE bowel syndrome DIARRHEA brain-derived NEUROTROPHIC factor VISCERAL HYPERSENSITIVITY Nerve growth
暂未订购
Brain-derived neurotrophic factor and its related enzymes and receptors play important roles after hypoxic-ischemic brain damage 被引量:17
9
作者 Liu-Lin Xiong Jie Chen +7 位作者 Ruo-Lan Du Jia Liu Yan-Jun Chen Mohammed Al Hawwas Xin-Fu Zhou Ting-Hua Wang Si-Jin Yang Xue Bai 《Neural Regeneration Research》 SCIE CAS CSCD 2021年第8期1453-1459,共7页
Brain-derived neurotrophic factor(BDNF) regulates many neurological functions and plays a vital role during the recovery from central nervous system injuries. However, the changes in BDNF expression and associated fac... Brain-derived neurotrophic factor(BDNF) regulates many neurological functions and plays a vital role during the recovery from central nervous system injuries. However, the changes in BDNF expression and associated factors following hypoxia-ischemia induced neonatal brain damage, and the significance of these changes are not fully understood. In the present study, a rat model of hypoxic-ischemic brain damage was established through the occlusion of the right common carotid artery, followed by 2 hours in a hypoxic-ischemic environment. Rats with hypoxic-ischemic brain damage presented deficits in both sensory and motor functions, and obvious pathological changes could be detected in brain tissues. The m RNA expression levels of BDNF and its processing enzymes and receptors(Furin, matrix metallopeptidase 9, tissuetype plasminogen activator, tyrosine Kinase receptor B, plasminogen activator inhibitor-1, and Sortilin) were upregulated in the ipsilateral hippocampus and cerebral cortex 6 hours after injury;however, the expression levels of these m RNAs were found to be downregulated in the contralateral hippocampus and cerebral cortex. These findings suggest that BDNF and its processing enzymes and receptors may play important roles in the pathogenesis and recovery from neonatal hypoxic-ischemic brain damage. This study was approved by the Animal Ethics Committee of the University of South Australia(approval No. U12-18) on July 30, 2018. 展开更多
关键词 brain injury brain-derived neurotrophic factor ENZYME HYPOXIA-ISCHEMIA RECEPTORS recovery repair
暂未订购
Brain-derived neurotrophic factor mediates macrophage migration inhibitory factor to protect neurons against oxygen-glucose deprivation 被引量:16
10
作者 Su Hwan Bae Mi Ran Yoo +4 位作者 Ye Yeong Kim In Kyung Hong Mi Hee Kim Seung Hak Lee Dae Yul Kim 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第8期1483-1489,共7页
Macrophage migration inhibitory factor(MIF)is a chemokine that plays an essential role in immune system function.Previous studies suggested that MIF protects neurons in ischemic conditions.However,few studies are repo... Macrophage migration inhibitory factor(MIF)is a chemokine that plays an essential role in immune system function.Previous studies suggested that MIF protects neurons in ischemic conditions.However,few studies are reported on the role of MIF in neurological recovery after ischemic stroke.The purpose of this study is to identify the molecular mechanism of neuroprotection mediated by MIF.Human neuroblastoma cells were incubated in Dulbecco’s modified Eagle’s medium under oxygen-glucose deprivation(OGD)for 4 hours and then returned to normal aerobic environment for reperfusion(OGD/R).30 ng/mL MIF recombinant(30 ng/mL)or ISO-1(MIF antagonist;50μM)was administered to human neuroblastoma cells.Then cell cultures were assigned to one of four groups:control,OGD/R,OGD/R with MIF,OGD/R with ISO-1.Cell viability was analyzed using WST-1 assay.Expression levels of brain-derived neurotrophic factor(BDNF),microtubule-associated protein 2(MAP2),Caspase-3,Bcl2,and Bax were detected by western blot assay and immunocytochemistry in each group to measure apoptotic activity.WST-1 assay results revealed that compared to the OGD/R group,cell survival rate was significantly higher in the OGD/R with MIF group and lower in the OGD/R with ISO-1 group.Western blot assay and immunocytochemistry results revealed that expression levels of BDNF,Bcl2,and MAP2 were significantly higher,and expression levels of Caspase-3 and Bax were significantly lower in the MIF group than in the OGD/R group.Expression levels of BDNF,Bcl2,and MAP2 were significantly lower,and expression levels of Caspase-3 and Bax were significantly higher in the ISO-1 group than in the OGD/R group.MIF administration promoted neuronal cell survival and induced high expression levels of BDNF,MAP2,and Bcl2(anti-apoptosis)and low expression levels of Caspase-3 and Bax(pro-apoptosis)in an OGD/R model.These results suggest that MIF administration is effective for inducing expression of BDNF and leads to neuroprotection of neuronal cells against hypoxic injury. 展开更多
关键词 apoptosis brain-derived neurotrophic factor HYPOXIA in vitro ischemic stroke macrophage migration inhibitory factor nerve regeneration neuroprotective effect REPERFUSION
暂未订购
Gastrodin promotes the secretion of brain-derived neurotrophic factor in the injured spinal cord 被引量:16
11
作者 Changwei Song Shiqiang Fang +1 位作者 Gang Lv Xifan Mei 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第15期1383-1389,共7页
Gastrodin, an active component of tall gastrodia tuber, is widely used in the treatment of dizziness, paralysis, epilepsy, stroke and dementia, and exhibits a neuroprotective effect. A rat model of spinal cord injury ... Gastrodin, an active component of tall gastrodia tuber, is widely used in the treatment of dizziness, paralysis, epilepsy, stroke and dementia, and exhibits a neuroprotective effect. A rat model of spinal cord injury was established using Allen's method, and gastrodin was administered via the subarachnoid cavity and by intraperitoneal injection for 7 days. Results show that gastrodin promoted the secretion of brain-derived neurotrophic factor in rats with spinal cord injury. After gastrodin treatment, the maximum angle of the inclined plane test, and the Basso, Beattie and Bresnahan scores increased. Moreover, gastrodin improved neural tissue recovery in the injured spinal cord. These results demonstrate that gastrodin promotes the secretion of brain-derived neurotrophic factor, contributes to the recovery of neurological function, and protects neural cells against injury. 展开更多
关键词 neural regeneration spinal cord injury GASTRODIN brain-derived neurotrophic factor microenvironment traditional Chinese medicine spinal structure animal behavior central nervoussystem injury grants-supported paper NEUROREGENERATION
暂未订购
New insight in expression, transport, and secretion of brain-derived neurotrophic factor: Implications in brainrelated diseases 被引量:31
12
作者 Naoki Adachi Tadahiro Numakawa +2 位作者 Misty Richards Shingo Nakajima Hiroshi Kunugi 《World Journal of Biological Chemistry》 CAS 2014年第4期409-428,共20页
Brain-derived neurotrophic factor(BDNF) attracts increasing attention from both research and clinical fields because of its important functions in the central nervous system. An adequate amount of BDNF is critical to ... Brain-derived neurotrophic factor(BDNF) attracts increasing attention from both research and clinical fields because of its important functions in the central nervous system. An adequate amount of BDNF is critical to develop and maintain normal neuronal circuits in the brain. Given that loss of BDNF function has beenreported in the brains of patients with neurodegenerative or psychiatric diseases, understanding basic properties of BDNF and associated intracellular processes is imperative. In this review, we revisit the gene structure, transcription, translation, transport and secretion mechanisms of BDNF. We also introduce implications of BDNF in several brain-related diseases including Alzheimer's disease, Huntington's disease, depression and schizophrenia. 展开更多
关键词 brain-derived NEUROTROPHIC factor Transcription TRANSPORT SECRETION NEURODEGENERATIVE DISORDERS Psychiatric DISORDERS
暂未订购
Bushenhuoxue improves cognitive function and activates brain-derived neurotrophic factor-mediated signaling in a rat model of vascular dementia 被引量:10
13
作者 Wang Wei Zhang Yixin +6 位作者 Yu Wentao Gao Weijuan Shen Ning Jin Bing Wang Xiangting Fang Chaoyi Wang Yanjun 《Journal of Traditional Chinese Medicine》 SCIE CAS CSCD 2020年第1期49-58,共10页
OBJECTIVE:To explore the protective mechanisms of the Traditional Chinese Medicine Bushenhuoxue(BSHX)in a rat model of vascular dementia(VD).METHODS:A rat model of VD was developed using bilateral common carotid arter... OBJECTIVE:To explore the protective mechanisms of the Traditional Chinese Medicine Bushenhuoxue(BSHX)in a rat model of vascular dementia(VD).METHODS:A rat model of VD was developed using bilateral common carotid artery occlusion(BCCAO).Rats were administered BSHX(10.14 or 5.07 g/kg),nimodipine(11.06 mg/kg;positive control),or saline(control)by gavage daily for 30 d post-surgery.Learning and memory abilities were assessed using the Morris water maze.Morphological changes in the hippocampus were observed using light microscopy(hematoxylin and eosin staining)and transmission electron microscopy(TEM).The m RNA and protein expression levels of brain-derived neurotrophic factor(BDNF),tyrosine receptor kinase B(Trk B),phosphatidyl inositol 3-kinase(PI3 K),serine/threonine kinase(AKT),and c AMP response element binding protein(CREB)were measured by real-time polymerase chain reaction(RT-PCR)and Western blot,respectively.RESULTS:Compared with the sham group,rats with BCCAO exhibited impaired learning and memory abilities(Morris water maze)and showed abnormalities in neuronal morphology(light microscopy)and ultrastructure(TEM)in the hippocampus.They also had decreased m RNA and protein expressions of BDNF,Trk B,PI3 K,AKT,and CREB in hippocampal tissue(all P<0.05).In rats with BCCAO,administration of BSHX attenuated deficits in learning and memory,improved the morphology and ultrastructure of hippocampal neurons,and enhanced m RNA and protein expression levels of BDNF,Trk B,PI3 K,AKT,and CREB(all P<0.05).CONCLUSION:BSHX may protect hippocampal neurons and improve learning and memory abilities,at least in part via the activation of BDNF/Trk B/PI3 K/AKT/CREB signaling. 展开更多
关键词 Dementia vascular brain-derived NEUROTROPHIC factor PHOSPHATIDYLINOSITOL 3-kinase Protein serine-threonine KINASES Bushenhuoxue prescription
原文传递
Neural stem cells over-expressing brain-derived neurotrophic factor promote neuronal survival and cytoskeletal protein expression in traumatic brain injury sites 被引量:10
14
作者 Tao Chen Yan Yu +5 位作者 Liu-jiu Tang Li Kong Cheng-hong Zhang Hai-ying Chu Liang-wei Yin Hai-ying Ma 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第3期433-439,共7页
Cytoskeletal proteins are involved in neuronal survival.Brain-derived neurotrophic factor can increase expression of cytoskeletal proteins during regeneration after axonal injury.However,the effect of neural stem cell... Cytoskeletal proteins are involved in neuronal survival.Brain-derived neurotrophic factor can increase expression of cytoskeletal proteins during regeneration after axonal injury.However,the effect of neural stem cells genetically modified by brain-derived neurotrophic factor transplantation on neuronal survival in the injury site still remains unclear.To examine this,we established a rat model of traumatic brain injury by controlled cortical impact.At 72 hours after injury,2 × 10~7 cells/m L neural stem cells overexpressing brain-derived neurotrophic factor or naive neural stem cells(3 m L) were injected into the injured cortex.At 1–3 weeks after transplantation,expression of neurofilament 200,microtubule-associated protein 2,actin,calmodulin,and beta-catenin were remarkably increased in the injury sites.These findings confirm that brain-derived neurotrophic factor-transfected neural stem cells contribute to neuronal survival,growth,and differentiation in the injury sites.The underlying mechanisms may be associated with increased expression of cytoskeletal proteins and the Wnt/β-catenin signaling pathway. 展开更多
关键词 nerve regeneration brain-derived neurotrophic factor neural stem cells transfect differentiation traumatic brain injury CYTOSKELETON NEUROFILAMENT microtubule-associated proteins CALMODULIN Wnt/β-catenin neural regeneration
暂未订购
Three important components in the regeneration of the cavernous nerve: brain-derived neurotrophic factor, vascular endothelial growth factor and the JAK/STAT signaling pathway 被引量:12
15
作者 Hai-Yang Zhang Xun-Bo Jin Tom Flue 《Asian Journal of Andrology》 SCIE CAS CSCD 2011年第2期231-235,共5页
Retroperitoneal operations, such as radical prostatectomy, often damage the cavernous nerve, resulting in a high incidence of erectile dysfunction. Although improved nerve-sparing techniques have reduced the incidence... Retroperitoneal operations, such as radical prostatectomy, often damage the cavernous nerve, resulting in a high incidence of erectile dysfunction. Although improved nerve-sparing techniques have reduced the incidence of nerve injury, and the administration of phosphodiesterase type 5 inhibitors has revolutionized the treatment of erectile dysfunction, this problem remains a considerable challenge. In recent years, scientists have focused on brain-derived neurotrophic factor and vascular endothelial growth factor in the treatment of cavernous nerve injury in rat models. Results showed that both compounds were capable of enhancing the regeneration of the cavernous nerve and that activation of the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway played a major role in the process. 展开更多
关键词 brain-derived neurotrophic factor erectile dysfunction Janus kinase signal transducer and activator of transcription vascular endothelial growth factor
在线阅读 下载PDF
Effect of Transcranial Magnetic Stimulation on the Expression of c-Fos and Brain-derived Neurotrophic Factor of the Cerebral Cortex in Rats with Cerebral Infarct 被引量:14
16
作者 张小乔 梅元武 +1 位作者 刘传玉 俞善纯 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2007年第4期415-418,共4页
The effect of transcranial magnetic stimulation (TMS) on the neurological functional recovery and expression of c-Fos and brain-derived neurotrophic factor (BDNF) of the cerebral cortex in rats with cerebral infar... The effect of transcranial magnetic stimulation (TMS) on the neurological functional recovery and expression of c-Fos and brain-derived neurotrophic factor (BDNF) of the cerebral cortex in rats with cerebral infarction was investigated. Cerebral infarction models were established by using left middle cerebral artery occlusion (MCAO) and were randomly divided into a model group (n=40) and a TMS group (n=40). TMS treatment (2 times per day, 30 pulses per time) with a frequency of 0.5 Hz and magnetic field intensity of 1.33 Tesla was carried out in TMS group after MCAO. Modified neurological severity score (NSS) were recorded before and 1, 7, 14, 21, and 28 day(s) after MCAO. The expression of c-Fos and BDNF was immunohistochemically detected 1, 7, 14, 21, and 28 day(s) after infarction respectively. Our results showed that a significant recovery of NSS (P〈0.05) was found in animals treated by TMS on day 7, 14, 21, and 28 as compared with the animals in the model group. The positive expression of c-Fos and BDNF was detected in the cortex surrounding the infarction areas, while the expression of c-Fos and BDNF increased significantly in TMS treatment group in comparison with those in model group 7, 14, 21, and 28 days (P〈0.05) and 7 14, 21 days (P〈0.01) after infarction, respectively. It is concluded that TMS has therapeutic effect on cerebral infarction and this may have something to do with TMS's ability to promote the expression of c-Fos and BDNF of the cerebral cortex in rats with cerebral infarction. 展开更多
关键词 transcranial magnetic stimulation cerebral infarction neurological function C-FOS brain-derived neurotrophic factor
暂未订购
An enriched environment increases the expression of fibronectin type Ⅲ domain-containing protein 5 and brain-derived neurotrophic factor in the cerebral cortex of the ischemic mouse brain 被引量:12
17
作者 Ke-Wei Yu Chuan-Jie Wang +7 位作者 Yi Wu Yu-Yang Wang Nian-Hong Wang Shen-Yi Kuang Gang Liu Hong-Yu Xie Cong-Yu Jiang Jun-Fa Wu 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第9期1671-1677,共7页
Many studies have shown that fibronectin type III domain-containing protein 5(FDNC5) and brain-derived neurotrophic factor(BDNF) play vital roles in plasticity after brain injury. An enriched environment refers to an ... Many studies have shown that fibronectin type III domain-containing protein 5(FDNC5) and brain-derived neurotrophic factor(BDNF) play vital roles in plasticity after brain injury. An enriched environment refers to an environment that provides animals with multi-sensory stimulation and movement opportunities. An enriched environment has been shown to promote the regeneration of nerve cells, synapses, and blood vessels in the animal brain after cerebral ischemia;however, the exact mechanisms have not been clarified. This study aimed to determine whether an enriched environment could improve neurobehavioral functions after the experimental inducement of cerebral ischemia and whether neurobehavioral outcomes were associated with the expression of FDNC5 and BDNF. This study established ischemic mouse models using permanent middle cerebral artery occlusion(pMCAO) on the left side. On postoperative day 1, the mice were randomly assigned to either enriched environment or standard housing condition groups. Mice in the standard housing condition group were housed and fed under standard conditions. Mice in the enriched environment group were housed in a large cage, containing various toys, and fed with a standard diet. Sham-operated mice received the same procedure, but without artery occlusion, and were housed and fed under standard conditions. On postoperative days 7 and 14, a beam-walking test was used to assess coordination, balance, and spatial learning. On postoperative days 16–20, a Morris water maze test was used to assess spatial learning and memory. On postoperative day 15, the expression levels of FDNC5 and BDNF proteins in the ipsilateral cerebral cortex were analyzed by western blot assay. The results showed that compared with the standard housing condition group, the motor balance and coordination functions(based on beam-walking test scores 7 and 14 days after operation), spatial learning abilities(based on the spatial learning scores from the Morris water maze test 16–19 days after operation), and memory abilities(based on the memory scores of the Morris water maze test 20 days after operation) of the enriched environment group improved significantly. In addition, the expression levels of FDNC5 and BDNF proteins in the ipsilateral cerebral cortex increased in the enriched environment group compared with those in the standard housing condition group. Furthermore, the Pearson correlation coefficient showed that neurobehavioral functions were positively associated with the expression levels of FDNC5 and BDNF(r = 0.587 and r = 0.840, respectively). These findings suggest that an enriched environment upregulates FDNC5 protein expression in the ipsilateral cerebral cortex after cerebral ischemia, which then activates BDNF protein expression, improving neurological function. BDNF protein expression was positively correlated with improved neurological function. The experimental protocols were approved by the Institutional Animal Care and Use Committee of Fudan University, China(approval Nos. 20160858 A232, 20160860 A234) on February 24, 2016. 展开更多
关键词 beam-walking test brain-derived neurotrophic factor cerebral ischemia correlation analysis enriched environment fibronectin typeⅢdomain-containing protein 5 Morris water maze task neural plasticity NEUROPROTECTION permanent middle cerebral artery occlusion
暂未订购
Differences in brain-derived neurotrophic factor gene polymorphisms between acute ischemic stroke patients and healthy controls in the Han population of southwest China 被引量:7
18
作者 Jie Zhou Meng-Meng Ma +4 位作者 Jing-Huan Fang Lei Zhao Mu-Ke Zhou Jian Guo Li He 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第8期1404-1411,共8页
Single-nucleotide polymorphisms in the brain-derived neurotrophic factor gene may affect the secretion and function of brain-derived neurotrophic factor, thereby affecting the occurrence, severity and prognosis of isc... Single-nucleotide polymorphisms in the brain-derived neurotrophic factor gene may affect the secretion and function of brain-derived neurotrophic factor, thereby affecting the occurrence, severity and prognosis of ischemic stroke. This case-control study included 778 patients (475 males and 303 females, mean age of 64.0 ± 12.6 years) in the acute phase of ischemic stroke and 865 control subjects (438 males and 427 females, mean age of 51.7 ± 14.7 years) from the Department of Neurology, Wes: China Hospital, Sichuan University, China between September 2011 and December 2014. The patients' severities of neurological defici:s in the acute phase were assessed using the National Institutes of Health Stroke Scale immediately after admission to hospital. The ischemic stroke patients were divided into different subtypes according to the Trial of Org 10172 in Acute Stroke Treatment classification. Early prognosis was evaluated using the Modified Rankin Scale when the patients were discharged. Genomic DNA was extracted from peripheral blood of participants. Genotyping of rs7124442 and rs6265 was performed using Kompetitive Allele Specific polymerase chain reaction genotyping technology. Our results demonstrated that patients who carried the C allele of the rs7124442 locus had a lower risk of poor prognosis than the T allele carriers (odds ratio [OR]= 0.67;95% confidence interval [CI]: 0.45-1.00;P = 0.048). The patients with the CC or TC genotype also exhibited lower risk than TT carriers (OR = 0.65;95% CI: 0.42-1.00;P = 0.049). The AA genotype at the rs6265 locus was associated with the occurrence of ischemic stroke in patients with large-artery atherosclerosis (OR = 0.5& 95% CI: 0.37-0.90;P = 0.015). We found that the C allele (CC and TC genotypes) at the rs7124442 locus may be protective for the prognosis of ischemic stroke. The AA genotype at the rs6265 locus is likely a protective factor against the occurrence of ischemic stroke in patients with large-artery atherosclerosis. The study protocol was approved by the Ethics Committee of West China Hospital of Sichuan University, China (approval ID number 2008,4]) on July 25, 2008. 展开更多
关键词 nerve REGENERATION ischemic STROKE brain-derived NEUROTROPHIC factor single-nucleotide polymorphism risk STROKE severity prognosis rs6265 rs7124442 neural REGENERATION
暂未订购
Brain-derived neurotrophic factor plasma levels and premature cognitive impairment/dementia in type 2 diabetes 被引量:8
19
作者 Blanca Murillo Ortíz Joel Ramírez Emiliano +4 位作者 Edna Ramos-Rodríguez Sandra Martínez-Garza Hilda Macías-Cervantes Sergio Solorio-Meza Texar Alfonso Pereyra-Nobara 《World Journal of Diabetes》 SCIE CAS 2016年第20期615-620,共6页
AIM To assess the relationship of brain-derived neurotrophic factor(BDNF) with cognitive impairment in patients with type 2 diabetes. METHODS The study included 40 patients with diabetes mellitus type 2(DM2), 37 patie... AIM To assess the relationship of brain-derived neurotrophic factor(BDNF) with cognitive impairment in patients with type 2 diabetes. METHODS The study included 40 patients with diabetes mellitus type 2(DM2), 37 patients with chronic kidney disease in hem dialysis hemodialysis therapy(HD) and 40 healthy subjects. BDNF in serum was quantified by ELISA. The Folstein Mini-Mental State Examination was used to evaluate cognitive impairment.RESULTS The patients with DM2 and the patients in HD were categorized into two groups, with cognitive impairment and without cognitive impairment. The levels of BDNF showed significant differences between patients with DM2(43.78 ± 9.05 vs 31.55 ± 10.24, P = 0.005). There were no differences between patients in HD(11.39 ± 8.87 vs 11.11 ± 10.64 P = 0.77); interestingly, ferritin levels were higher in patients with cognitive impairment(1564 ± 1335 vs 664 ± 484 P = 0.001). The comparison of BDNF values, using a Kruskal Wallis test, between patients with DM2, in HD and healthy controls showed statistical differences(P < 0.001).CONCLUSION Low levels of BDNF are associated with cognitive impairment in patients with DM2. The decrease of BDNF occurs early and progressively in patients in HD. 展开更多
关键词 Diabetes MELLITUS type 2 HEMODIALYSIS brain-derived NEUROTROPHIC factor Folstein mini-mental PREMATURE cognitive IMPAIRMENT
暂未订购
Non-viral liposome-mediated transfer of brain-derived neurotrophic factor across the blood-brain barrier 被引量:8
20
作者 Ying Xing Chun-yan Wen +1 位作者 Song-tao Li Zong-xin Xia 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第4期617-622,共6页
Brain-derived neurotrophic factor(BDNF)plays an important role in the repair of central nervous system injury,but cannot directly traverse the blood-brain barrier.Liposomes are a new type of non-viral vector,able to c... Brain-derived neurotrophic factor(BDNF)plays an important role in the repair of central nervous system injury,but cannot directly traverse the blood-brain barrier.Liposomes are a new type of non-viral vector,able to carry macromolecules across the blood-brain barrier and into the brain.Here,we investigate whether BDNF could be transported across the blood-brain barrier by tail-vein injection of liposomes conjugated to transferrin(Tf)and polyethylene glycol(PEG),and carrying BDNF modified with cytomegalovirus promoter(pC MV)or glial fibrillary acidic protein promoter(p GFAP)(Tf-p CMV-BDNF-PEG and Tf-p GFAP-BDNF-PEG,respectively).Both liposomes were able to traverse the blood-brain barrier,and BDNF was mainly expressed in the cerebral cortex.BDNF expression in the cerebral cortex was higher in the Tf-p GFAP-BDNF-PEG group than in the Tf-p CMV-BDNF-PEG group.This study demonstrates the successful construction of a non-virus targeted liposome,Tf-p GFAP-BDNF-PEG,which crosses the blood-brain barrier and is distributed in the cerebral cortex.Our work provides an experimental basis for BDNF-related targeted drug delivery in the brain. 展开更多
关键词 nerve regeneration brain injury brain-derived neurotrophicfactor liposomes targeting vector TRANSFECTION hippocampus CORTEX encapsulation efficiency blood-brain barrier TRANSFERRIN glialfibrillary acidic protein polyethylene g&coh neural regeneration
暂未订购
上一页 1 2 15 下一页 到第
使用帮助 返回顶部