It's that time of the year again. As millions of his peers anxiously await the results of their university entrance examinations, the successful investment analyst and author of Essentials of Speculation on Stocks an...It's that time of the year again. As millions of his peers anxiously await the results of their university entrance examinations, the successful investment analyst and author of Essentials of Speculation on Stocks and Futures is busy working out a kink in his 5-million-yuan portfolio.展开更多
Accurate and efficient brain tumor segmentation is essential for early diagnosis,treatment planning,and clinical decision-making.However,the complex structure of brain anatomy and the heterogeneous nature of tumors pr...Accurate and efficient brain tumor segmentation is essential for early diagnosis,treatment planning,and clinical decision-making.However,the complex structure of brain anatomy and the heterogeneous nature of tumors present significant challenges for precise anomaly detection.While U-Net-based architectures have demonstrated strong performance in medical image segmentation,there remains room for improvement in feature extraction and localization accuracy.In this study,we propose a novel hybrid model designed to enhance 3D brain tumor segmentation.The architecture incorporates a 3D ResNet encoder known for mitigating the vanishing gradient problem and a 3D U-Net decoder.Additionally,to enhance the model’s generalization ability,Squeeze and Excitation attention mechanism is integrated.We introduce Gabor filter banks into the encoder to further strengthen the model’s ability to extract robust and transformation-invariant features from the complex and irregular shapes typical in medical imaging.This approach,which is not well explored in current U-Net-based segmentation frameworks,provides a unique advantage by enhancing texture-aware feature representation.Specifically,Gabor filters help extract distinctive low-level texture features,reducing the effects of texture interference and facilitating faster convergence during the early stages of training.Our model achieved Dice scores of 0.881,0.846,and 0.819 for Whole Tumor(WT),Tumor Core(TC),and Enhancing Tumor(ET),respectively,on the BraTS 2020 dataset.Cross-validation on the BraTS 2021 dataset further confirmed the model’s robustness,yielding Dice score values of 0.887 for WT,0.856 for TC,and 0.824 for ET.The proposed model outperforms several state-of-the-art existing models,particularly in accurately identifying small and complex tumor regions.Extensive evaluations suggest integrating advanced preprocessing with an attention-augmented hybrid architecture offers significant potential for reliable and clinically valuable brain tumor segmentation.展开更多
Brain tumors present significant challenges in medical diagnosis and treatment,where early detection is crucial for reducing morbidity and mortality rates.This research introduces a novel deep learning model,the Progr...Brain tumors present significant challenges in medical diagnosis and treatment,where early detection is crucial for reducing morbidity and mortality rates.This research introduces a novel deep learning model,the Progressive Layered U-Net(PLU-Net),designed to improve brain tumor segmentation accuracy from Magnetic Resonance Imaging(MRI)scans.The PLU-Net extends the standard U-Net architecture by incorporating progressive layering,attention mechanisms,and multi-scale data augmentation.The progressive layering involves a cascaded structure that refines segmentation masks across multiple stages,allowing the model to capture features at different scales and resolutions.Attention gates within the convolutional layers selectively focus on relevant features while suppressing irrelevant ones,enhancing the model's ability to delineate tumor boundaries.Additionally,multi-scale data augmentation techniques increase the diversity of training data and boost the model's generalization capabilities.Evaluated on the BraTS 2021 dataset,the PLU-Net achieved state-of-the-art performance with a dice coefficient of 0.91,specificity of 0.92,sensitivity of 0.89,Hausdorff95 of 2.5,outperforming other modified U-Net architectures in segmentation accuracy.These results underscore the effectiveness of the PLU-Net in improving brain tumor segmentation from MRI scans,supporting clinicians in early diagnosis,treatment planning,and the development of new therapies.展开更多
Accurate brain tumour segmentation is critical for diagnosis and treatment planning, yet challenging due to tumour complexity. Manual segmentation is time-consuming and variable, necessitating automated methods. Deep ...Accurate brain tumour segmentation is critical for diagnosis and treatment planning, yet challenging due to tumour complexity. Manual segmentation is time-consuming and variable, necessitating automated methods. Deep learning, particularly 3D U-Net architectures, has revolutionised medical image analysis by leveraging volumetric data to capture spatial context, enhancing segmentation accuracy. This paper reviews brain tumour segmentation methods, emphasising 3D U-Net advancements. We analyse contributions from the Brain Tumour Segmentation (BraTS) challenges (2014-2023), highlighting key improvements and persistent challenges, including tumour heterogeneity, limited annotated data, varied imaging protocols, computational constraints, and model generalisation. Unlike previous reviews, we synthesise these challenges, proposing targeted research directions: enhancing model robustness through domain adaptation and multi-institutional data sharing, developing lightweight architectures for clinical deployment, integrating multi-modal and clinical data, and incorporating explainability techniques to build clinician trust. By addressing these challenges, we aim to guide future research toward developing more robust, generalisable, and clinically applicable segmentation models, ultimately improving patient outcomes in neuro-oncology.展开更多
Brain tumors are considered as most fatal cancers.To reduce the risk of death,early identification of the disease is required.One of the best available methods to evaluate brain tumors is Magnetic resonance Images(MRI...Brain tumors are considered as most fatal cancers.To reduce the risk of death,early identification of the disease is required.One of the best available methods to evaluate brain tumors is Magnetic resonance Images(MRI).Brain tumor detection and segmentation are tough as brain tumors may vary in size,shape,and location.That makes manual detection of brain tumors by exploring MRI a tedious job for radiologists and doctors’.So an automated brain tumor detection and segmentation is required.This work suggests a Region-based Convolution Neural Network(RCNN)approach for automated brain tumor identification and segmentation using MR images,which helps solve the difficulties of brain tumor identification efficiently and accurately.Our methodology is based on the accurate and efficient selection of tumorous areas.That reduces computational complexity and time.We have validated the designed experimental setup on a standard dataset,BraTS 2020.We used binary evaluation matrices based on Dice Similarity Coefficient(DSC)and Mean Average Precision(mAP).The segmentation results are compared with state-of-the-art methodologies to demonstrate the effectiveness of the proposed method.The suggested approach attained an averageDSC of 0.92 andmAP 0.92 for 10 patients,while on the whole dataset,the scores are DSC 0.89 and mAP 0.90.The following results clearly show the performance efficiency of the proposed methodology.展开更多
Brain tumor is one of the most dreadful worldwide types of cancer and affects people leading to death.Magnetic resonance imaging methods capture skull images that contain healthy and affected tissue.Radiologists check...Brain tumor is one of the most dreadful worldwide types of cancer and affects people leading to death.Magnetic resonance imaging methods capture skull images that contain healthy and affected tissue.Radiologists checked the affected tissue in the slice-by-slice manner,which was timeconsuming and hectic task.Therefore,auto segmentation of the affected part is needed to facilitate radiologists.Therefore,we have considered a hybrid model that inherits the convolutional neural network(CNN)properties to the support vector machine(SVM)for the auto-segmented brain tumor region.The CNN model is initially used to detect brain tumors,while SVM is integrated to segment the tumor region correctly.The proposed method was evaluated on a publicly available BraTS2020 dataset.The statistical parameters used in this work for the mathematical measures are precision,accuracy,specificity,sensitivity,and dice coefficient.Overall,our method achieved an accuracy value of 0.98,which is most prominent than existing techniques.Moreover,the proposed approach is more suitable for medical experts to diagnose the early stages of the brain tumor.展开更多
文摘It's that time of the year again. As millions of his peers anxiously await the results of their university entrance examinations, the successful investment analyst and author of Essentials of Speculation on Stocks and Futures is busy working out a kink in his 5-million-yuan portfolio.
基金the National Science and Technology Council(NSTC)of the Republic of China,Taiwan,for financially supporting this research under Contract No.NSTC 112-2637-M-131-001.
文摘Accurate and efficient brain tumor segmentation is essential for early diagnosis,treatment planning,and clinical decision-making.However,the complex structure of brain anatomy and the heterogeneous nature of tumors present significant challenges for precise anomaly detection.While U-Net-based architectures have demonstrated strong performance in medical image segmentation,there remains room for improvement in feature extraction and localization accuracy.In this study,we propose a novel hybrid model designed to enhance 3D brain tumor segmentation.The architecture incorporates a 3D ResNet encoder known for mitigating the vanishing gradient problem and a 3D U-Net decoder.Additionally,to enhance the model’s generalization ability,Squeeze and Excitation attention mechanism is integrated.We introduce Gabor filter banks into the encoder to further strengthen the model’s ability to extract robust and transformation-invariant features from the complex and irregular shapes typical in medical imaging.This approach,which is not well explored in current U-Net-based segmentation frameworks,provides a unique advantage by enhancing texture-aware feature representation.Specifically,Gabor filters help extract distinctive low-level texture features,reducing the effects of texture interference and facilitating faster convergence during the early stages of training.Our model achieved Dice scores of 0.881,0.846,and 0.819 for Whole Tumor(WT),Tumor Core(TC),and Enhancing Tumor(ET),respectively,on the BraTS 2020 dataset.Cross-validation on the BraTS 2021 dataset further confirmed the model’s robustness,yielding Dice score values of 0.887 for WT,0.856 for TC,and 0.824 for ET.The proposed model outperforms several state-of-the-art existing models,particularly in accurately identifying small and complex tumor regions.Extensive evaluations suggest integrating advanced preprocessing with an attention-augmented hybrid architecture offers significant potential for reliable and clinically valuable brain tumor segmentation.
文摘Brain tumors present significant challenges in medical diagnosis and treatment,where early detection is crucial for reducing morbidity and mortality rates.This research introduces a novel deep learning model,the Progressive Layered U-Net(PLU-Net),designed to improve brain tumor segmentation accuracy from Magnetic Resonance Imaging(MRI)scans.The PLU-Net extends the standard U-Net architecture by incorporating progressive layering,attention mechanisms,and multi-scale data augmentation.The progressive layering involves a cascaded structure that refines segmentation masks across multiple stages,allowing the model to capture features at different scales and resolutions.Attention gates within the convolutional layers selectively focus on relevant features while suppressing irrelevant ones,enhancing the model's ability to delineate tumor boundaries.Additionally,multi-scale data augmentation techniques increase the diversity of training data and boost the model's generalization capabilities.Evaluated on the BraTS 2021 dataset,the PLU-Net achieved state-of-the-art performance with a dice coefficient of 0.91,specificity of 0.92,sensitivity of 0.89,Hausdorff95 of 2.5,outperforming other modified U-Net architectures in segmentation accuracy.These results underscore the effectiveness of the PLU-Net in improving brain tumor segmentation from MRI scans,supporting clinicians in early diagnosis,treatment planning,and the development of new therapies.
文摘Accurate brain tumour segmentation is critical for diagnosis and treatment planning, yet challenging due to tumour complexity. Manual segmentation is time-consuming and variable, necessitating automated methods. Deep learning, particularly 3D U-Net architectures, has revolutionised medical image analysis by leveraging volumetric data to capture spatial context, enhancing segmentation accuracy. This paper reviews brain tumour segmentation methods, emphasising 3D U-Net advancements. We analyse contributions from the Brain Tumour Segmentation (BraTS) challenges (2014-2023), highlighting key improvements and persistent challenges, including tumour heterogeneity, limited annotated data, varied imaging protocols, computational constraints, and model generalisation. Unlike previous reviews, we synthesise these challenges, proposing targeted research directions: enhancing model robustness through domain adaptation and multi-institutional data sharing, developing lightweight architectures for clinical deployment, integrating multi-modal and clinical data, and incorporating explainability techniques to build clinician trust. By addressing these challenges, we aim to guide future research toward developing more robust, generalisable, and clinically applicable segmentation models, ultimately improving patient outcomes in neuro-oncology.
基金This work was funded by the Ministry of Education under Grant NRF-2019R1A2C1006159Grant NRF-2021R1A6A1A03039493。
文摘Brain tumors are considered as most fatal cancers.To reduce the risk of death,early identification of the disease is required.One of the best available methods to evaluate brain tumors is Magnetic resonance Images(MRI).Brain tumor detection and segmentation are tough as brain tumors may vary in size,shape,and location.That makes manual detection of brain tumors by exploring MRI a tedious job for radiologists and doctors’.So an automated brain tumor detection and segmentation is required.This work suggests a Region-based Convolution Neural Network(RCNN)approach for automated brain tumor identification and segmentation using MR images,which helps solve the difficulties of brain tumor identification efficiently and accurately.Our methodology is based on the accurate and efficient selection of tumorous areas.That reduces computational complexity and time.We have validated the designed experimental setup on a standard dataset,BraTS 2020.We used binary evaluation matrices based on Dice Similarity Coefficient(DSC)and Mean Average Precision(mAP).The segmentation results are compared with state-of-the-art methodologies to demonstrate the effectiveness of the proposed method.The suggested approach attained an averageDSC of 0.92 andmAP 0.92 for 10 patients,while on the whole dataset,the scores are DSC 0.89 and mAP 0.90.The following results clearly show the performance efficiency of the proposed methodology.
基金Authors would like to acknowledge the support of the Deputy for Research and Innovation-Ministry of Education,Kingdom of Saudi Arabia for funding this research through a Project(NU/IFC/ENT/01/014)under the institutional funding committee at Najran University,Kingdom of Saudi Arabia.
文摘Brain tumor is one of the most dreadful worldwide types of cancer and affects people leading to death.Magnetic resonance imaging methods capture skull images that contain healthy and affected tissue.Radiologists checked the affected tissue in the slice-by-slice manner,which was timeconsuming and hectic task.Therefore,auto segmentation of the affected part is needed to facilitate radiologists.Therefore,we have considered a hybrid model that inherits the convolutional neural network(CNN)properties to the support vector machine(SVM)for the auto-segmented brain tumor region.The CNN model is initially used to detect brain tumors,while SVM is integrated to segment the tumor region correctly.The proposed method was evaluated on a publicly available BraTS2020 dataset.The statistical parameters used in this work for the mathematical measures are precision,accuracy,specificity,sensitivity,and dice coefficient.Overall,our method achieved an accuracy value of 0.98,which is most prominent than existing techniques.Moreover,the proposed approach is more suitable for medical experts to diagnose the early stages of the brain tumor.