期刊文献+
共找到3,733篇文章
< 1 2 187 >
每页显示 20 50 100
Application of Bayesian regularized BP neural network model for analysis of aquatic ecological data—A case study of chlorophyll-a prediction in Nanzui water area of Dongting Lake 被引量:5
1
作者 XU Min ZENG Guang-ming +3 位作者 XU Xin-yi HUANG Guo-he SUN Wei JIANG Xiao-yun 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2005年第6期946-952,共7页
Bayesian regularized BP neural network(BRBPNN) technique was applied in the chlorophyll-α prediction of Nanzui water area in Dongting Lake. Through BP network interpolation method, the input and output samples of t... Bayesian regularized BP neural network(BRBPNN) technique was applied in the chlorophyll-α prediction of Nanzui water area in Dongting Lake. Through BP network interpolation method, the input and output samples of the network were obtained. After the selection of input variables using stepwise/multiple linear regression method in SPSS i1.0 software, the BRBPNN model was established between chlorophyll-α and environmental parameters, biological parameters. The achieved optimal network structure was 3-11-1 with the correlation coefficients and the mean square errors for the training set and the test set as 0.999 and 0.000?8426, 0.981 and 0.0216 respectively. The sum of square weights between each input neuron and the hidden layer of optimal BRBPNN models of different structures indicated that the effect of individual input parameter on chlorophyll- α declined in the order of alga amount 〉 secchi disc depth(SD) 〉 electrical conductivity (EC). Additionally, it also demonstrated that the contributions of these three factors were the maximal for the change of chlorophyll-α concentration, total phosphorus(TP) and total nitrogen(TN) were the minimal. All the results showed that BRBPNN model was capable of automated regularization parameter selection and thus it may ensure the excellent generation ability and robustness. Thus, this study laid the foundation for the application of BRBPNN model in the analysis of aquatic ecological data(chlorophyll-α prediction) and the explanation about the effective eutrophication treatment measures for Nanzui water area in Dongting Lake. 展开更多
关键词 Dongting Lake CHLOROPHYLL-A Bayesian regularized bp neural network model sum of square weights
在线阅读 下载PDF
Assessing the Forecasting of Comprehensive Loss Incurred by Typhoons:A Combined PCA and BP Neural Network Model 被引量:2
2
作者 Shuai Yuan Guizhi Wang +1 位作者 Jibo Chen Wei Guo 《Journal on Artificial Intelligence》 2019年第2期69-88,共20页
This paper develops a joint model utilizing the principal component analysis(PCA)and the back propagation(BP)neural network model optimized by the Levenberg Marquardt(LM)algorithm,and as an application of the joint mo... This paper develops a joint model utilizing the principal component analysis(PCA)and the back propagation(BP)neural network model optimized by the Levenberg Marquardt(LM)algorithm,and as an application of the joint model to investigate the damages caused by typhoons for a coastal province,Fujian Province,China in 2005-2015(latest).First,the PCA is applied to analyze comprehensively the relationship between hazard factors,hazard bearing factors and disaster factors.Then five integrated indices,overall disaster level,typhoon intensity,damaged condition of houses,medical rescue and self-rescue capability,are extracted through the PCA;Finally,the BP neural network model,which takes the principal component scores as input and is optimized by the LM algorithm,is implemented to forecast the comprehensive loss of typhoons.It is estimated that an average annual loss of 138.514 billion RMB occurred for 2005-2015,with a maximum loss of 215.582 in 2006 and a decreasing trend since 2010 though the typhoon intensity increases.The model was validated using three typhoon events and it is found that the error is less than 1%.These results provide information for the government to increase medical institutions and medical workers and for the communities to promote residents’self-rescue capability. 展开更多
关键词 TYPHOON PCA bp neural network model comprehensive loss LM algorithm.
在线阅读 下载PDF
An improved BP neural network based on evaluating and forecasting model of water quality in Second Songhua River of China 被引量:4
3
作者 Bin ZOU Xiaoyu LIAO +1 位作者 Yongnian ZENG Lixia HUANG 《Chinese Journal Of Geochemistry》 EI CAS 2006年第B08期167-167,共1页
关键词 河流 水质 人工神经网络 水文化学
在线阅读 下载PDF
Monthly Mean Temperature Prediction Based on a Multi-level Mapping Model of Neural Network BP Type 被引量:1
4
作者 严绍瑾 彭永清 郭光 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1995年第2期225-232,共8页
In terms of 34-year monthly mean temperature series in 1946-1979,the multi-level maPPing model of neural netWork BP type was applied to calculate the system's fractual dimension Do=2'8,leading tO a three-level... In terms of 34-year monthly mean temperature series in 1946-1979,the multi-level maPPing model of neural netWork BP type was applied to calculate the system's fractual dimension Do=2'8,leading tO a three-level model of this type with ixj=3x2,k=l,and the 1980 monthly mean temperture predichon on a long-t6rm basis were prepared by steadily modifying the weighting coefficient,making for the correlation coefficient of 97% with the measurements.Furthermore,the weighhng parameter was modified for each month of 1980 by means of observations,therefore constrcuhng monthly mean temperature forecasts from January to December of the year,reaching the correlation of 99.9% with the measurements.Likewise,the resulting 1981 monthly predictions on a long-range basis with 1946-1980 corresponding records yielded the correlahon of 98% and the month-tO month forecasts of 99.4%. 展开更多
关键词 neural network bp-type multilevel mapping model Monthly mean temperature prediction
在线阅读 下载PDF
A Trust Evaluation Model for Social Commerce Based on BP Neural Network
5
作者 Lei Chen Ruimei Wang 《Journal of Data Analysis and Information Processing》 2016年第4期147-158,共12页
Recent years we have witnessed the rapid growth of social commerce in China, but many users are not willing to trust and use social commerce. So improving consumers’ trust and purchase intention has become a crucial ... Recent years we have witnessed the rapid growth of social commerce in China, but many users are not willing to trust and use social commerce. So improving consumers’ trust and purchase intention has become a crucial factor in the success of social commerce. Business factors, environment factors and social factors including twelve secondary indexes build up a social commerce trust evaluation model. Questionnaires are handed out to collect twelve secondary indexes scores as input of BP neural network and composite score of trust as output. Model simulation shows that both training samples and test samples have low level of average error and standard deviation, which certify that the model has good stability and it is a good method for evaluating social commerce trust. 展开更多
关键词 Social Commerce Trust Evaluation TRUST bp neural network Evaluation model
暂未订购
基于BP神经网络的城市径流系数对下垫面变化的响应
6
作者 张琳 丁兵 +4 位作者 邓金运 姚仕明 王家生 黎礼刚 汪朝辉 《长江科学院院报》 北大核心 2025年第10期32-37,共6页
在快速城市化的大背景下,城市地区下垫面变化是影响径流过程的重要因素,而影响机制尚待研究。选择武汉市青山区作为典型研究区域,通过遥感技术、GIS分析以及BP神经网络模型等方法,对典型研究时段城市下垫面变化进行了定量评估,并分析了... 在快速城市化的大背景下,城市地区下垫面变化是影响径流过程的重要因素,而影响机制尚待研究。选择武汉市青山区作为典型研究区域,通过遥感技术、GIS分析以及BP神经网络模型等方法,对典型研究时段城市下垫面变化进行了定量评估,并分析了这些变化对径流系数的影响。通过对比分析发现:城市下垫面变化对径流系数具有显著影响,随着建筑用地和道路的增加,径流系数呈现上升趋势,2009—2017年研究区径流系数从0.399增至0.535;而绿地、植被等用地面积的增加则有助于降低径流系数,同时海绵城市建设通过增加强透水地面面积,额外增加雨水调蓄容积,可达到降低径流系数的作用,海绵城市项目实施后,2017年径流系数为0.535,较海绵城市项目实施前降低0.051。研究成果可为城市规划和防洪排涝系统的设计提供科学依据,也可为城市水文循环和水资源管理提供技术支撑。 展开更多
关键词 径流系数 下垫面 bp神经网络模型 遥感技术 土地利用方式 城市规划
在线阅读 下载PDF
基于BP神经网络的江苏省多维度碳排放预测 被引量:3
7
作者 郑琰 夏朝泽 +2 位作者 肖玉杰 王杰 余伟 《环境科学》 北大核心 2025年第6期3485-3495,共11页
“双碳”目标下,推进节能减排是经济高质量发展的关键.通过创新提出在多维度视角下对江苏省的碳排放量进行影响因素分析和预测,针对性给出降低碳排放的策略.基于STRIPAT扩展模型和LMDI模型,构建江苏省碳排放量影响因素指标体系,多维度... “双碳”目标下,推进节能减排是经济高质量发展的关键.通过创新提出在多维度视角下对江苏省的碳排放量进行影响因素分析和预测,针对性给出降低碳排放的策略.基于STRIPAT扩展模型和LMDI模型,构建江苏省碳排放量影响因素指标体系,多维度分析不同指标因素对碳排放量的影响.运用岭回归和因子分析方法,得到碳排放量与各指标间的关联度和贡献率,采用BP神经网络算法对江苏省碳排放量进行预测.结果表明,江苏省碳排放量影响因素程度排名为:能源消耗量、GDP、人口、第三产业增加值占比、能耗结构、第二产业增加值占比和第一产业增加值占比.其中第一产业增加值占比和第二产业增加值占比这两个因素对碳排放量的增长起到了抑制作用,其余因素均为促进作用.同时根据预测结果,江苏省应当在2025~2035年间调整产业和能源结构,将非化石能源占比增至30%,单位CO_(2)排放下降28.6%,实现碳达峰.在2050年前后,将非化石能源占比提高到50%,单位能耗下降46.1%,则CO_(2)排放进入快速下降阶段.最终,在2060年前后将非化石能源占比超过80%,单位能耗下降54.6%,CO_(2)排放减少77.9%,达到碳中和. 展开更多
关键词 碳排放量影响因素 多维度 LMDI模型 岭回归 bp神经网络
原文传递
基于NSGA-Ⅱ与BP神经网络的复合材料身管结构参数优化
8
作者 孙磊 韩书永 +2 位作者 马梦蹊 王坚 刘宁 《火炮发射与控制学报》 北大核心 2025年第3期115-122,共8页
针对复合材料身管结构设计时多个性能指标设计要求,在Isight中集成BP神经网络、Solidworks参数化几何模型及Abaqus有限元仿真模型通过NSGA-Ⅱ遗传算法对多个目标进行优化。优化目标值为身管的一阶固有频率、质量以及复合材料缠绕部位处... 针对复合材料身管结构设计时多个性能指标设计要求,在Isight中集成BP神经网络、Solidworks参数化几何模型及Abaqus有限元仿真模型通过NSGA-Ⅱ遗传算法对多个目标进行优化。优化目标值为身管的一阶固有频率、质量以及复合材料缠绕部位处的身管内壁最大等效应力,复合材料身管三段复合缠绕位置处的金属内衬直径以及复合材料缠绕角度为设计变量。通过BP神经网络建立代理模型,再通过NSGA-Ⅱ遗传算法对多个目标进行优化求解,解得复合材料身管结构参数的Pareto最优解集。通过优化结果可知,采用遗传算法多目标优化生成的Pareto前沿面最优解集分散地较为均匀,优化解集的复合材料身管结构参数方案在刚度、强度和质量方面均有改善,为复合材料身管结构设计和优化提供了参考。 展开更多
关键词 复合材料 多目标结构优化 bp神经网络代理模型 NSGA-Ⅱ算法
在线阅读 下载PDF
基于PSO-BP神经网络高速公路建设期碳排放预测方法
9
作者 赵全胜 李斐 +4 位作者 郭风爱 于建游 徐士钊 胡运朋 褚晓萌 《河北科技大学学报》 北大核心 2025年第3期312-321,共10页
为了解决高速公路建设期碳排放预测不精准的问题,提出了粒子群优化(particle swarm optimization,PSO)算法优化BP(back propagation)神经网络预测碳排放的方法。采用层次分析法(analytic hierarchy process,AHP)从工程长度层、工程建设... 为了解决高速公路建设期碳排放预测不精准的问题,提出了粒子群优化(particle swarm optimization,PSO)算法优化BP(back propagation)神经网络预测碳排放的方法。采用层次分析法(analytic hierarchy process,AHP)从工程长度层、工程建设层、能源消耗层与材料消耗层4个维度凝练出路线长度、路基长度、路面长度、隧道长度、桥涵长度、互通区长度、挖方量、填方量、柴油消耗量、水泥消耗量、碎石消耗量和钢筋消耗量12个关键指标;获取36个高速公路项目数据作为模型训练的实证样本,结合误差指标进行对比分析。结果表明,所得PSO-BP模型R2为0.974,BP模型R2为0.890,前者更接近于1;与生命周期法结果相比较,PSO-BP比未优化的BP与真实值之间偏差更小。划分的4个维度层和选择的12个关键指标使得在高速公路设计规划阶段即可预测得到建设期的碳排放,为高速公路的低碳建设提供了参考。 展开更多
关键词 道路工程其他学科 碳排放预测 PSO-bp神经网络 模型优化 因素分析
在线阅读 下载PDF
基于优化BP神经网络的污水总氮浓度预测
10
作者 李阳 刘建华 《今日自动化》 2025年第8期163-165,共3页
在污水处理中,动态监测水质指标对整个处理过程至关重要。总氮(Total Nitrogen,TN)含量是衡量污水质量的关键参数,也是污水处理效果的主要污染指标,然而传统的人工实验测定方法耗时耗力,也无法满足持续监测的需求。基于此,本文设计了反... 在污水处理中,动态监测水质指标对整个处理过程至关重要。总氮(Total Nitrogen,TN)含量是衡量污水质量的关键参数,也是污水处理效果的主要污染指标,然而传统的人工实验测定方法耗时耗力,也无法满足持续监测的需求。基于此,本文设计了反向传播(Back Propagation,BP)神经网络模型来预测总氮浓度,为克服BP神经网络缺陷,使用遗传算法(Genetic Algorithm,GA)优化BP神经网络,构造出GA-BP神经网络模型,并在某工厂半年内每日记录排放污水处理数据集上做验证,通过与未优化的BP神经网络对比,GA-BP神经网络模型预测准确率有效提升,并避免了陷入局部最优解。 展开更多
关键词 bp神经网络模型 GA-bp神经网络模型 污水处理 总氮含量
在线阅读 下载PDF
基于PSO-BP神经网络的风电功率短期预测
11
作者 马莉 刘嘉晨 《价值工程》 2025年第23期59-61,共3页
本文以风电功率短期预测为研究对象,对风电功率预测在当前能源结构中的作用及关键性进行了概括。运用BP神经网络结合粒子群优化算法构建预测模型,系统介绍了BP神经网络和PSO算法原理,模型构建章节详细介绍了PSO-BP神经网络模型结构设计... 本文以风电功率短期预测为研究对象,对风电功率预测在当前能源结构中的作用及关键性进行了概括。运用BP神经网络结合粒子群优化算法构建预测模型,系统介绍了BP神经网络和PSO算法原理,模型构建章节详细介绍了PSO-BP神经网络模型结构设计、参数优化以及训练学习过程,随后重点探讨了数据预处理与特征选择方法,包括了数据采集清洗、归一化处理等关键步骤。本研究模型可更加精准地完成风电功率短期预测工作,为风电产业的发展提供关键的技术支撑。 展开更多
关键词 风电功率预测 bp神经网络 粒子群优化 模型构建 PSO-bp神经网络
在线阅读 下载PDF
基于I-GWO-BP神经网络的矿区爆破振动预测
12
作者 徐敏 林卫星 +5 位作者 石磊 欧任泽 于振建 龚永超 胡力可 胡军生 《矿业研究与开发》 北大核心 2025年第10期121-128,共8页
针对现有爆破振动速度预测公式在面对复杂地场环境时预测精度不高的问题,提出一种基于改进灰狼优化算法(I-GWO)的BP神经网络模型。通过改变神经网络收敛因子函数加强导优精度,混沌映射初始化狼群位置加快求解速度,基于步长欧式距离的比... 针对现有爆破振动速度预测公式在面对复杂地场环境时预测精度不高的问题,提出一种基于改进灰狼优化算法(I-GWO)的BP神经网络模型。通过改变神经网络收敛因子函数加强导优精度,混沌映射初始化狼群位置加快求解速度,基于步长欧式距离的比例权重动态调整权重、提升寻优效率来改进灰狼算法。结合李楼-吴集铁矿爆破振动速度监测数据,选取爆心距、最大单段装药量、总装药量作为输入参数建立I-GWO-BP模型。结果表明:I-GWO-BP模型的收敛速度以及收敛精度要优于GWO-BP模型及BP模型,优化效果明显;I-GWO-BP模型的预测值基本处于实测值±0.08 cm/s置信带内,平均绝对百分比误差为13.84%,预测效果显著优于其他预测方法,具有较高的预测精度。研究成果可为矿山的爆破振动速度预测提供一定的参考。 展开更多
关键词 爆破振动速度 bp神经网络 改进灰狼优化算法 预测模型 预测精度
原文传递
基于DBO-BP神经网络的活动导叶磨蚀预测模型
13
作者 陈小翠 姬中瑞 +1 位作者 郑源 陈文杰 《华中科技大学学报(自然科学版)》 北大核心 2025年第7期115-121,共7页
为高效预测混流式水轮机活动导叶的磨蚀情况,基于高速加沙实验数据,进行复合树脂砂浆涂层材料的磨蚀模型拟合.基于该磨蚀模型,在Fluent平台上通过用户自定义函数(UDF)进行编译,实现活动导叶在不同工况下的磨蚀仿真分析.在活动导叶磨蚀... 为高效预测混流式水轮机活动导叶的磨蚀情况,基于高速加沙实验数据,进行复合树脂砂浆涂层材料的磨蚀模型拟合.基于该磨蚀模型,在Fluent平台上通过用户自定义函数(UDF)进行编译,实现活动导叶在不同工况下的磨蚀仿真分析.在活动导叶磨蚀分析的基础上,基于蜣螂优化算法优化的BP神经网络,提出了一种新型高效的磨蚀预测模型,通过流量、流道中颗粒浓度及当前磨蚀量等参数来进行未来磨蚀量的预测,同时与普通BP神经网络的预测模型进行对比.结果表明:蜣螂优化算法使BP神经网络的均方根误差降低了40%以上,平均绝对误差降低了60%,提高了BP神经网络的计算精度. 展开更多
关键词 磨蚀模型 蜣螂优化算法 bp神经网络 活动导叶 复合树脂砂浆涂层
原文传递
GA-BP模型在HSS模型参数取值中的应用
14
作者 张杰 马杰 +2 位作者 陈啸海 钟鹏 王营营 《城市道桥与防洪》 2025年第1期229-235,共7页
小应变硬化土(HSS)模型可以有效反映土的压缩硬化特性和小应变特性,非常适合黄土基坑的数值模拟计算。但是,HSS模型包含了11个硬化土(HS)模型参数和2个小应变参数,而这2个小应变参数往往需要采用试验方法确定,获取过程复杂。为了探讨小... 小应变硬化土(HSS)模型可以有效反映土的压缩硬化特性和小应变特性,非常适合黄土基坑的数值模拟计算。但是,HSS模型包含了11个硬化土(HS)模型参数和2个小应变参数,而这2个小应变参数往往需要采用试验方法确定,获取过程复杂。为了探讨小应变参数的预测方法,采用经过遗传算法优化的BP神经网络模型,即GA-BP神经网络模型,首先根据预设的小应变参数水平经过数值模拟计算得到49组位移数据,然后将得到的数据用于GA-BP神经网络的训练,待GA-BP神经网络的预测误差达到要求之后,再使用实际的位移数据反演得到小应变参数,最后基于预测得到的小应变参数进行数值模拟。结果显示,GA-BP神经网络模型预测的小应变参数在基坑围护结构最大水平位移和地表最大沉降计算方面表现良好,可以应用于实际工程。 展开更多
关键词 岩土工程 遗传算法 HSS模型 bp神经网络 小应变参数 参数反演
在线阅读 下载PDF
不同温湿度贮藏对澳洲坚果鲜果品质的影响及BP神经网络预测模型构建 被引量:1
15
作者 付镓榕 马尚玄 +6 位作者 杨悦雪 徐文婷 兰秀华 魏元苗 黄克昌 贺熙勇 郭刚军 《食品工业科技》 北大核心 2025年第13期314-326,共13页
为分析澳洲坚果鲜果在短期贮藏中的品质变化,本文探究贮藏温湿度(30℃-RH80%、35℃-RH80%、40℃-RH80%、30℃-RH90%、35℃-RH90%、40℃-RH90%)对鲜果果皮含水量、带壳果含水量、果仁含水量、青皮裂果率、霉果率、酸价、过氧化值、碘值... 为分析澳洲坚果鲜果在短期贮藏中的品质变化,本文探究贮藏温湿度(30℃-RH80%、35℃-RH80%、40℃-RH80%、30℃-RH90%、35℃-RH90%、40℃-RH90%)对鲜果果皮含水量、带壳果含水量、果仁含水量、青皮裂果率、霉果率、酸价、过氧化值、碘值、总酚含量、总糖含量的影响,并基于反向传播(Backpropagation,BP)神经网络构建澳洲坚果鲜果短期贮藏的品质预测模型,测试集评估模型的预测性能。结果表明,在短期贮藏中35℃-RH80%条件贮藏的水分损失最快,35℃贮藏的青皮裂果率增速显著高于30、40℃(P<0.05),30℃时果皮霉果率增速显著高于35、40℃(P<0.05)。在贮藏期间酸价、过氧化值均呈上升趋势,贮藏结束时35℃-RH90%条件贮藏的酸价最高,为15.57 mg/100 g,30℃-RH80%条件贮藏的过氧化值最高,为36.44μg/g;碘值、总酚含量呈先上升后下降的趋势,贮藏期间35℃-RH90%条件贮藏的碘值增幅最大为119.26 mg/g,贮藏结束40℃-RH80%条件贮藏的碘值最低为675.72 mg/g,贮藏结束35℃-RH80%、40℃-RH90%总酚含量均为0.88 mg/g,显著低于其他贮藏条件(P<0.05);总糖含量呈下降趋势,贮藏结束35℃-RH80%条件贮藏的总糖含量显著低于其他贮藏条件(P<0.05)。相关性分析表明预测模型的输入层与输出层具有较好的相关性,澳洲坚果鲜果短期贮藏的品质预测模型隐含层节点数为7,酸价、过氧化值、碘值、总酚含量、总糖含量训练集的相关系数分别为0.97952、0.98815、0.94869、0.94882、0.97109,预测精度良好。因此,神经网络预测模型可用于预测澳洲坚果鲜果在采后运输及贮藏过程中的品质变化,并为神经网络预测模型在澳洲坚果品质预测中的应用奠定基础。 展开更多
关键词 澳洲坚果 鲜果 贮藏品质 预测模型 反向传播(bp)神经网络
在线阅读 下载PDF
基于SSA-BP神经网络的无人机发射参数择优 被引量:2
16
作者 贾华宇 郑会龙 +1 位作者 周洪 张谦 《华南理工大学学报(自然科学版)》 北大核心 2025年第4期90-101,共12页
火箭助推零长发射是无人机发射的重要形式,发射角度、助推器夹角、助推器推力等发射参数的选取直接关系到无人机发射任务的成败。无人机火箭助推零长发射在设计阶段借助工程经验选取发射角度、助推器夹角、助推器推力等关键参数时,存在... 火箭助推零长发射是无人机发射的重要形式,发射角度、助推器夹角、助推器推力等发射参数的选取直接关系到无人机发射任务的成败。无人机火箭助推零长发射在设计阶段借助工程经验选取发射角度、助推器夹角、助推器推力等关键参数时,存在发射参数迭代择优周期长、设计交互性差、容易造成无人机飞行姿态失稳的问题。该文以某无人机为研究对象,对其发射阶段进行动力学及运动学建模,构建了六自由度非线性模型,基于QT/C++软件编制无人机发射弹道参数化仿真软件,并结合某无人机真实发射试验数据,验证该发射弹道仿真软件的有效性。同时,为解决发射参数自主择优问题,在反向传播(BP)神经网络参数预测模型的基础上引入麻雀搜索算法(SSA)、粒子群优化算法(PSO)、遗传算法(GA)优化模块,提出基于SSA优化BP神经网络的无人机发射参数寻优方法,消除BP神经网络在参数预测过程中存在的过拟合及局部最优效应,对参数预测结果求绝对误差(MAE)、平均百分百误差(MAPE)、均方根误差(RMSE),综合评估SSA-BP对发射参数预测的优越性,并通过发射弹道校核验证发射参数选取的合理性。结果表明,SSA-BP模型对发射参数的预测精度最高、鲁棒性最好,可为无人机发射分系统工程设计阶段的发射参数自主择优选取提供设计依据。 展开更多
关键词 无人机发射 麻雀搜索算法 bp神经网络 参数寻优 建模仿真
在线阅读 下载PDF
基于BWM+BP神经网络的在役中小跨径桥梁安全风险智能评估模型研究
17
作者 赵锐 田志强 宋宇涵 《世界桥梁》 北大核心 2025年第5期97-104,共8页
为克服传统桥梁安全风险评估过程的主观性及由于桥梁系统复杂带来的不确定性,基于桥梁检测数据,提出基于最优最劣法(BWM)+BP神经网络的在役中小跨径桥梁安全风险智能评估模型。首先,在现行桥梁检测评价规范基础上,以各结构部件的病害作... 为克服传统桥梁安全风险评估过程的主观性及由于桥梁系统复杂带来的不确定性,基于桥梁检测数据,提出基于最优最劣法(BWM)+BP神经网络的在役中小跨径桥梁安全风险智能评估模型。首先,在现行桥梁检测评价规范基础上,以各结构部件的病害作为安全风险评估体系中的底层指标,构建安全风险评估指标体系;然后,采用BWM法和德尔菲法,利用专家经验确定病害层指标权重,结合模糊综合评判法对桥梁检测样本数据进行前处理;最后,利用BP神经网络对处理后的样本进行训练,根据训练结果,分别用遗传算法(GA)和粒子群算法(PSO)对BP神经网络优化后对比,构建最优评估模型。将该评估模型应用于墩那高速新疆伊犁州某段某中桥,对其进行安全风险评估,以验证其适用性。结果表明:运用BWM+BP神经网络的在役中小跨径桥梁安全风险智能评估模型在一定程度上克服了检测报告样本中评价不准确和局限问题,同时削弱了BP神经网络训练大量样本的需求;GA优化的BP神经网络模型比PSO优化精度更佳、鲁棒性更好,准确率达96.49%;相比现行规范,运用该模型进行在役中小跨径桥梁安全风险评估,能改善病害叠加评分过低的问题,评估结果更符合实际情况。 展开更多
关键词 中小跨径桥梁 最优最劣法 bp神经网络 遗传算法 粒子群算法 智能评估模型 安全风险评估
在线阅读 下载PDF
基于SSA-BP的自压灌溉管网泄漏定位模型研究
18
作者 张辉 刘宁宁 +3 位作者 王振华 张金珠 李淼 尹飞虎 《水利学报》 北大核心 2025年第4期488-498,共11页
针对现有自压管网泄漏定位方法的局限性,本文通过搭建自压灌溉管网水力模型,分析了不同泄漏工况下泄漏点空间分布对管网压力变化的影响,提出了一种基于SSA-BP神经网络的自压灌溉管网泄漏定位模型,建立了泄漏点位置与监测点压力变化率的... 针对现有自压管网泄漏定位方法的局限性,本文通过搭建自压灌溉管网水力模型,分析了不同泄漏工况下泄漏点空间分布对管网压力变化的影响,提出了一种基于SSA-BP神经网络的自压灌溉管网泄漏定位模型,建立了泄漏点位置与监测点压力变化率的非线性关系,并与传统BP神经网络和GA-BP神经网络进行对比。结果表明,SSA-BP模型对于预测泄漏位置的横、纵坐标具有更高的预测精度,决定系数R²分别达到0.991和0.993,相比BP模型和GA-BP模型R2分别提高0.90%、1.71%和3.32%、3.12%,均方根误差RMSE、平均绝对百分比误差MAPE分别为29.45、0.88%和26.76、0.74%,预测误差显著低于后两者,展现出更好的泛化能力。在案例管网随机模拟泄漏定位中,大尺度泄漏条件下的SSA-BP模型平均预测偏差仅为39.93 m,相较BP模型和GA-BP模型分别降低了67.66%和26.99%,小尺度泄漏条件下的SSA-BP模型平均预测偏差仅为66.17 m,相较BP模型和GA-BP模型分别降低了53.70%和37.54%,进一步证明SSA-BP模型具有更高的准确性和稳定性。本研究工作可为自压灌溉管网压力监测点选取及泄漏定位提供可靠依据。 展开更多
关键词 自压灌溉管网 泄漏定位 SSA-bp神经网络 水力模型 压力变化率
在线阅读 下载PDF
基于PSO-BP模型的省域交通运输碳排放多情景预测 被引量:2
19
作者 李雨 王君 +1 位作者 张萌萌 付建村 《华南师范大学学报(自然科学版)》 北大核心 2025年第2期12-22,共11页
以山东省交通运输领域为例,利用可拓展的随机性环境影响评估模型(STIRPAT)结合岭回归方法分析了碳排放驱动因素,采用粒子群算法(PSO)优化反向传播神经网络(BP神经网络),构建了以人口、人均GDP等7类变量为输入层的PSO-BP神经网络组合预... 以山东省交通运输领域为例,利用可拓展的随机性环境影响评估模型(STIRPAT)结合岭回归方法分析了碳排放驱动因素,采用粒子群算法(PSO)优化反向传播神经网络(BP神经网络),构建了以人口、人均GDP等7类变量为输入层的PSO-BP神经网络组合预测模型,对2023—2035年山东省交通运输在3种情景下的CO_(2)排放量进行了预测分析。结果表明:人口规模、人均GDP、能源结构、交通能源强度、货运周转量、民用车保有量是山东省交通运输碳排放的促进因素,交通运输强度是抑制因素;PSO-BP预测模型具有较高精度和较好的拟合效果,预测结果与单一的BP神经网络、支持向量回归模型(SVR)、STIRPAT模型对比,平均绝对百分比误差分别降低5.78%、2.00%和3.78%,均方根误差分别降低3.357×10^(6)、1.539×10^(6)、1.953×10^(6) t,平均绝对误差分别降低2.651×10^(6)、1.128×10^(6)、1.756×10^(6) t;预测期内,山东省交通运输CO_(2)排放量在低碳情景下将于2030年达到峰值5.535×107 t,在基准情景和高碳情景下将保持增长趋势。在现有政策基础上,山东省应持续优化交通运输结构,积极推广低碳出行方式,提升清洁能源应用比重,以实现交通运输的绿色化、低碳化及高质量发展目标。 展开更多
关键词 交通碳排放预测 STIRPAT模型 bp神经网络 粒子群优化算法 情景分析
在线阅读 下载PDF
基于改进BP神经网络的烟草收获机械故障诊断研究 被引量:3
20
作者 戴欧阳 胡洪林 《农机化研究》 北大核心 2025年第4期70-76,共7页
烟草收获机械是烟草生产中的重要技术支撑,是提高收获效率的重要保证,但由于烟草收获机械内部结构较为复杂,在使用过程中极易造成机械运行故障。随着大数据及传感器技术的快速发展,基于人工神经网络模型实现机械故障的预测与诊断成为提... 烟草收获机械是烟草生产中的重要技术支撑,是提高收获效率的重要保证,但由于烟草收获机械内部结构较为复杂,在使用过程中极易造成机械运行故障。随着大数据及传感器技术的快速发展,基于人工神经网络模型实现机械故障的预测与诊断成为提高烟草收获机械工作效率的重要技术。目前,主要以BP神经网络模型应用较为广泛,但在模型构建中预测效率低、鲁棒性强。针对以上问题,提出一种改进BP神经网络模型,以烟草收获机械中的齿轮故障诊断为研究对象,构建基于GA-BP神经网络模型的烟草收获机械齿轮故障诊断模型,并通过选取齿轮磨损、胶合、裂纹、断齿和正常齿轮的信号进行试验验证。结果表明:改进后的BP神经网络模型MAPE仅为0.87%,RMSE为1.12,MAE为0.92,MSE为1.19,满足烟草收获生产的实际需要,在模型算法与计算速度方面都得到了很大的提高。 展开更多
关键词 烟草收获 机械故障 遗传算法 bp神经网络 优化模型
在线阅读 下载PDF
上一页 1 2 187 下一页 到第
使用帮助 返回顶部