期刊文献+
共找到280,873篇文章
< 1 2 250 >
每页显示 20 50 100
GSLDWOA: A Feature Selection Algorithm for Intrusion Detection Systems in IIoT
1
作者 Wanwei Huang Huicong Yu +3 位作者 Jiawei Ren Kun Wang Yanbu Guo Lifeng Jin 《Computers, Materials & Continua》 2026年第1期2006-2029,共24页
Existing feature selection methods for intrusion detection systems in the Industrial Internet of Things often suffer from local optimality and high computational complexity.These challenges hinder traditional IDS from... Existing feature selection methods for intrusion detection systems in the Industrial Internet of Things often suffer from local optimality and high computational complexity.These challenges hinder traditional IDS from effectively extracting features while maintaining detection accuracy.This paper proposes an industrial Internet ofThings intrusion detection feature selection algorithm based on an improved whale optimization algorithm(GSLDWOA).The aim is to address the problems that feature selection algorithms under high-dimensional data are prone to,such as local optimality,long detection time,and reduced accuracy.First,the initial population’s diversity is increased using the Gaussian Mutation mechanism.Then,Non-linear Shrinking Factor balances global exploration and local development,avoiding premature convergence.Lastly,Variable-step Levy Flight operator and Dynamic Differential Evolution strategy are introduced to improve the algorithm’s search efficiency and convergence accuracy in highdimensional feature space.Experiments on the NSL-KDD and WUSTL-IIoT-2021 datasets demonstrate that the feature subset selected by GSLDWOA significantly improves detection performance.Compared to the traditional WOA algorithm,the detection rate and F1-score increased by 3.68%and 4.12%.On the WUSTL-IIoT-2021 dataset,accuracy,recall,and F1-score all exceed 99.9%. 展开更多
关键词 Industrial Internet of Things intrusion detection system feature selection whale optimization algorithm Gaussian mutation
在线阅读 下载PDF
一种串匹配的快速Boyer-Moore算法 被引量:7
2
作者 李雪梅 代六玲 +1 位作者 童新海 李莉 《计算机应用研究》 CSCD 北大核心 2005年第9期49-51,共3页
在对经典的Boyer-Moore和Quick Search串匹配算法进行分析的基础上,提出了一种更加快速的串匹配算法Quick Boyer-Moore(QBM)。QBM算法利用当前尝试中的已匹配子串、匹配失败字符信息以及与当前窗口下一个字符的位置信息,以在每一次跳跃... 在对经典的Boyer-Moore和Quick Search串匹配算法进行分析的基础上,提出了一种更加快速的串匹配算法Quick Boyer-Moore(QBM)。QBM算法利用当前尝试中的已匹配子串、匹配失败字符信息以及与当前窗口下一个字符的位置信息,以在每一次跳跃中获得更大的跳跃距离,从而使算法具有更高的效率。在真实语料上的实验结果表明,QBM算法的效率较显著地高于原始的BM算法及其改进算法Improved Boyer-Moore(IBM)。 展开更多
关键词 串匹配 boyer-moore算法 IMPROVED boyer-moore算法 Quick boyer-moore算法
在线阅读 下载PDF
一种改进Boyer-Moore算法效率的预处理算法 被引量:1
3
作者 金人超 宋恩民 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2005年第z1期265-267,共3页
通过理论分析和测试发现,对大多数字符串而言,按某个方向搜索文本总是会比按另一个方向的搜索速度快.提出了新的预处理算法,在使用Boyer-Moore算法之前先确定一个较优的搜索方向,其时间复杂度和空间复杂度分别为O(σm)和O(σ+m),其中σ... 通过理论分析和测试发现,对大多数字符串而言,按某个方向搜索文本总是会比按另一个方向的搜索速度快.提出了新的预处理算法,在使用Boyer-Moore算法之前先确定一个较优的搜索方向,其时间复杂度和空间复杂度分别为O(σm)和O(σ+m),其中σ和m分别为字母表的大小和字符串图案的长度.采用真实的人类DNA序列测试,包括序列库中前1 000个长度超过1 000的完整序列作为文本,从中随机选出1 000个长度为20的序列片段作为图案,进行实验对比,证明可以将搜索时间平均缩短到原来的约90%. 展开更多
关键词 DNA序列 字符串 图案匹配 boyer-moore算法
在线阅读 下载PDF
BWT-Boyer-Moore压缩域搜索算法的研究
4
作者 姚全珠 丁晓剑 +1 位作者 任雪利 张志锋 《计算机应用研究》 CSCD 北大核心 2006年第7期59-61,共3页
针对Boyer-Moore匹配算法对压缩文本文件搜索的不足,分析了当前对于压缩文件搜索的主要方法,提出了一种基于BW转换的高效的搜索算法并予以验证。
关键词 压缩域 boyer-moore算法 Burrow-Wheeler转换
在线阅读 下载PDF
带记忆的Boyer-Moore型模式匹配算法及其复杂性分析
5
作者 刘晓华 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第1期84-88,共5页
通过构建前缀匹配自动机,使得每轮匹配后下个匹配窗口的文本总是保持左端部分为模式的一个前缀、右端部分全为未比较过的字符的形式.对于与此相应的模式匹配算法,已证明文本内的每个字符在整个匹配过程中最多被比较一次,从而字符总比较... 通过构建前缀匹配自动机,使得每轮匹配后下个匹配窗口的文本总是保持左端部分为模式的一个前缀、右端部分全为未比较过的字符的形式.对于与此相应的模式匹配算法,已证明文本内的每个字符在整个匹配过程中最多被比较一次,从而字符总比较次数不超过n,已达到任意算法最坏情况下字符总比较次数的最小值.另外,在适当条件下还从理论上证明了此算法的亚线性(即字符总比较次数小于cn,其中常数c<1).根据实验结果,算法的实际运行速度快于Boyer-Moore算法. 展开更多
关键词 模式匹配 boyer-moore算法 自动机 计算复杂性
在线阅读 下载PDF
对Boyer-Moore模式匹配算法的优化研究 被引量:1
6
作者 庄彦 王勇 《重庆三峡学院学报》 2016年第3期38-42,共5页
在大数据时代,如何运用模式匹配方法加强对相关信息的搜索是当前自然科学和社会科学界都面临的重要问题.通过对经典的模式匹配算法BM算法、BMH算法和BMHS算法的分析和研究,并在此基础上提出了加快匹配速度,缩短比较次数和匹配的时间的... 在大数据时代,如何运用模式匹配方法加强对相关信息的搜索是当前自然科学和社会科学界都面临的重要问题.通过对经典的模式匹配算法BM算法、BMH算法和BMHS算法的分析和研究,并在此基础上提出了加快匹配速度,缩短比较次数和匹配的时间的改进方法——OBM模式匹配算法. 展开更多
关键词 模式匹配 BM算法 OBM算法
在线阅读 下载PDF
Boyer-Moore串匹配算法的改进 被引量:5
7
作者 韩光辉 曾诚 《计算机应用》 CSCD 北大核心 2014年第3期865-868,共4页
在分析Boyer-Moore(BM)算法的基础上,提出了BM算法的一个新的变形。其基本思想是在算法的预处理阶段,对扩展模式串Pa建立好后缀规则,其中:P是模式串,a是字母表中的任一字符,既加大了已匹配后缀的长度,同时隐含了Sunday算法的坏字符规则... 在分析Boyer-Moore(BM)算法的基础上,提出了BM算法的一个新的变形。其基本思想是在算法的预处理阶段,对扩展模式串Pa建立好后缀规则,其中:P是模式串,a是字母表中的任一字符,既加大了已匹配后缀的长度,同时隐含了Sunday算法的坏字符规则,从而获得更大的窗口跳跃距离。理论分析证明,该算法具有线性最差时间复杂度和亚线性平均时间复杂度,空间复杂度为O(m(σ+1))。实验结果表明,该算法的实际性能与BM算法相比有明显改善,尤其适合小字母表的情形。 展开更多
关键词 串匹配 BM算法 复杂度分析
在线阅读 下载PDF
基于WinPcap和Boyer-Moore的IDS的实现
8
作者 陈丹 李际军 郑增威 《计算机应用》 CSCD 北大核心 2004年第5期47-49,共3页
文中提出并实现了一种Windows2000/XP操作系统下的基于WinPcap和Boyer Moore的网络入侵检测系统,重点阐述了该系统的体系结构,WinPcap数据包捕获技术,以及入侵检测系统中字符匹配算法Boyer Moore等关键技术。
关键词 入侵检测 WINPCAP 字符匹配算法
在线阅读 下载PDF
Boyer-Moore串查找JAVA算法 被引量:1
9
作者 秦殿英 焦庆争 《安徽工业大学学报(自然科学版)》 CAS 2001年第1期89-92,共4页
针对 JAVA虚拟机运行代码效率低的特点 ,提出了实现 JAVA字符串快速搜索的改进算法,运用有限状态自动机( FSM)控制实现 Boyer- Moore串查找 JAVA方法,详细描述了算法的机理及其实现的 JAVA源程序。
关键词 算法 偏移量 UNICODE 字附串 JAVA FSM boyer-moore
在线阅读 下载PDF
一种改进的Boyer-Moore算法在IDS中的应用 被引量:3
10
作者 王淅娜 喻建鹏 《计算机科学》 CSCD 北大核心 2013年第11A期196-198,218,共4页
在IDS的检测引擎模块设计中,基于Pattern-Matching的误用检测算法是设计师们最常用到的一种核心技术实现途径,而IDS丢包率和误报率的高低以及检测引擎匹配速度的快慢都取决于模式匹配算法性能的好与坏。Boyer-Moore算法及其改进了的Boye... 在IDS的检测引擎模块设计中,基于Pattern-Matching的误用检测算法是设计师们最常用到的一种核心技术实现途径,而IDS丢包率和误报率的高低以及检测引擎匹配速度的快慢都取决于模式匹配算法性能的好与坏。Boyer-Moore算法及其改进了的Boyer-Moore Horspool算法和Boyer-Moore HorspoolS算法是目前应用最广泛的单模式匹配算法。在分析了BM算法及各种改进算法的基础上提出了一种新的基于BM算法的改进算法。该算法利用了字符串末字符和末字符对应文本串的下一字符的唯一性,同时考虑了文本串的信息以加大匹配速率,从而更好地适应IDS对模式匹配算法高效性的要求。 展开更多
关键词 入侵检测 BM算法 模式匹配 SNORT KMP算法
在线阅读 下载PDF
Method for Estimating the State of Health of Lithium-ion Batteries Based on Differential Thermal Voltammetry and Sparrow Search Algorithm-Elman Neural Network 被引量:1
11
作者 Yu Zhang Daoyu Zhang TiezhouWu 《Energy Engineering》 EI 2025年第1期203-220,共18页
Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,curr... Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,current SOH estimation methods often overlook the valuable temperature information that can effectively characterize battery aging during capacity degradation.Additionally,the Elman neural network,which is commonly employed for SOH estimation,exhibits several drawbacks,including slow training speed,a tendency to become trapped in local minima,and the initialization of weights and thresholds using pseudo-random numbers,leading to unstable model performance.To address these issues,this study addresses the challenge of precise and effective SOH detection by proposing a method for estimating the SOH of lithium-ion batteries based on differential thermal voltammetry(DTV)and an SSA-Elman neural network.Firstly,two health features(HFs)considering temperature factors and battery voltage are extracted fromthe differential thermal voltammetry curves and incremental capacity curves.Next,the Sparrow Search Algorithm(SSA)is employed to optimize the initial weights and thresholds of the Elman neural network,forming the SSA-Elman neural network model.To validate the performance,various neural networks,including the proposed SSA-Elman network,are tested using the Oxford battery aging dataset.The experimental results demonstrate that the method developed in this study achieves superior accuracy and robustness,with a mean absolute error(MAE)of less than 0.9%and a rootmean square error(RMSE)below 1.4%. 展开更多
关键词 Lithium-ion battery state of health differential thermal voltammetry Sparrow Search algorithm
在线阅读 下载PDF
Robustness Optimization Algorithm with Multi-Granularity Integration for Scale-Free Networks Against Malicious Attacks 被引量:1
12
作者 ZHANG Yiheng LI Jinhai 《昆明理工大学学报(自然科学版)》 北大核心 2025年第1期54-71,共18页
Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently... Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms. 展开更多
关键词 complex network model MULTI-GRANULARITY scale-free networks ROBUSTNESS algorithm integration
原文传递
Short-TermWind Power Forecast Based on STL-IAOA-iTransformer Algorithm:A Case Study in Northwest China 被引量:2
13
作者 Zhaowei Yang Bo Yang +5 位作者 Wenqi Liu Miwei Li Jiarong Wang Lin Jiang Yiyan Sang Zhenning Pan 《Energy Engineering》 2025年第2期405-430,共26页
Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,th... Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,there remains a research gap in leveraging swarm intelligence algorithms to optimize the hyperparameters of the Transformer model for wind power prediction.To improve the accuracy of short-term wind power forecast,this paper proposes a hybrid short-term wind power forecast approach named STL-IAOA-iTransformer,which is based on seasonal and trend decomposition using LOESS(STL)and iTransformer model optimized by improved arithmetic optimization algorithm(IAOA).First,to fully extract the power data features,STL is used to decompose the original data into components with less redundant information.The extracted components as well as the weather data are then input into iTransformer for short-term wind power forecast.The final predicted short-term wind power curve is obtained by combining the predicted components.To improve the model accuracy,IAOA is employed to optimize the hyperparameters of iTransformer.The proposed approach is validated using real-generation data from different seasons and different power stations inNorthwest China,and ablation experiments have been conducted.Furthermore,to validate the superiority of the proposed approach under different wind characteristics,real power generation data fromsouthwestChina are utilized for experiments.Thecomparative results with the other six state-of-the-art prediction models in experiments show that the proposed model well fits the true value of generation series and achieves high prediction accuracy. 展开更多
关键词 Short-termwind power forecast improved arithmetic optimization algorithm iTransformer algorithm SimuNPS
在线阅读 下载PDF
A LODBO algorithm for multi-UAV search and rescue path planning in disaster areas 被引量:1
14
作者 Liman Yang Xiangyu Zhang +2 位作者 Zhiping Li Lei Li Yan Shi 《Chinese Journal of Aeronautics》 2025年第2期200-213,共14页
In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms... In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms to solve the problem of multi-UAV path planning.The Dung Beetle Optimization(DBO)algorithm has been widely applied due to its diverse search patterns in the above algorithms.However,the update strategies for the rolling and thieving dung beetles of the DBO algorithm are overly simplistic,potentially leading to an inability to fully explore the search space and a tendency to converge to local optima,thereby not guaranteeing the discovery of the optimal path.To address these issues,we propose an improved DBO algorithm guided by the Landmark Operator(LODBO).Specifically,we first use tent mapping to update the population strategy,which enables the algorithm to generate initial solutions with enhanced diversity within the search space.Second,we expand the search range of the rolling ball dung beetle by using the landmark factor.Finally,by using the adaptive factor that changes with the number of iterations.,we improve the global search ability of the stealing dung beetle,making it more likely to escape from local optima.To verify the effectiveness of the proposed method,extensive simulation experiments are conducted,and the result shows that the LODBO algorithm can obtain the optimal path using the shortest time compared with the Genetic Algorithm(GA),the Gray Wolf Optimizer(GWO),the Whale Optimization Algorithm(WOA)and the original DBO algorithm in the disaster search and rescue task set. 展开更多
关键词 Unmanned aerial vehicle Path planning Meta heuristic algorithm DBO algorithm NP-hard problems
原文传递
Research on Euclidean Algorithm and Reection on Its Teaching
15
作者 ZHANG Shaohua 《应用数学》 北大核心 2025年第1期308-310,共3页
In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and t... In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and the greatest common divisor.We further provided several suggestions for teaching. 展开更多
关键词 Euclid's algorithm Division algorithm Bezout's equation
在线阅读 下载PDF
DDoS Attack Autonomous Detection Model Based on Multi-Strategy Integrate Zebra Optimization Algorithm
16
作者 Chunhui Li Xiaoying Wang +2 位作者 Qingjie Zhang Jiaye Liang Aijing Zhang 《Computers, Materials & Continua》 SCIE EI 2025年第1期645-674,共30页
Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convol... Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convolutional Neural Networks(CNN)combined with LSTM,and so on are built by simple stacking,which has the problems of feature loss,low efficiency,and low accuracy.Therefore,this paper proposes an autonomous detectionmodel for Distributed Denial of Service attacks,Multi-Scale Convolutional Neural Network-Bidirectional Gated Recurrent Units-Single Headed Attention(MSCNN-BiGRU-SHA),which is based on a Multistrategy Integrated Zebra Optimization Algorithm(MI-ZOA).The model undergoes training and testing with the CICDDoS2019 dataset,and its performance is evaluated on a new GINKS2023 dataset.The hyperparameters for Conv_filter and GRU_unit are optimized using the Multi-strategy Integrated Zebra Optimization Algorithm(MIZOA).The experimental results show that the test accuracy of the MSCNN-BiGRU-SHA model based on the MIZOA proposed in this paper is as high as 0.9971 in the CICDDoS 2019 dataset.The evaluation accuracy of the new dataset GINKS2023 created in this paper is 0.9386.Compared to the MSCNN-BiGRU-SHA model based on the Zebra Optimization Algorithm(ZOA),the detection accuracy on the GINKS2023 dataset has improved by 5.81%,precisionhas increasedby 1.35%,the recallhas improvedby 9%,and theF1scorehas increasedby 5.55%.Compared to the MSCNN-BiGRU-SHA models developed using Grid Search,Random Search,and Bayesian Optimization,the MSCNN-BiGRU-SHA model optimized with the MI-ZOA exhibits better performance in terms of accuracy,precision,recall,and F1 score. 展开更多
关键词 Distributed denial of service attack intrusion detection deep learning zebra optimization algorithm multi-strategy integrated zebra optimization algorithm
在线阅读 下载PDF
Bearing capacity prediction of open caissons in two-layered clays using five tree-based machine learning algorithms 被引量:1
17
作者 Rungroad Suppakul Kongtawan Sangjinda +3 位作者 Wittaya Jitchaijaroen Natakorn Phuksuksakul Suraparb Keawsawasvong Peem Nuaklong 《Intelligent Geoengineering》 2025年第2期55-65,共11页
Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered so... Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered soils remains a complex challenge.This study presents a novel application of five ensemble machine(ML)algorithms-random forest(RF),gradient boosting machine(GBM),extreme gradient boosting(XGBoost),adaptive boosting(AdaBoost),and categorical boosting(CatBoost)-to predict the undrained bearing capacity factor(Nc)of circular open caissons embedded in two-layered clay on the basis of results from finite element limit analysis(FELA).The input dataset consists of 1188 numerical simulations using the Tresca failure criterion,varying in geometrical and soil parameters.The FELA was performed via OptumG2 software with adaptive meshing techniques and verified against existing benchmark studies.The ML models were trained on 70% of the dataset and tested on the remaining 30%.Their performance was evaluated using six statistical metrics:coefficient of determination(R²),mean absolute error(MAE),root mean squared error(RMSE),index of scatter(IOS),RMSE-to-standard deviation ratio(RSR),and variance explained factor(VAF).The results indicate that all the models achieved high accuracy,with R²values exceeding 97.6%and RMSE values below 0.02.Among them,AdaBoost and CatBoost consistently outperformed the other methods across both the training and testing datasets,demonstrating superior generalizability and robustness.The proposed ML framework offers an efficient,accurate,and data-driven alternative to traditional methods for estimating caisson capacity in stratified soils.This approach can aid in reducing computational costs while improving reliability in the early stages of foundation design. 展开更多
关键词 Two-layered clay Open caisson Tree-based algorithms FELA Machine learning
在线阅读 下载PDF
Path Planning for Thermal Power Plant Fan Inspection Robot Based on Improved A^(*)Algorithm 被引量:1
18
作者 Wei Zhang Tingfeng Zhang 《Journal of Electronic Research and Application》 2025年第1期233-239,共7页
To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The... To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The inspection robot utilizes multiple sensors to monitor key parameters of the fans,such as vibration,noise,and bearing temperature,and upload the data to the monitoring center.The robot’s inspection path employs the improved A^(*)algorithm,incorporating obstacle penalty terms,path reconstruction,and smoothing optimization techniques,thereby achieving optimal path planning for the inspection robot in complex environments.Simulation results demonstrate that the improved A^(*)algorithm significantly outperforms the traditional A^(*)algorithm in terms of total path distance,smoothness,and detour rate,effectively improving the execution efficiency of inspection tasks. 展开更多
关键词 Power plant fans Inspection robot Path planning Improved A^(*)algorithm
在线阅读 下载PDF
An Algorithm for Cloud-based Web Service Combination Optimization Through Plant Growth Simulation
19
作者 Li Qiang Qin Huawei +1 位作者 Qiao Bingqin Wu Ruifang 《系统仿真学报》 北大核心 2025年第2期462-473,共12页
In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-base... In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-based web services and the constraints of system resources.Then,a light-induced plant growth simulation algorithm was established.The performance of the algorithm was compared through several plant types,and the best plant model was selected as the setting for the system.Experimental results show that when the number of test cloud-based web services reaches 2048,the model being 2.14 times faster than PSO,2.8 times faster than the ant colony algorithm,2.9 times faster than the bee colony algorithm,and a remarkable 8.38 times faster than the genetic algorithm. 展开更多
关键词 cloud-based service scheduling algorithm resource constraint load optimization cloud computing plant growth simulation algorithm
原文传递
Improved algorithm of multi-mainlobe interference suppression under uncorrelated and coherent conditions 被引量:1
20
作者 CAI Miaohong CHENG Qiang +1 位作者 MENG Jinli ZHAO Dehua 《Journal of Southeast University(English Edition)》 2025年第1期84-90,共7页
A new method based on the iterative adaptive algorithm(IAA)and blocking matrix preprocessing(BMP)is proposed to study the suppression of multi-mainlobe interference.The algorithm is applied to precisely estimate the s... A new method based on the iterative adaptive algorithm(IAA)and blocking matrix preprocessing(BMP)is proposed to study the suppression of multi-mainlobe interference.The algorithm is applied to precisely estimate the spatial spectrum and the directions of arrival(DOA)of interferences to overcome the drawbacks associated with conventional adaptive beamforming(ABF)methods.The mainlobe interferences are identified by calculating the correlation coefficients between direction steering vectors(SVs)and rejected by the BMP pretreatment.Then,IAA is subsequently employed to reconstruct a sidelobe interference-plus-noise covariance matrix for the preferable ABF and residual interference suppression.Simulation results demonstrate the excellence of the proposed method over normal methods based on BMP and eigen-projection matrix perprocessing(EMP)under both uncorrelated and coherent circumstances. 展开更多
关键词 mainlobe interference suppression adaptive beamforming spatial spectral estimation iterative adaptive algorithm blocking matrix preprocessing
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部