Computational techniques are invaluable to the continued success and development of Magnetic Resonance Imaging (MRI) and to its widespread applications. New processing methods are essential for addressing issues at ea...Computational techniques are invaluable to the continued success and development of Magnetic Resonance Imaging (MRI) and to its widespread applications. New processing methods are essential for addressing issues at each stage of MRI techniques. In this study, we present new sets of non-exponential generating functions representing the NMR transverse magnetizations and signals which are mathematically designed based on the theory and dynamics of the Bloch NMR flow equations. These signals are functions of many spinning nuclei of materials and can be used to obtain information observed in all flow systems. The Bloch NMR flow equations are solved using the Boubaker polynomial expansion scheme (BPES) and analytically connect most of the experimentally valuable NMR parameters in a simplified way for general analyses of magnetic resonance imaging with adiabatic condition.展开更多
We investigate through this research the numerical inversion technique for the Laplace transforms cooperated by the integration Boubaker polynomials operational matrix.The efficiency of the presented approach is demon...We investigate through this research the numerical inversion technique for the Laplace transforms cooperated by the integration Boubaker polynomials operational matrix.The efficiency of the presented approach is demonstrated by solving some differential equations.Also,this technique is combined with the standard Laplace Homotopy Per-turbation Method.The numerical results highlight that there is a very good agreement between the estimated solutions with exact solutions.展开更多
This study proposes an analytical expression for temperature evolution inside a nano-keyhole modeled device.Several assumptions have been taken into account.The validity of the model has been tested through compatibil...This study proposes an analytical expression for temperature evolution inside a nano-keyhole modeled device.Several assumptions have been taken into account.The validity of the model has been tested through compatibility with experiment and Newtonian cooling laws.展开更多
Mathematical models and computer simulations are useful experimental tools for building and testing theories. Many mathematical models in biology can be formulated by a nonlinear system of ordinary differential equati...Mathematical models and computer simulations are useful experimental tools for building and testing theories. Many mathematical models in biology can be formulated by a nonlinear system of ordinary differential equations. This work deals with the numerical solution of the hantavirus infection model, the human immunodeficiency virus (HIV) infection model of CD4^+T cells and the susceptible-infected-removed (SIR) epidemic model using a new reliable algorithm based on shifted Boubaker Lagrangian (SBL) method. This method reduces the solution of such system to a system of linear or non- linear algebraic equations which are solved using the Newton iteration method. The obtained results of the proposed method show highly accurate and valid for an arbitrary finite interval. Also, those are compared with fourth-order Runge-Kutta (RK4) method and with the solutions obtained by some other methods in the literature.展开更多
文摘Computational techniques are invaluable to the continued success and development of Magnetic Resonance Imaging (MRI) and to its widespread applications. New processing methods are essential for addressing issues at each stage of MRI techniques. In this study, we present new sets of non-exponential generating functions representing the NMR transverse magnetizations and signals which are mathematically designed based on the theory and dynamics of the Bloch NMR flow equations. These signals are functions of many spinning nuclei of materials and can be used to obtain information observed in all flow systems. The Bloch NMR flow equations are solved using the Boubaker polynomial expansion scheme (BPES) and analytically connect most of the experimentally valuable NMR parameters in a simplified way for general analyses of magnetic resonance imaging with adiabatic condition.
文摘We investigate through this research the numerical inversion technique for the Laplace transforms cooperated by the integration Boubaker polynomials operational matrix.The efficiency of the presented approach is demonstrated by solving some differential equations.Also,this technique is combined with the standard Laplace Homotopy Per-turbation Method.The numerical results highlight that there is a very good agreement between the estimated solutions with exact solutions.
文摘This study proposes an analytical expression for temperature evolution inside a nano-keyhole modeled device.Several assumptions have been taken into account.The validity of the model has been tested through compatibility with experiment and Newtonian cooling laws.
文摘Mathematical models and computer simulations are useful experimental tools for building and testing theories. Many mathematical models in biology can be formulated by a nonlinear system of ordinary differential equations. This work deals with the numerical solution of the hantavirus infection model, the human immunodeficiency virus (HIV) infection model of CD4^+T cells and the susceptible-infected-removed (SIR) epidemic model using a new reliable algorithm based on shifted Boubaker Lagrangian (SBL) method. This method reduces the solution of such system to a system of linear or non- linear algebraic equations which are solved using the Newton iteration method. The obtained results of the proposed method show highly accurate and valid for an arbitrary finite interval. Also, those are compared with fourth-order Runge-Kutta (RK4) method and with the solutions obtained by some other methods in the literature.