We conduct a dynamical Gutzwiller mean-field study of interacting bosons on a four-leg ladder,subject to a uniform flux.The ground states dependent on the magnetic flux and kinetic tunneling strength are explored.Cons...We conduct a dynamical Gutzwiller mean-field study of interacting bosons on a four-leg ladder,subject to a uniform flux.The ground states dependent on the magnetic flux and kinetic tunneling strength are explored.Consequently,we identify the super-vortical lattice,as well as the inner-Meissner phase,which presents Meissner currents just along the intimal legs within the flux ladder.The staggered-current phase is also allowed,with its formation condition altered because of the four-leg construction.The number of legs on the flux ladder can make an effect.展开更多
Quantum photonic processors are emerging as promising platforms to prove preliminary evidence of quantum computational advantage toward the realization of universal quantum computers.In the context of nonuniversal noi...Quantum photonic processors are emerging as promising platforms to prove preliminary evidence of quantum computational advantage toward the realization of universal quantum computers.In the context of nonuniversal noisy intermediate quantum devices,photonic-based sampling machines solving the Gaussian boson sampling(GBS)problem currently play a central role in the experimental demonstration of quantum computational advantage.A relevant issue is the validation of the sampling process in the presence of experimental noise,such as photon losses,which could undermine the hardness of simulating the experiment.We test the capability of a validation protocol that exploits the connection between GBS and graph perfect match counting to perform such an assessment in a noisy scenario.In particular,we use as a test bench the recently developed machine Borealis,a large-scale sampling machine that has been made available online for external users,and address its operation in the presence of noise.The employed approach to validation is also shown to provide connections with the open question on the effective advantage of using noisy GBS devices for graph similarity and isomorphism problems and thus provides an effective method for certification of quantum hardware.展开更多
In the parameter space allowed by the electroweak precision measurement data, we consider the contributions of the new particles predicted by the littlest Higga model to the Higgs hoson associated production with top ...In the parameter space allowed by the electroweak precision measurement data, we consider the contributions of the new particles predicted by the littlest Higga model to the Higgs hoson associated production with top quark pair in the future high energy linear e^+e^- collider (ILU). We find that the contributions mainly come from the new gauge bosons ZH and BH. For reasonable values of the free parameters, the absolute value of the relative correction parameter δσ/σ^SM can be signiticanly large, which might be observed in the future ILU experiment with √S = 800 GeV.展开更多
基金supported by the Scientific Research Foundation of Hainan Tropical Ocean University(Grant No.RHDRC202301)。
文摘We conduct a dynamical Gutzwiller mean-field study of interacting bosons on a four-leg ladder,subject to a uniform flux.The ground states dependent on the magnetic flux and kinetic tunneling strength are explored.Consequently,we identify the super-vortical lattice,as well as the inner-Meissner phase,which presents Meissner currents just along the intimal legs within the flux ladder.The staggered-current phase is also allowed,with its formation condition altered because of the four-leg construction.The number of legs on the flux ladder can make an effect.
基金supported by the ERC Advanced Grant QU-BOSS(QUantum advantage via nonlinear BOSon Sampling,Grant No.884676)by ICSC-Centro Nazionale di Ricerca in High Performance Computing,Big Data,and Quantum Computing,funded by the European Union-NextGenerationEU.D.S.acknowledges Thales Alenia Space Italia for supporting the PhD fellowship.N.S.acknowledges funding from Sapienza Universitàdi Roma via Bando Ricerca 2020:Progetti di Ricerca Piccoli,Project No.RP120172B8A36B37.
文摘Quantum photonic processors are emerging as promising platforms to prove preliminary evidence of quantum computational advantage toward the realization of universal quantum computers.In the context of nonuniversal noisy intermediate quantum devices,photonic-based sampling machines solving the Gaussian boson sampling(GBS)problem currently play a central role in the experimental demonstration of quantum computational advantage.A relevant issue is the validation of the sampling process in the presence of experimental noise,such as photon losses,which could undermine the hardness of simulating the experiment.We test the capability of a validation protocol that exploits the connection between GBS and graph perfect match counting to perform such an assessment in a noisy scenario.In particular,we use as a test bench the recently developed machine Borealis,a large-scale sampling machine that has been made available online for external users,and address its operation in the presence of noise.The employed approach to validation is also shown to provide connections with the open question on the effective advantage of using noisy GBS devices for graph similarity and isomorphism problems and thus provides an effective method for certification of quantum hardware.
基金The project supported in part by the Program for New Century Excellent Talents in Universities under Grant No, NCET-04-0290, Nations/Natural Science Foundation of China under Grant Nos. 90203005 and 1047S037, and the Natural Science Foundation of Lisoning Science Committee under Grant No. 20032101
文摘In the parameter space allowed by the electroweak precision measurement data, we consider the contributions of the new particles predicted by the littlest Higga model to the Higgs hoson associated production with top quark pair in the future high energy linear e^+e^- collider (ILU). We find that the contributions mainly come from the new gauge bosons ZH and BH. For reasonable values of the free parameters, the absolute value of the relative correction parameter δσ/σ^SM can be signiticanly large, which might be observed in the future ILU experiment with √S = 800 GeV.