期刊文献+
共找到51篇文章
< 1 2 3 >
每页显示 20 50 100
Simultaneous enhancement of strength and ductility of body-centered cubic TiZrNb multi-principal element alloys via boron-doping 被引量:2
1
作者 Jingyu Pang Hongwei Zhang +6 位作者 Long Zhang Zhengwang Zhu Huameng Fu Hong Li Aimin Wang Zhengkun Li Haifeng Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第19期74-80,共7页
Body-centered cubic(BCC)multi-principal element alloys(MPEAs)have intrinsic high strength but poor ductility,which greatly limits their potential applications.Here we present the boron-doping strategy to enhance the s... Body-centered cubic(BCC)multi-principal element alloys(MPEAs)have intrinsic high strength but poor ductility,which greatly limits their potential applications.Here we present the boron-doping strategy to enhance the strength and ductility of TiZrNb MPEAs simultaneously.The yield strength and ductility of the TiZrNb MPEA with boron addition of 500 ppm are increased by 19.0%and 48.7%compared to the boron-free TiZrNb MPEA,respectively.Boron-doping induced high efficiency in grain refinement from~96.0μm to~16.2μm is the main factor for strengthening.Dislocation dominated deformation mechanism involving cross slip and dislocation pining in the TiZrNb containing 500 ppm boron serves to enhance the strain-hardening capacity,resultant the enhancement of ductility from 7.8%to 11.6%.While the planar slip of dislocations is the dominated deformation mechanism for the boron-free TiZrNb. 展开更多
关键词 boron-doping TiZrNb Grain refinement Strain-hardening capacity Deformation mechanism
原文传递
The Effects of Boron-Doping on the Electronic Properties of Blue Phosphorene
2
作者 Yejin Wu Kexin Ma +1 位作者 Zhiyong Wang Xueqiong Dai 《Graphene》 2021年第3期41-47,共7页
In this paper, the effects of different boron (nitrogen)-doping on the electronic properties of blue phosphorene have been investigated by the first-<span style="font-family:""> <span style=&qu... In this paper, the effects of different boron (nitrogen)-doping on the electronic properties of blue phosphorene have been investigated by the first-<span style="font-family:""> <span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">principles calculations. We have taken eight doping configurations into account, the calculated results show that the bond length of P-B is decreasing with the doping concentration increasing. For the four boron atoms doping configuration, the geometric structure appears the distinct distortion. The band gap is decreasing with the doping concentration increasing, and it appears the transition from indirect band gap to direct band gap for boron doping configurations. It is hoped that the calculated results may be useful for designing electronic devices based on blue phosphorene. 展开更多
关键词 Blue Phosphorene boron-doping Band Gap
在线阅读 下载PDF
Facile synthesis of boron-doped porous biochar as a metal-free adsorbent for efficient removal of aqueous tetracycline antibiotics
3
作者 Lu Xu Yuetong Qi +5 位作者 Shaolei He Chengzhi Wang Xin Jin Qize Wang Kai Wang Pengkang Jin 《Journal of Environmental Sciences》 2025年第6期235-247,共13页
This study introduced a microwave-assisted pyrolysis method for the rapid and efficientpreparation of boron-doped porous biochar. The resulting biochar exhibited a large specificsurface area (933.39 m^(2)/g), a rich p... This study introduced a microwave-assisted pyrolysis method for the rapid and efficientpreparation of boron-doped porous biochar. The resulting biochar exhibited a large specificsurface area (933.39 m^(2)/g), a rich porous structure (1.044 cm3/g), and abundant active sites.Consequently, the prepared boron-doped porous biochar exhibited higher efficiency in adsorbingtetracycline with a maximum adsorption capacity of 413.223 mg/g, which significantlyexceeded that of unmodified biochar andmost commercial and reported adsorbents.The correlation analysis between the adsorption capacity and adsorbent characteristics revealedthat the formation of the –BCO_(2) group enhanced π–π electron donor–acceptor interactionsbetween boron-doped porous biochar and tetracycline. This mechanism mainlycontributed to the enhanced adsorption of tetracycline by boron-doped porous biochar. Additionally,the as-prepared boron-doped porous biochar exhibited broad applications in removingantibiotics (tetracycline), phenolics (bisphenol A), and dyes (methylene blue andrhodamine B). Moreover, the boron-doped porous biochar exhibited satisfactory stability,and its adsorption capacity can be nearly completely regenerated through simple heat treatment.This study provides new insights into the effectiveness of boron-doped carbonaceousmaterials in removing antibiotic contaminants. 展开更多
关键词 Antibiotic contaminants Adsorption Carbonaceous adsorbents boron-doped porous biochar TETRACYCLINE
原文传递
Boron-doped carbon dots:Doping strategies,performance effects,and applications 被引量:5
4
作者 Qiang Fu Shouhong Sun +2 位作者 Kangzhi Lu Ning Li Zhanhua Dong 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第7期100-106,共7页
Due to their superior fluorescence,phosphorescence,and catalytic capabilities,carbon dots(CDs),an emerging class of fluorescent carbon nanomaterials,have a wide range of potential applications.The properties of CDs ha... Due to their superior fluorescence,phosphorescence,and catalytic capabilities,carbon dots(CDs),an emerging class of fluorescent carbon nanomaterials,have a wide range of potential applications.The properties of CDs have recently been controlled extensively by heteroatom doping.Boron atoms have been effectively doped into the structure of CDs due to their similar size to carbon atoms and excellent electron-absorbing ability to further improve the performance of CDs.In this review,we summarize the research progress of boron-doped CDs in recent years from the aspects of doping strategies,effects of boron doping on different performances of CDs and applications.Starting from the two aspects of single boron doping and boron and other atom co-doping,from different precursor materials to different synthesis methods,the doping strategies of boron-doped CDs are reviewed in detail.Then,the effects of boron doping on the fluorescence,phosphorescence and catalytic performance of CDs and applications of boron-doped CDs in optical sensors,information encryption and anti-counterfeiting are discussed.Finally,we further provide a prospect towards the future development of boron-doped CDs. 展开更多
关键词 Carbon dots boron-dopED Luminescent material Doping strategies Performance effects
原文传递
Phenol degradation by anodic oxidation on boron-doped diamond electrode combining TiO_2 Photocatalysis
5
作者 戎非 顾林娟 +2 位作者 邱烨静 付德刚 吴巍 《Journal of Southeast University(English Edition)》 EI CAS 2010年第3期421-425,共5页
Boron-doped diamond (BDD) electrocatalysis is combined with photocatalysis using titanium dioxide (TiO2) as a catalyst to improve pollutant-oxidation efficiency. Phenol solution is chosen as model wastewater. Diff... Boron-doped diamond (BDD) electrocatalysis is combined with photocatalysis using titanium dioxide (TiO2) as a catalyst to improve pollutant-oxidation efficiency. Phenol solution is chosen as model wastewater. Different methods involving BDD and/or TiO2 during the degradation processes are compared. Parameters such as the currency density and initial concentration are varied in order to determine their effects on the oxidation process. Moreover, the degradation kinetics of phenol is experimentally studied. The results reveal the superiority of series combination of BDD and TiO2, especially the treatment process of electrocatalysis and succedent photocatalysis, and the optimum working currency density for electrocatalysis is 25.48 mA/cm2. The removal rate decreases with the increase in the initial phenol concentration and the degradation reaction follows quasi-first-order kinetics equation. 展开更多
关键词 boron-doped diamond (BDD) anodic oxidation titanium dioxide PHENOL
在线阅读 下载PDF
Attracting magnetic BDD particles onto Ti/RuO_(2)-IrO_(2)by using a magnet:A novel 2.5-dimensional electrode for electrochemical oxidation wastewater treatment
6
作者 Dan Shao Yujing Lyu +6 位作者 Chengyuan Liu Hao Wang Ning Ma Hao Xu Wei Yan Xiaohua Jia Haojie Song 《Chinese Chemical Letters》 2025年第6期625-630,共6页
Boron-doped diamond(BDD)is a well-known anode material with a high pollutant degradation ability for electrochemical oxidation wastewater treatment.Nevertheless,the cost of production and mechanical strength of BDD me... Boron-doped diamond(BDD)is a well-known anode material with a high pollutant degradation ability for electrochemical oxidation wastewater treatment.Nevertheless,the cost of production and mechanical strength of BDD membranes remain unsatisfactory.Magnetic BDD particles derived from industrial waste may represent a promising alternative to BDD membranes,although the challenge remains in assembling these particles into a usable electrode.In this study,magnetic BDD particles were attracted to a Ti/RuO_(2)-IrO_(2)electrode using a magnet,thus constituting a novel 2.5-dimensional(2.5D)electrode.To ascertain the structure-activity relationship of the novel electrode,essential characterizations,multi-physics simulations,pollutant degradation and electrosynthesis experiments were conducted.The results indicate that an appropriate quantity of BDD particles(0.1 g/cm^(2))can enhance the number of active sites by approximately 20%.A strong synergistic effect was observed between the Ti/Ti/RuO_(2)-IrO_(2)and BDD particles in the degradation of various pollutants,including azo dye,p-benzoquinone,succinic acid and four kinds of real wastewaters,as well as glycerol conversion.The joint active sites on the interface between Ti/RuO_(2)-IrO_(2)and BDD particles,as well as the inner active sites on BDD particles,have been identified as crucial in the mineralization of pollutants and the generation of value-added products.The optimal amount of BDD particles(0.1 g/cm^(2))is sufficient to preserve the joint active sites and to maintain an adequate polarization on the BDD particles.Nevertheless,the hybrid feature of the 2.5D electrode is diminished when a greater quantity of BDD particles(0.3 g/cm^(2))is loaded. 展开更多
关键词 boron-doped diamond Hybrid electrode Organic wastewater Real wastewater Multi-physics simulation
原文传递
Preparation and characterization of boron-doped corn straw biochar: Fe(Ⅱ) removal equilibrium and kinetics 被引量:8
7
作者 Long Sui Chunyu Tang +3 位作者 Qing Du Ying Zhao Kui Cheng Fan Yang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2021年第8期116-123,共8页
Nowadays,iron ions as a ubiquitous heavy metal pollutant are gradually concerned and the convenient and quick removal of excessive iron ions in groundwater has become a major challenge for the safety of drinking water... Nowadays,iron ions as a ubiquitous heavy metal pollutant are gradually concerned and the convenient and quick removal of excessive iron ions in groundwater has become a major challenge for the safety of drinking water.In this study,boron-doped biochar(B-BC)was successfully prepared at various preparation conditions with the addition of boric acid.The as-prepared material has a more developed pore structure and a larger specific surface area(up to 897.97 m2/g).A series of characterization results shows that boric acid effectively activates biochar,and boron atoms are successfully doped on biochar.Compared with the ratio of raw materials,the pyrolysis temperature has a greater influence on the amount of boron doping.Based on Langmuir model,the maximum adsorption capacity of 800 B-BC1:2 at25℃,40℃,55℃ are 50.02 mg/g,95.09 mg/g,132.78 mg/g,respectively.Pseudo-second-order kinetic model can better describe the adsorption process,the adsorption process is mainly chemical adsorption.Chemical complexation,ions exchange,and co-precipitation may be the main mechanisms for Fe2+removal. 展开更多
关键词 boron-doped biochar Pyrolysis temperature Iron ions Removal mechanisms
原文传递
Electrochemical oxidation of reactive brilliant orange X-GN dye on boron-doped diamond anode 被引量:9
8
作者 MA Li ZHANG Ming-quan +4 位作者 ZHU Cheng-wu MEI Rui-qiong WEI Qiu-ping ZHOU Bo YU Zhi-ming 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第8期1825-1835,共11页
In this study,the electrochemical oxidation of reactive brilliant orange X-GN dye with a boron-doped diamond(BDD)anode was investigated.The BDD electrodes were deposited on the niobium(Nb)substrates by the hot filamen... In this study,the electrochemical oxidation of reactive brilliant orange X-GN dye with a boron-doped diamond(BDD)anode was investigated.The BDD electrodes were deposited on the niobium(Nb)substrates by the hot filament chemical vapor deposition method.The effects of processing parameters,such as film thickness,current density,supporting electrolyte concentration,initial solution pH,solution temperature,and initial dye concentration,were evaluated following the variation in the degradation efficiency.The microstructure and the electrochemical property of BDD were characterized by scanning electron microscopy,Raman spectroscopy,and electrochemical workstation;and the degradation of X-GN was estimated using UV-Vis spectrophotometry.Further,the results indicated that the film thickness of BDD had a significant impact on the electrolysis of X-GN.After 3 h of treatment,100%color and 63.2%total organic carbon removal was achieved under optimized experimental conditions:current density of 100 mA/cm2,supporting electrolyte concentration of 0.05 mol/L,initial solution pH 3.08,and solution temperature of 60°C. 展开更多
关键词 reactive brilliant orange X-GN boron-doped diamond film thickness electrochemical oxidation
在线阅读 下载PDF
Electrochemical incineration of dimethyl phthalate by anodic oxidation with boron-doped diamond electrode 被引量:5
9
作者 HOU Yining QU Jiuhui +1 位作者 ZHAO Xu LIU Huijuan 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2009年第10期1321-1328,共8页
The anodic oxidation of aqueous solutions containing dimethyl phthalate (DMP) up to 125 mg/L with sodium sulfate (Na2SO4) as supporting electrolyte within the pH range 2.0-10.0 was studied using a one-compartment ... The anodic oxidation of aqueous solutions containing dimethyl phthalate (DMP) up to 125 mg/L with sodium sulfate (Na2SO4) as supporting electrolyte within the pH range 2.0-10.0 was studied using a one-compartment batch reactor employing a boron-doped diamond (BDD) as anode. Electrolyses were carded out at constant current density (1.5-4.5 mA/cm^2). Complete mineralization was always achieved owing to the great concentration of hydroxyl radical (-OH) generated at the BDD surface. The effects of pH, apparent current density and initial DMP concentration on the degradation rate of DMP, the specific charge required for its total mineralization and mineralization current efficiency were investigated systematically. The mineralization rate of DMP was found to be pH-independent and to increase with increasing applied current density. Results indicated that this electrochemical process was subjected, at least partially, to the mass transfer of organics onto the BDD surface. Kinetic analysis of the temporal change of DMP concentration during electrolysis determined by High Performance Liquid Chromatography (HPLC) revealed that DMP decay under all tested conditions followed a pseudo first-order reaction. Aromatic intermediates and generated carboxylic acids were identified by Gas Chromatography- Mass Spectrometry (GC-MS) and a general pathway for the electrochemical incineration of DMP on BDD was proposed. 展开更多
关键词 dimethyl phthalate anodic oxidation boron-doped diamond MINERALIZATION
在线阅读 下载PDF
Electrochemical treatment of wastewater containing chlorophenols using boron-doped diamond film electrodes 被引量:4
10
作者 王建功 李学敏 《Journal of Central South University》 SCIE EI CAS 2012年第7期1946-1952,共7页
The electrochemical treatment of wastewater containing chlorophenols (2-monochlorophenol, 4-monochlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol) was carried out experimentally with synthetic boron-d0ped diam... The electrochemical treatment of wastewater containing chlorophenols (2-monochlorophenol, 4-monochlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol) was carried out experimentally with synthetic boron-d0ped diamond (BDD) thin film electrodes. Current vs time curves under different cell voltages were measured. Removal rate of COD, instant current efficiency (ICE) and energy consumption were investigated under different current densities. The influence of supporting media is reported, which plays an important role in determining the global oxidation rate. The oxidative chloride is stronger than peroxodisulphate. The electrochemical characteristics of boron-doped diamond electrodes were investigated in comparison with active coating Ti substrate anode (ACT). The experimental results show that BDD is markedly superior to ACT due to its different absorption properties. 展开更多
关键词 boron-doped diamond electrochemical treatment CHLOROPHENOL WASTEWATER
在线阅读 下载PDF
Synthesis and characterization of p-type boron-doped IIb diamond large single crystals 被引量:3
11
作者 李尚升 马红安 +4 位作者 李小雷 宿太超 黄国锋 李勇 贾晓鹏 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第2期521-526,共6页
High-quality p-type boron-doped IIb diamond large single crystals are successfully synthesized by the temperature gradient method in a china-type cubic anvil high-pressure apparatus at about 5.5 GPa and 1600 K. The mo... High-quality p-type boron-doped IIb diamond large single crystals are successfully synthesized by the temperature gradient method in a china-type cubic anvil high-pressure apparatus at about 5.5 GPa and 1600 K. The morphologies and surface textures of the synthetic diamond crystals with different boron additive quantities are characterized by using an optical microscope and a scanning electron microscope respectively. The impurities of nitrogen and boron in diamonds are detected by micro Fourier transform infrared technique. The electrical properties including resistivities, Hall coefficients, Hall mobilities and carrier densities of the synthesized samples are measured by a four-point probe and the Hall effect method. The results show that large p-type boron-doped diamond single crystals with few nitrogen impurities have been synthesized. With the increase of quantity of additive boron, some high-index crystal faces such as {113} gradually disappear, and some stripes and triangle pits occur on the crystal surface. This work is helpful for the further research and application of boron-doped semiconductor diamond. 展开更多
关键词 boron-dopED type-IIb diamond temperature gradient method semiconductor
原文传递
Electrochemical reduction of CO_2 and degradation of KHP on boron-doped diamond electrodes in a simultaneous and enhanced process 被引量:1
12
作者 Daibing Luo Shanhu Liu +1 位作者 Kazuya Nakata Akira Fujishima 《Chinese Chemical Letters》 SCIE CAS CSCD 2019年第2期509-512,共4页
In this research a novel electrochemical system using dual boron-doped diamond (BDD) electrodes as the anode and cathode, for the first time, has been developed for CO_2 conversion and wastewater treatment in a synerg... In this research a novel electrochemical system using dual boron-doped diamond (BDD) electrodes as the anode and cathode, for the first time, has been developed for CO_2 conversion and wastewater treatment in a synergetic and simultaneous process. On the BDD cathode CO_2 is converted into formaldehyde while in the anodic side organic wastes are decomposed on the BDD anode. Interestingly, when potassium hydrogen phthalate (KHP) was used as the organic model to be degraded in the anodic side, a higher efficiency of formaldehyde generation from CO_2 was observed on the BDD cathode. The enhanced effect of formaldehyde formation in the presence of KHP oxidation suggests that this novel electrochemical system can combine conversion of CO_2 to the form of high-value chemicals and wastewater purification in a simultaneous and harmonious process. 展开更多
关键词 CO2 Wlectrochemical reduction boron-dopED DIAMOND WASTEWATER treatment FORMALDEHYDE
原文传递
Integration of 3D interconnected porous microstructure and high electrochemical property for boron-doped diamond by facile strategy 被引量:1
13
作者 Zhigang Lu Nan Huang +7 位作者 Zhaofeng Zhai Bin Chen Lusheng Liu Haozhe Song Ziyao Yuan Chuyan Zhang Bing Yang Xin Jiang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第10期26-35,共10页
Three-dimensional(3D)porous boron-doped diamond(BDD)flm is an attractive electrode material but tough to synthesize.Herein,the 3D porous BDD flms were constructed in a facile and template-free way.The BDD/non-diamond ... Three-dimensional(3D)porous boron-doped diamond(BDD)flm is an attractive electrode material but tough to synthesize.Herein,the 3D porous BDD flms were constructed in a facile and template-free way.The BDD/non-diamond carbon(NDC)composite flms were frstly fabricated by hot flament chemical vapor deposition(HFCVD)technique,and then the porous BDD flms with 3D interconnected porous microstructure,different pore size and NDC-free diamond were achieved by selective removal of NDC.It is manifested that higher electrochemical response,large double layer capacitance(17.54 m F/cm^(2))in diamond electrodes,wide electrochemical window of 2.6 V and superior long-term stability were achieved for 3D porous BDD flm.This derives from the synergistic effect of microstructure and phase composition of the porous flms.3D interconnected structure possesses prominent improvement of effective surface area and accessible porous channel,signifcantly enhancing the species adsorption and mass transfer.The3D porous BDD flms,composed of NDC-free diamond,exhibit excellent structural stability and corrosion resistance,which favor the enhancement of long-term stability and water splitting overpotential.The facile fabricating approach and excellent structure/electrochemical character demonstrate the appealing application in many electrochemical felds for 3D porous BDD flms,such as energy storage and conversion,wastewater treatment and purifcation. 展开更多
关键词 boron-doped diamond 3D porous COMPOSITE ELECTROCHEMISTRY
原文传递
Effect of substrate temperature on the growth and properties of boron-doped microcrystalline silicon films 被引量:1
14
作者 雷青松 吴志猛 +3 位作者 耿新华 赵颖 孙健 奚建平 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第1期213-218,共6页
Highly conductive boron-doped hydrogenated mieroerystalline silicon (μc-Si:H) films are prepared by very high frequency plasma enhanced chemical vapour deposition (VHF PECVD) at the substrate temperatures (Ts)... Highly conductive boron-doped hydrogenated mieroerystalline silicon (μc-Si:H) films are prepared by very high frequency plasma enhanced chemical vapour deposition (VHF PECVD) at the substrate temperatures (Ts) ranging from 90℃ to 270℃. The effects of Ts on the growth and properties of the films are investigated. Results indicate that the growth rate, the electrical (dark conductivity, carrier concentration and Hall mobility) and structural (crystallinity and grain size) properties are all strongly dependent on Ts. As Ts increases, it is observed that 1) the growth rate initially increases and then arrives at a maximum value of 13.3 nm/min at Ts=210℃, 2) the crystalline volume fraction (Xc) and the grain size increase initially, then reach their maximum values at TS=140℃, and finally decrease, 3) the dark conductivity (σd), carrier concentration and Hall mobility have a similar dependence on Ts and arrive at their maximum values at Ts-190℃. In addition, it is also observed that at a lower substrate temperature Ts, a higher dopant concentration is required in order to obtain a maximum σd. 展开更多
关键词 boron-doped μc-Si:H films VHF PECVD CRYSTALLINITY carrier concentration Hall mobility
原文传递
Boron-doped Ketjenblack based high performances cathode for rechargeable Li–O2 batteries 被引量:4
15
作者 Yueyan Li Li Wang +3 位作者 Xiangming He Bin Tang Yunxue Jin Jianlong Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第1期131-135,共5页
Boron-doped Ketjenblack is attempted as cathode catalyst for non-aqueous rechargeable Li–O2 batteries. The boron-doped Ketjenblack delivers an extremely high discharge capacity of 7193 m Ah/g at a current density of ... Boron-doped Ketjenblack is attempted as cathode catalyst for non-aqueous rechargeable Li–O2 batteries. The boron-doped Ketjenblack delivers an extremely high discharge capacity of 7193 m Ah/g at a current density of 0.1 m A/cm2, and the capacity is about 2.3 times as that of the pristine KB. When the batteries are cycled with different restricted capacity, the boron-doped Ketjenblack based cathodes exhibits higher discharge platform and longer cycle life than Ketjenblack based cathodes. Additionally, the boron-doped Ketjenblack also shows a superior electrocatalytic activity for oxygen reduction in 0.1 mol/L KOH aqueous solution. The improvement in catalytic activity results from the defects and activation sites introduced by boron doping. 展开更多
关键词 Li–O2 battery Rechargeable Discharge capacity boron-doped Ketjenblack Oxygen reduction
在线阅读 下载PDF
Electrochemical decolorization of dye wastewater by surface-activated boron-doped nanocrystalline diamond electrode 被引量:1
16
作者 Chienhung Chen Ervin Nurhayati +1 位作者 Yaju Juang Chihpin Huang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2016年第7期100-107,共8页
Complex organics contained in dye wastewater are difficult to degrade and often require electrochemical advanced oxidation processes(EAOPs) to treat it. Surface activation of the electrode used in such treatment is ... Complex organics contained in dye wastewater are difficult to degrade and often require electrochemical advanced oxidation processes(EAOPs) to treat it. Surface activation of the electrode used in such treatment is an important factor determining the success of the process.The performance of boron-doped nanocrystalline diamond(BD-NCD) film electrode for decolorization of Acid Yellow(AY-36) azo dye with respect to the surface activation by electrochemical polarization was studied. Anodic polarization found to be more suitable as electrode pretreatment compared to cathodic one. After anodic polarization, the originally H-terminated surface of BD-NCD was changed into O-terminated, making it more hydrophilic.Due to the oxidation of surface functional groups and some portion of sp2 carbon in the BD-NCD film during anodic polarization, the electrode was successfully being activated showing lower background current, wider potential window and considerably less surface activity compared to the non-polarized one. Consequently, electrooxidation(EO) capability of the anodically-polarized BD-NCD to degrade AY-36 dye was significantly enhanced, capable of nearly total decolorization and chemical oxygen demand(COD) removal even after several times of re-using. The BD-NCD film electrode favored acidic condition for the dye degradation; and the presence of chloride ion in the solution was found to be more advantageous than sulfate active species. 展开更多
关键词 boron-doped NCD Surface activation Electrochemical polarization Electrooxidation Azo dye Acid Yellow(AY-36)
原文传递
Boron-Doped Diamond-Film-Based Two-Dimensional Electrode of Electrophoresis Tank
17
作者 刘钧松 李航 +4 位作者 孙博文 丁战辉 王启亮 成绍恒 李红东 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第11期120-123,共4页
Chemically robust conductive p-type boron-doped diamond (BDD) films are an important electrode material and have been widely applied in electrochemistry. In this study, BDD films are taken as a two-dimensional (2D... Chemically robust conductive p-type boron-doped diamond (BDD) films are an important electrode material and have been widely applied in electrochemistry. In this study, BDD films are taken as a two-dimensional (2D) electrode in a eleetrophoresis tank system instead of the conventional one-dimensional platinum wire electrode. The theoretical simulations by finite element numerical analysis reveal that the 2D BDD electrodes have relatively high intensity and uniformity of electric field in the tank. Experimentally, the 2D BDD electrodes with smaller size show excellent properties for the separation of DNA fragments. The advantages of the 2D BDD electrodes with chemical inertness, sustainability, high intensity and uniformity electronic field, as well as reduced small size of electrophoresis tank would open a possibility for realizing new generation, high-performance biological devices. 展开更多
关键词 of in on it is AS boron-doped Diamond-Film-Based Two-Dimensional Electrode of Electrophoresis Tank BDD
原文传递
Effect of oxygen terminated surface of boron-doped diamond thin-film electrode on seawater salinity sensing
18
作者 Dan Shi Lusheng Liu +8 位作者 Zhaofeng Zhai Bin Chen Zhigang Lu Chuyan Zhang Ziyao Yuan Meiqi Zhou Bing Yang Nan Huang Xin jiang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第27期1-10,共10页
Tremendous demands for highly sensitive and stable seawater salinometers have motivated intensive research on advanced electrode materials.Boron-doped diamond(BDD)is attractive in terms of its high mechanical stabilit... Tremendous demands for highly sensitive and stable seawater salinometers have motivated intensive research on advanced electrode materials.Boron-doped diamond(BDD)is attractive in terms of its high mechanical stability and chemical inertness,but is usually hindered by its low double-layer capacitance(C_(dl))for seawater salinity detection.Here,inspired by the principle of oxygen-terminated BDD electrode endowing higher C_(dl)than hydrogen-terminated surface,we introduce the oxygen terminated surface by oxygen plasma or reactive ion etch(RIE),and the fabricated oxygen terminated BDD electrodes demonstrate high sensitivity and long-term stability in seawater salinity detection comparing with the hydrogen terminated BDD electrodes.Significantly,the as-fabricated O-BDD-RIE electrodes not only show remarkable enhanced response even better than the commercial platinum black electrodes but also display long-time stability which is weekly verified by continuous monitor for 90 days.The outstanding performance of the oxygen terminated BDD electrodes can be ascribed to the enhancement of C-O surface functional group on C_(dl).In addition,a comprehensive analysis of effective electroactive surface area(EASA)and C_(dl)proves that the surface oxygen is the major factor for the improved C_(dl).In summary,the excellent oxygen terminated BDD electrodes promise potential application in seawater salinity detection. 展开更多
关键词 boron-doped diamond CAPACITANCE Oxygen plasma Reactive ion etch Seawater salinity
原文传递
Pseudo-Bonding Interaction between Boron-doped Heterofullerene and Zinc Porphine Predicted by DFT Calculation
19
作者 Jun-ying Weng Ting-ting Zhou Ying-hui Zhang 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2014年第3期285-290,共6页
Theoretical study on the supramolecular complexes formed between boron-doped het- erofullerene (C59B) and zinc porphine (ZnF), namely C59B-ZnP and its anion species C59B-ZnP, was performed by density functional th... Theoretical study on the supramolecular complexes formed between boron-doped het- erofullerene (C59B) and zinc porphine (ZnF), namely C59B-ZnP and its anion species C59B-ZnP, was performed by density functional theory calculation at wB97XD/6-31G(d) level. Strong interaction between porphyrin and heterofullerene moiety was predicted for these complexes based on geometry and electronic structure analysis. Especially, pseudobonding interaction occurring between the B atom of fullerene and the N atom of porphyrin was predicted to occur in C59B-ZnP complex, but be broken in C59B-ZnP complex. Time-dependent density functional theory calculation manifests the redshift of electron absorption for ZnP upon the interaction with heterofullerene. 展开更多
关键词 boron-doped fullerene Zinc porphine Supramolecular complex DFT calculation
在线阅读 下载PDF
Ohmic and Schottky contacts of hydrogenated and oxygenated boron-doped single-crystal diamond with hill-like polycrystalline grains
20
作者 Jing-Cheng Wang Hao Chen +6 位作者 Lin-Feng Wan Cao-Yuan Mu Yao-Feng Liu Shao-Heng Cheng Qi-Liang Wang Liu-An Li Hong-Dong Li 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第9期429-433,共5页
Hill-like polycrystalline diamond grains(HPDGs)randomly emerged on a heavy boron-doped p+single-crystal diamond(SCD)film by prolonging the growth duration of the chemical vapor deposition process.The Raman spectral re... Hill-like polycrystalline diamond grains(HPDGs)randomly emerged on a heavy boron-doped p+single-crystal diamond(SCD)film by prolonging the growth duration of the chemical vapor deposition process.The Raman spectral results confirm that a relatively higher boron concentration(~1.1×10^(21) cm^(-3))is detected on the HPDG with respect to the SCD region(~5.4×10^(20) cm^(-3)).It demonstrates that the Au/SCD interface can be modulated from ohmic to Schottky contact by varying the surface from hydrogen to oxygen termination.The current-voltage curve between two HPDGs is nearly linear with either oxygen or hydrogen termination,which means that the HPDGs provide a leakage path to form an ohmic contact.There are obvious rectification characteristics between oxygen-terminated HPDGs and SCD based on the difference in boron doping levels in those regions.The results reveal that the highly boron-doped HPDGs grown in SCD can be adopted as ohmic electrodes for Hall measurement and electronic devices. 展开更多
关键词 CVD diamond film boron-doped diamond film ohmic contact Schottky junction
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部