The main challenge in bone ultrasound imaging is the large acoustic impedance contrast and sound velocity differences between the bone and surrounding soft tissue. It is difficult for conventional pulse-echo modalitie...The main challenge in bone ultrasound imaging is the large acoustic impedance contrast and sound velocity differences between the bone and surrounding soft tissue. It is difficult for conventional pulse-echo modalities to give accurate ultrasound images for irregular bone boundaries and microstructures using uniform sound velocity assumption rather than getting a prior knowledge of sound speed. To overcome these limitations, this paper proposed a frequency-domain fullwaveform inversion(FDFWI) algorithm for bone quantitative imaging utilizing ultrasonic computed tomography(USCT).The forward model was calculated in the frequency domain by solving the full-wave equation. The inverse problem was solved iteratively from low to high discrete frequency components via minimizing a cost function between the modeled and measured data. A quasi-Newton method called the limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm(L-BFGS) was utilized in the optimization process. Then, bone images were obtained based on the estimation of the velocity and density. The performance of the proposed method was verified by numerical examples, from tubular bone phantom to single distal fibula model, and finally with a distal tibia-fibula pair model. Compared with the high-resolution peripheral quantitative computed tomography(HR-p QCT), the proposed FDFWI can also clearly and accurately presented the wavelength scaled pores and trabeculae in bone images. The results proved that the FDFWI is capable of reconstructing high-resolution ultrasound bone images with sub-millimeter resolution. The parametric bone images may have the potential for the diagnosis of bone disease.展开更多
The study aimed to examine changes in trabecular bone microstructure (TBMS) during the period of 5 weeks after the injury in a rat model of spinal cord injury (SCI). Eight-week-old male Wistar rats underwent surgi...The study aimed to examine changes in trabecular bone microstructure (TBMS) during the period of 5 weeks after the injury in a rat model of spinal cord injury (SCI). Eight-week-old male Wistar rats underwent surgical transection of the lower thoracic spinal cord (SCI, n = 16) or sham operation (SHAM, n = 14). TBMS (tissue volume, bone volume, bone volume fraction, trabecular thickness, width, number, separation, connectivity density, and trabecular bone pattern factor), assessed using a micro-computed tomography, was deteriorated 1, 3 and 5 weeks after SCI. In addition, both bone mass and serum biochemical parameters were determined. Dry bone weight, ash weight, bone mineral content (BMC), and BMC/tissue-volume were significantly lower in the SCI group than in the SHAM group throughout the experimental period. Serum inorganic phosphate and alkaline phosphatase levels were significantly lower in the SCI group than in the SHAM group 1 week after the surgery. SCI resulted in rapid deterioration of both bone mass and microstructure. These changes appeared as early as 1 week after SCI. Based on the authors' results, it should be noted that in SCI patients, interventions for preventing bone loss should start as soon as possible after the injury.展开更多
Background:Cadmium(Cd)exposure disrupts bone microstructure and elevates osteoporosis risk,warranting innovative functional food development to alleviate its toxic effects.This study evaluated the protective effects o...Background:Cadmium(Cd)exposure disrupts bone microstructure and elevates osteoporosis risk,warranting innovative functional food development to alleviate its toxic effects.This study evaluated the protective effects of calcium(Ca)and chlorogenic acid(CGA)against Cd-induced bone damage,intestinal injury,and gut microbiota dysbiosis in rats.Methods:Thirty-two female Sprague-Dawley rats were allocated to four groups:control(Con),Cd-exposed(Cd),Cd+calcium gluconate(Ca),and Cd+CGA(CGA).Eight weeks after the experiment,histopathological analyses of bone and intestinal tissues,Cd content measurements,and gut microbiota composition assessments were conducted.Concurrently,serum superoxide dismutase(SOD)activity was determined.Results:Cd exposure significantly increased serum SOD levels and bone Cd levels(P<0.05),which was significantly attenuated under Ca and CGA interventions,with CGA showing superior efficacy(P<0.05).Histological analysis revealed Cd-induced trabecular resorption and adipocyte proliferation in bone,which were ameliorated by both interventions.CGA administration significantly improved intestinal morphological parameters(villous height,crypt depth)and reduced Chiu scores(P<0.05),whereas Ca had limited impact.Gut microbiota analysis indicated Cd exposure induced microbial dysbiosis,characterized by elevatedα-diversity indices(Chao1 and Shannon),which Ca partially stabilized by enriching beneficial taxa(e.g.,Lactobacillaceae).Conversely,CGA reduced microbial diversity but enhanced barrier-related metabolic pathways(e.g.,nucleotide biosynthesis).Both Ca and CGA interventions effectively reduced Proteobacteria abundance and partially restored the Firmicutes/Bacteroidetes(F/B)ratio,However,genus-level responses diverged significantly:Ca specifically enriched Blautia;CGA,in contrast,promoted Bifidobacterium and Oscillospira.Conclusion:Ca and CGA differentially protect against Cd toxicity.Integrating Ca-fortified foods(via competitive inhibition of Cd absorption)with CGA-rich extracts(via antioxidant activity and microbiota modulation)may provide dual-targeted functional formulations for Cd-exposed populations.展开更多
Kannemeyeriiformes were dominated tetrapods in the Middle Triassic terrestrial faunae of China.Although abundant materials of Sinokannemeyeria have been collected, their postcranial morphology information is not well ...Kannemeyeriiformes were dominated tetrapods in the Middle Triassic terrestrial faunae of China.Although abundant materials of Sinokannemeyeria have been collected, their postcranial morphology information is not well studied, especially the juveniles. This paper presents a description of an articulated Sinokannemeyeria skeleton from the Middle Triassic Ermaying Formation and reports the histological microstructure of its femur. This specimen represents a late-stage juvenile based on the histological information. For the first time, this specimen offers insights into the postcrania information of juvenile Sinokannemeyeria.展开更多
Type 2 diabetes markedly elevates fracture risk despite normal or high bone mineral density,a paradox reflecting qualitative skeletal deficits rather than loss of mass.Chronic hyperglycemia fosters the accumulation of...Type 2 diabetes markedly elevates fracture risk despite normal or high bone mineral density,a paradox reflecting qualitative skeletal deficits rather than loss of mass.Chronic hyperglycemia fosters the accumulation of advanced glycation end products in bone;their nonenzymatic crosslinks stiffen type I collagen,impair mineralization,and erode mechanical strength.By engaging the receptor for advanced glycation end products,these adducts activate nuclear factorκB and mitogen-activated protein kinase cascades,amplifying oxidative stress,inflammation,osteoblast dysfunction,and osteoclastogenesis.This review synthesizes epidemiological data from type 1 and type 2 diabetes,highlights the limits of densitybased skeletal assessment,and details the molecular pathology of the glycation-collagen axis.It also appraises antiglycation therapies,including formation inhibitors,crosslink breakers and receptor antagonists,with a particular focus on sodium-glucose cotransporter 2 inhibitors that couple glycemic control with modulation of the glycation pathway.By integrating recent basic and clinical advances,we propose a mechanistic framework for diabetic bone disease and outline strategies to mitigate glycationdriven skeletal fragility.展开更多
Ultrasonic backscatter signals from cancellous bone are sensitive to the microstructure of trabecular bone,and thus enable the feasibility to extract microstructural information of trabecular bone.The mean trabecular ...Ultrasonic backscatter signals from cancellous bone are sensitive to the microstructure of trabecular bone,and thus enable the feasibility to extract microstructural information of trabecular bone.The mean trabecular bone spacing(MTBS)is an important parameter for characterizing bone microstructure.This paper proposes an MTBS estimation method based on the combination of Hilbert transform and fundamental frequency estimation(CHF). The CHF was verified with ultrasonic backscatter signals from simulations and in vitro measurements at a central frequency of 5MHz.The CHF method was compared with the simplified inverse filter tracking(SIFT)method,Simons' Quadratic Transformation(QT)method,Singular Spectrum Analysis(SSA)method,and Spectral Autocorrelation(SAC)method.Monte-Carlo simulations were performed by varying the MTBS,signal-to-noise ratio(SNR),standard deviation of regular spacing(SDRS),amplitude ratio of diffuse scattering to regular scattering(Ad)and frequency dependent attenuation(nBUA).The simulation results showed that the CHF method had a better performance in MTBS estimation under almost all the examination conditions except for SNR.The estimation percentage correct(EPC)was greater than 90% when the MTBS was in the range of 0.4to 1.4mm.In the in vitro measurements,the estimated EPC by the CHF method was91.25±7.81%(mean±standard deviation).A significant correlation was observed for the CHF-estimated MTBS and micro-computed tomography(μ-CT)-measured values(R^2=0.75,p<0.01).These results demonstrate that the CHF method is anti-interference for MTBS estimation and can be used to estimate trabecular bone spacing.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11827808,11874289,and 11804056)the National Science Fund for Distinguished Young Scholars of China(Grant No.11525416)+3 种基金Shanghai Municipal Science and Technology Major Project,China(Grant No.2017SHZDZX01)Shanghai Talent Development Fund(Grant No.2018112)State Key Laboratory of ASIC and System Project(Grant No.2018MS004)China Postdoctoral Science Foundation(Grant No.2019M661334)。
文摘The main challenge in bone ultrasound imaging is the large acoustic impedance contrast and sound velocity differences between the bone and surrounding soft tissue. It is difficult for conventional pulse-echo modalities to give accurate ultrasound images for irregular bone boundaries and microstructures using uniform sound velocity assumption rather than getting a prior knowledge of sound speed. To overcome these limitations, this paper proposed a frequency-domain fullwaveform inversion(FDFWI) algorithm for bone quantitative imaging utilizing ultrasonic computed tomography(USCT).The forward model was calculated in the frequency domain by solving the full-wave equation. The inverse problem was solved iteratively from low to high discrete frequency components via minimizing a cost function between the modeled and measured data. A quasi-Newton method called the limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm(L-BFGS) was utilized in the optimization process. Then, bone images were obtained based on the estimation of the velocity and density. The performance of the proposed method was verified by numerical examples, from tubular bone phantom to single distal fibula model, and finally with a distal tibia-fibula pair model. Compared with the high-resolution peripheral quantitative computed tomography(HR-p QCT), the proposed FDFWI can also clearly and accurately presented the wavelength scaled pores and trabeculae in bone images. The results proved that the FDFWI is capable of reconstructing high-resolution ultrasound bone images with sub-millimeter resolution. The parametric bone images may have the potential for the diagnosis of bone disease.
文摘The study aimed to examine changes in trabecular bone microstructure (TBMS) during the period of 5 weeks after the injury in a rat model of spinal cord injury (SCI). Eight-week-old male Wistar rats underwent surgical transection of the lower thoracic spinal cord (SCI, n = 16) or sham operation (SHAM, n = 14). TBMS (tissue volume, bone volume, bone volume fraction, trabecular thickness, width, number, separation, connectivity density, and trabecular bone pattern factor), assessed using a micro-computed tomography, was deteriorated 1, 3 and 5 weeks after SCI. In addition, both bone mass and serum biochemical parameters were determined. Dry bone weight, ash weight, bone mineral content (BMC), and BMC/tissue-volume were significantly lower in the SCI group than in the SHAM group throughout the experimental period. Serum inorganic phosphate and alkaline phosphatase levels were significantly lower in the SCI group than in the SHAM group 1 week after the surgery. SCI resulted in rapid deterioration of both bone mass and microstructure. These changes appeared as early as 1 week after SCI. Based on the authors' results, it should be noted that in SCI patients, interventions for preventing bone loss should start as soon as possible after the injury.
基金supported by Guizhou Provincial Basic Research Program(Natural Science)(Qiankeheji-ZK[2021]General 497)Guizhou Health and Wellness Commission Science and Technology Fund Project(2024-247)Guizhou University of Traditional Chinese Medicine Academic Seedling Program(Guizhou Kehe Academic Seedling[2023]-35),The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine Institutional Research Grants(GZEYK[2020-34]).
文摘Background:Cadmium(Cd)exposure disrupts bone microstructure and elevates osteoporosis risk,warranting innovative functional food development to alleviate its toxic effects.This study evaluated the protective effects of calcium(Ca)and chlorogenic acid(CGA)against Cd-induced bone damage,intestinal injury,and gut microbiota dysbiosis in rats.Methods:Thirty-two female Sprague-Dawley rats were allocated to four groups:control(Con),Cd-exposed(Cd),Cd+calcium gluconate(Ca),and Cd+CGA(CGA).Eight weeks after the experiment,histopathological analyses of bone and intestinal tissues,Cd content measurements,and gut microbiota composition assessments were conducted.Concurrently,serum superoxide dismutase(SOD)activity was determined.Results:Cd exposure significantly increased serum SOD levels and bone Cd levels(P<0.05),which was significantly attenuated under Ca and CGA interventions,with CGA showing superior efficacy(P<0.05).Histological analysis revealed Cd-induced trabecular resorption and adipocyte proliferation in bone,which were ameliorated by both interventions.CGA administration significantly improved intestinal morphological parameters(villous height,crypt depth)and reduced Chiu scores(P<0.05),whereas Ca had limited impact.Gut microbiota analysis indicated Cd exposure induced microbial dysbiosis,characterized by elevatedα-diversity indices(Chao1 and Shannon),which Ca partially stabilized by enriching beneficial taxa(e.g.,Lactobacillaceae).Conversely,CGA reduced microbial diversity but enhanced barrier-related metabolic pathways(e.g.,nucleotide biosynthesis).Both Ca and CGA interventions effectively reduced Proteobacteria abundance and partially restored the Firmicutes/Bacteroidetes(F/B)ratio,However,genus-level responses diverged significantly:Ca specifically enriched Blautia;CGA,in contrast,promoted Bifidobacterium and Oscillospira.Conclusion:Ca and CGA differentially protect against Cd toxicity.Integrating Ca-fortified foods(via competitive inhibition of Cd absorption)with CGA-rich extracts(via antioxidant activity and microbiota modulation)may provide dual-targeted functional formulations for Cd-exposed populations.
基金jointly supported by Department of Natural Resources of Shanxi Provincethe Strategic Priority Research Program of Chinese Academy of Sciences (XDB26000000)。
文摘Kannemeyeriiformes were dominated tetrapods in the Middle Triassic terrestrial faunae of China.Although abundant materials of Sinokannemeyeria have been collected, their postcranial morphology information is not well studied, especially the juveniles. This paper presents a description of an articulated Sinokannemeyeria skeleton from the Middle Triassic Ermaying Formation and reports the histological microstructure of its femur. This specimen represents a late-stage juvenile based on the histological information. For the first time, this specimen offers insights into the postcrania information of juvenile Sinokannemeyeria.
基金Supported by Clinical Medical Research Fund of the Zhejiang Medical Association,No.2025ZYC-Z32Henan Provincial Key Research and Development Program,No.231111311000+1 种基金Henan Provincial Science and Technology Research Project,No.232102310411Clinical Medical Research Fund of the Zhejiang Medical Association,2024ZYC-Z30.
文摘Type 2 diabetes markedly elevates fracture risk despite normal or high bone mineral density,a paradox reflecting qualitative skeletal deficits rather than loss of mass.Chronic hyperglycemia fosters the accumulation of advanced glycation end products in bone;their nonenzymatic crosslinks stiffen type I collagen,impair mineralization,and erode mechanical strength.By engaging the receptor for advanced glycation end products,these adducts activate nuclear factorκB and mitogen-activated protein kinase cascades,amplifying oxidative stress,inflammation,osteoblast dysfunction,and osteoclastogenesis.This review synthesizes epidemiological data from type 1 and type 2 diabetes,highlights the limits of densitybased skeletal assessment,and details the molecular pathology of the glycation-collagen axis.It also appraises antiglycation therapies,including formation inhibitors,crosslink breakers and receptor antagonists,with a particular focus on sodium-glucose cotransporter 2 inhibitors that couple glycemic control with modulation of the glycation pathway.By integrating recent basic and clinical advances,we propose a mechanistic framework for diabetic bone disease and outline strategies to mitigate glycationdriven skeletal fragility.
基金supported by the NSFC(11327405,11504057&11525416)
文摘Ultrasonic backscatter signals from cancellous bone are sensitive to the microstructure of trabecular bone,and thus enable the feasibility to extract microstructural information of trabecular bone.The mean trabecular bone spacing(MTBS)is an important parameter for characterizing bone microstructure.This paper proposes an MTBS estimation method based on the combination of Hilbert transform and fundamental frequency estimation(CHF). The CHF was verified with ultrasonic backscatter signals from simulations and in vitro measurements at a central frequency of 5MHz.The CHF method was compared with the simplified inverse filter tracking(SIFT)method,Simons' Quadratic Transformation(QT)method,Singular Spectrum Analysis(SSA)method,and Spectral Autocorrelation(SAC)method.Monte-Carlo simulations were performed by varying the MTBS,signal-to-noise ratio(SNR),standard deviation of regular spacing(SDRS),amplitude ratio of diffuse scattering to regular scattering(Ad)and frequency dependent attenuation(nBUA).The simulation results showed that the CHF method had a better performance in MTBS estimation under almost all the examination conditions except for SNR.The estimation percentage correct(EPC)was greater than 90% when the MTBS was in the range of 0.4to 1.4mm.In the in vitro measurements,the estimated EPC by the CHF method was91.25±7.81%(mean±standard deviation).A significant correlation was observed for the CHF-estimated MTBS and micro-computed tomography(μ-CT)-measured values(R^2=0.75,p<0.01).These results demonstrate that the CHF method is anti-interference for MTBS estimation and can be used to estimate trabecular bone spacing.