Carbon superstructures with multiscale hierarchies and functional attributes represent an appealing cathode candidate for zinc hybrid capacitors,but their tailor-made design to optimize the capacitive activity remains...Carbon superstructures with multiscale hierarchies and functional attributes represent an appealing cathode candidate for zinc hybrid capacitors,but their tailor-made design to optimize the capacitive activity remains a confusing topic.Here we develop a hydrogen-bond-oriented interfacial super-assembly strategy to custom-tailor nanosheet-intertwined spherical carbon superstructures(SCSs)for Zn-ion storage with double-high capacitive activity and durability.Tetrachlorobenzoquinone(H-bond acceptor)and dimethylbenzidine(H-bond donator)can interact to form organic nanosheet modules,which are sequentially assembled,orientally compacted and densified into well-orchestrated superstructures through multiple H-bonds(N-H···O).Featured with rich surface-active heterodiatomic motifs,more exposed nanoporous channels,and successive charge migration paths,SCSs cathode promises high accessibility of built-in zincophilic sites and rapid ion diffusion with low energy barriers(3.3Ωs-0.5).Consequently,the assembled Zn||SCSs capacitor harvests all-round improvement in Zn-ion storage metrics,including high energy density(166 Wh kg-1),high-rate performance(172 m Ah g^(-1)at 20 A g^(-1)),and long-lasting cycling lifespan(95.5%capacity retention after 500,000 cycles).An opposite chargecarrier storage mechanism is rationalized for SCSs cathode to maximize spatial capacitive charge storage,involving high-kinetics physical Zn^(2+)/CF_(3)SO_(3)-adsorption and chemical Zn^(2+)redox with carbonyl/pyridine groups.This work gives insights into H-bond-guided interfacial superassembly design of superstructural carbons toward advanced energy storage.展开更多
Titanium plates with a Ti−O solid solution surface-hardened layer were cold roll-bonded with 304 stainless steel plates with high work hardening rates.The evolution and mechanisms affecting the interfacial bonding str...Titanium plates with a Ti−O solid solution surface-hardened layer were cold roll-bonded with 304 stainless steel plates with high work hardening rates.The evolution and mechanisms affecting the interfacial bonding strength in titanium/stainless steel laminated composites were investigated.Results indicate that the hardened layer reduces the interfacial bonding strength from over 261 MPa to less than 204 MPa.During the cold roll-bonding process,the hardened layer fractures,leading to the formation of multi-scale cracks that are difficult for the stainless steel to fill.This not only hinders the development of an interlocking interface but also leads to the presence of numerous microcracks and hardened blocks along the nearly straight interface,consequently weakening the interfacial bonding strength.In metals with high work hardening rates,the conventional approach of enhancing interface interlocking and improving interfacial bonding strength by using a surface-hardened layer becomes less effective.展开更多
The study of the shear behavior of bonded rock-cement interface is important for understanding the strength and stability of grouted rock masses.This research aims to reveal the failure mechanism behind the shear prop...The study of the shear behavior of bonded rock-cement interface is important for understanding the strength and stability of grouted rock masses.This research aims to reveal the failure mechanism behind the shear property of bonded rock-cement interfaces.For the study,sandstone and granite joint blocks with specific morphology were fabricated by using a three-dimensional(3D)engraving technique.Bonded rock-cement joints with asperity inclination angles of 15°,30°,and 45°were prepared.Shear tests were performed on these bonded rock-cement joints to investigate the shear response and failure modes considering the effect of applied normal stress and interface morphology.Meanwhile,the two-dimensional particle flow code(PFC2D)was utilized to model the entire shear process of bonded rock-cement interfaces.The macroscopic shear behavior and mesoscopic failure mechanism were comprehensively investigated by the laboratory test and numerical simulation.The results showed that the shear stress-displacement curves of bonded rock-cement joints exhibit two distinct peaks,and the shear stress evolution can be categorized into four stages including elastic growth,rapid stress drop,secondary stress growth,and progressive softening.Significantly,the number of acoustic emission events also exhibits two distinct peaks related to the double peak of the shear stress curves.The failure of bonded rock-cement interfaces is mainly induced by shear fractures,while the failure of rock and cement blocks is primarily caused by tensile fractures.The number of shear cracks in the bonded rock-cement interfaces reaches the peak when the shear stress reaches the primary peak;whereas as the shear stress continuously approaches the residual stage,the fracture of the bonded rock-cement joints is primarily characterized by tensile cracks in the blocks.展开更多
The effects of various hot deformation states on the evolution of microstructures and mechanical properties in diffusion bonded TC4 alloys were investigated using the hot bending of thick plates.Finite element simulat...The effects of various hot deformation states on the evolution of microstructures and mechanical properties in diffusion bonded TC4 alloys were investigated using the hot bending of thick plates.Finite element simulations were conducted to characterize the deformation states during bending at 750℃ with angles of 17°and 32°.The microstructures and mechanical properties of the bonding interface were then analyzed.The joint subjected to uniaxial stress exhibited the highest ultimate tensile strength,which was attributed to the significant accumulation of dislocation density and the low-angle grain boundaries within the grains.The texture strengthening in the basal{0001}plane was also observed,along with a relatively low Schmid factor corresponding to the primary slip systems aligned with the deformation direction.In contrast,the joint under stress-free conditions showed a slip direction that was less favorable for deformation,resulting in an ultimate tensile strength higher than that of the joint under biaxial stress conditions.展开更多
The wet-assembly hybrid bonded/bolted(WHBB)joint is increasingly employed in aircraft fuel tank structures owing to its advantageous mechanical strength and sealing performance.However,the integral tank is susceptible...The wet-assembly hybrid bonded/bolted(WHBB)joint is increasingly employed in aircraft fuel tank structures owing to its advantageous mechanical strength and sealing performance.However,the integral tank is susceptible to leakage during service,particularly at the joint,which seriously endangers the flight safety of the aircraft.In this paper,a leakage prediction method of WHBB joint based on porous media theory is proposed,in which the shape and characteristic length of the sealant layer are taken into consideration.The model parameters are determined by the analysis and treatment of the defect state of the WHBB joint section.The prediction results agree well with the experimental data,which were acquired by self-designed sealing leakage rate measurement system,and the deviation between the predicted results and the average value of the experimental data is less than 20%.Furthermore,in order to verify the environmental adaptability,the prediction results based on 2D cutting sections of the joints and experimental results under three different loading conditions are compared.The comparison results not only prove the accuracy of the prediction model,but also reveal the important influence of tensile fatigue load on the sealing performance of the structure.The tensile fatigue loads lead to two orders of magnitude increase in leakage rate,and the reason is that the repeated stretching and compression process lead to an increase in interfacial cracks between the adhesive layer and the hole wall,thereby accentuating the defects within the adhesive layer.展开更多
In the Pidgeon process involving a vertical pot,bonded slag pellets occasionally emerge at the bottom of the reduction pot,impeding smooth slag discharge.To reveal the formation mechanism of the bonded slag pellets,th...In the Pidgeon process involving a vertical pot,bonded slag pellets occasionally emerge at the bottom of the reduction pot,impeding smooth slag discharge.To reveal the formation mechanism of the bonded slag pellets,thermodynamic calculations,X-ray diffraction(XRD),X-ray fluorescence spectrometry(XRF),electron probe microanalyzer(EPMA),X-ray photoelectron spectroscopy(XPS),and differential scanning calorimetry(DSC)were employed.The bonded slag pellets mainly comprise MgO,CaSi_(2),CaO,and Ca2SiO_(4).CaSi_(2) in the bonded slag pellets is attributed to the reduction reaction between Si and CaO,yielding liquid CaSi_(2).Simultaneously,the reaction between CaSi_(2) and MgO,which will typically produce Mg vapor,is inhibited,resulting in the accumulation of CaSi_(2).Owing to the solid-liquid transition of CaSi_(2),this process culminates in the bonding of slag pellets.This study can guide the Pidgeon process optimization,enabling mitigation of the“dead pot”issue,thereby enhancing efficiency and reducing costs.展开更多
Efficient conversion and synergistic solar energy utilization are critical for advancing low-carbon and sustainable development.In this study,two Pt(Ⅱ)-based metal/halogen-bonded organic frameworks(MXOFBen and MXOF-A...Efficient conversion and synergistic solar energy utilization are critical for advancing low-carbon and sustainable development.In this study,two Pt(Ⅱ)-based metal/halogen-bonded organic frameworks(MXOFBen and MXOF-Anth)were designed to enhance photoconversion efficiency and enable multifunctional integration.The ligand L-terpyr is formed by coupling tripyridine with diphenylamine dipyridine,in which the tripyridine effectively acts as a metal-ligand to lower the band gap and promote nonradiative leaps,thereby enhancing the photoconversion ability.Meanwhile,diphenylamine dipyridine serves as a[N…I^(+)…N]halogen-bonding acceptor,imparting superhydrophilicity to the materials and increasing carrier density,further improving photocatalytic performance.Experimental results demonstrate that these two MXOFs achieve impressive interfacial water evaporation efficiencies of up to87.8%and 94.0%,respectively.Additionally,the materials exhibit excellent performance in photothermal power generation and photocatalysis of H_(2)O_(2).Notably,the MXOFs also deliver strong overall performance in integrated systems combining interfacial water evaporation with photothermal power generation or photocatalysis,underscoring their exceptional photoconversion efficiency and multifunctional potential.This work introduces a novel strategy by incorporating metal-ligand and halogen bonds,offering a pathway to enhance photoconversion efficiency and develop versatile materials for advanced solar energy applications,thereby fostering the progress of high-efficiency solar energy conversion and multifunctional organic materials.展开更多
In order to improve the densification of Si_(3)N_(4) bonded SiC refractories and reduce the nitriding temperature of Si powder,Si_(3)N_(4) bonded SiC refractories were produced by reaction sintering at 1350℃ for 5 h ...In order to improve the densification of Si_(3)N_(4) bonded SiC refractories and reduce the nitriding temperature of Si powder,Si_(3)N_(4) bonded SiC refractories were produced by reaction sintering at 1350℃ for 5 h under a carbon embedded atmosphere,using SiC particles and fine powder,and Si powder as the main raw materials,and introducing Ti-Si-Fe alloy extracted from high-titanium blast furnace slag to partially replace the Si powder.The effects of the Ti-Si-Fe alloy addition(0,1.8%,3.6%,5.4%,and 7.2%,by mass)on the nitriding behavior of Si powder,as well as on the mechanical properties and microstructure of the material were investigated,and the nitriding reaction sintering mechanism was also explored.The results show that:(1)with the increase of the Ti-Si-Fe alloy addition,the cold mechanical properties and the hot modulus of rupture of the refractories are obviously improved,and the refractoriness under load exceeds 1700℃;the property enhancement slows down with Ti-Si-Fe alloys addition above 3.6%;(2)Ti-Si-Fe alloy promotes the complete nitridation of Si powder and the reaction sintering of the material at a lower temperature;the volume growth during the nitridation process of the Ti-Si-Fe alloys and Si powder can effectively fill pores,nitriding products improve the bonding state between aggregates and matrix,and that inside matrix,thereby increasing the densification and improving the mechanical properties of the material;(3)after the introduction of Ti-Si-Fe alloys,the liquid phase rich in Ti,Si,N,and Fe components is formed in the reaction system;besides the traditional VS and VLS mechanisms,the dissolution-precipitation mechanism plays a leading role in the formation of short columnar β-Si_(3)N_(4) and granular TiN;and the cross-linked α-Si_(3)N_(4) whisker,short columnar β-Si_(3)N_(4) and granular TiN enhance the mechanical properties of the material.展开更多
To improve the seismic performance of unrein-forced masonry(URM)buildings in the Himalayan re-gions,including Western China,India,Nepal,and Paki-stan,a low-cost bonded scrap tire rubber isolator(BSTRI)is proposed,and ...To improve the seismic performance of unrein-forced masonry(URM)buildings in the Himalayan re-gions,including Western China,India,Nepal,and Paki-stan,a low-cost bonded scrap tire rubber isolator(BSTRI)is proposed,and a series of vertical compression and horizontal shear tests are conducted.Incremental dynamic analyses are conducted for five types of BSTRI-supported URM buildings subjected to 22 far-field and 28 near-field earthquake ground motions.The resulting fragility curves and probability of damage curves are presented and utilized to evaluate the damage states of these buildings.The results show that in the base-isolated(BI)URM buildings under seismic ground motion at a peak ground acceleration(PGA)of 1.102g,the probability of exceeding the collapse prevention threshold is less than 25%under far-field earthquake ground motions and 31%under near-field earthquake ground motions.Furthermore,the maximum average vulnerability index for the BI-URM buildings,which are designed to withstand rare earthquakes with 9°(PGA=0.632g),is 40.87%for far-field earthquake ground motions and 41.83%for near-field earthquake ground motions.Therefore,the adoption of BSTRIs can significantly reduce the collapse probability of URM buildings.展开更多
With the acceleration of industrialization,the pollution problem of sulfur dioxide(SO_(2))emitted from coal-fired power plants has become increasingly severe.Although wet flue gas desulfurization(FGD)technology can re...With the acceleration of industrialization,the pollution problem of sulfur dioxide(SO_(2))emitted from coal-fired power plants has become increasingly severe.Although wet flue gas desulfurization(FGD)technology can remove about 95%of SO_(2),its high energy consumption and the corrosion risk of downstream equipment caused by residual SO_(2)(500–3000 ppm)still need to be addressed[1].Previous porous materials(such as MOFs)achieve selective adsorption of SO_(2) through open metal sites,M–OH sites or functional organic groups,but the problem of CO_(2) co-adsorption limits their practical application[2].In recent years,hydrogen-bonded organic frameworks(HOFs)have emerged as a research hotspot due to their reversible hydrogen-bonding networks and flexible structures[3],but their stability under extreme conditions and efficient separation performance still need to be improved[4].展开更多
Predictive maintenance is essential for the implementation of an innovative and efficient structural health monitoring strategy.Models capable of accurately interpreting new data automatically collected by suitably pl...Predictive maintenance is essential for the implementation of an innovative and efficient structural health monitoring strategy.Models capable of accurately interpreting new data automatically collected by suitably placed sensors to assess the state of the infrastructure represent a fundamental step,particularly for the railway sector,whose safe and continuous operation plays a strategic role in the well-being and development of nations.In this scenario,the benefits of a digital twin of a bonded insu-lated rail joint(IRJ)with the predictive capabilities of advanced classification algorithms based on artificial intelligence have been explored.The digital model provides an accurate mechanical response of the infrastructure as a pair of wheels passes over the joint.As bolt preload conditions vary,four structural health classes were identified for the joint.Two parameters,i.e.gap value and vertical displacement,which are strongly correlated with bolt preload,are used in different combinations to train and test five predictive classifiers.Their classification effectiveness was assessed using several performance indica-tors.Finally,we compared the IRJ condition predictions of two trained classifiers with the available data,confirming their high accuracy.The approach presented provides an interesting solution for future predictive tools in SHM especially in the case of complex systems such as railways where the vehicle-infrastructure interaction is complex and always time varying.展开更多
Acidic-stable oxygen evolution reaction(OER)catalysts based on earth-abundant materials are important but rare for the proton exchange membrane-based water electrolysis.In this study,a metal-containing hydrogen-bonded...Acidic-stable oxygen evolution reaction(OER)catalysts based on earth-abundant materials are important but rare for the proton exchange membrane-based water electrolysis.In this study,a metal-containing hydrogen-bonded organic framework(HOF)of manganese coordinated with 2,2'-bipyridine-6,6'-dicarboxylate ligands,Mn(bda),interconnected through hydrogen bonding and π-π stacking is used as a heterogeneous OER catalyst(Mn(bda)-HOF)for acidic water oxidation and exhibits a considerable OER performance.Electrochemical results show that Mn(bda)-HOF displays a turn of frequency of 1 s^(-1) at an overpotential of 870 mV.Meanwhile,this Mn(bda)-HOF shows an unusual pH dependence on performance,where the reaction rate increases with the decrease of pH.A comprehensive mechanistic study reveals that the charge transfer triggered coupling of two metal-oxo species Mn^(5+)(O)is the rate-determining step,which leads to this unusual pH dependence on the OER performance.展开更多
The transient liquid-phase(TLP)diffusion bonding of GH5188 with a BNi-5 interlayer was focused on.Parameters were chosen and optimized for GH5188 alloy according to the TLP joining mechanism.The microstructure evoluti...The transient liquid-phase(TLP)diffusion bonding of GH5188 with a BNi-5 interlayer was focused on.Parameters were chosen and optimized for GH5188 alloy according to the TLP joining mechanism.The microstructure evolution and mechanical properties of the joints were studied.Results show that the relatively complete isothermal solidification zone(ISZ)ensures a reliable connection of the base metal(BM).Within the temperature range of 1110–1190°C,higher bonding temperatures can widen ISZ and promote joint composition homogenization,thus improving mechanical properties.However,the increase in precipitated phase has an adverse effect on the mechanical properties of the joint.The maximum shear strength,reaching 482 MPa,is achieved at 1130°C,representing 84.6%of BM strength.Within the pressure range of 5–15 MPa,both precipitated phases in adiabatic solidification zone(ASZ)and voids generated by partial melting increase.On the contrary,their sizes decrease significantly under higher bonding pressure,resulting in an upward trend in alloy mechanical properties.The maximum shear strength of 490 MPa is attained at a bonding pressure of 15 MPa.The joint exhibits a typical mixed fracture pattern,with the small brittle M_(23)C_(6) phase and voids significantly impacting mechanical properties.Nano-indentation tests indicate that ASZ is a potential source of cracks.展开更多
The challenge of low temperature and rapid diffusion bonding of a Ni-based superalloy was hereby addressed by using a Ni nano-coating and a spark plasma sintering(SPS).It successfully produced a Nibased superalloy joi...The challenge of low temperature and rapid diffusion bonding of a Ni-based superalloy was hereby addressed by using a Ni nano-coating and a spark plasma sintering(SPS).It successfully produced a Nibased superalloy joint with 337 MPa shear strength at 500℃ for 30 min,which is approximately 400℃ lower than the traditional hot pressure diffusion bonding(HPDB)temperature.The microstructure and mechanical properties of the joints were systematically investigated.It is revealed that the pulsed current and ultra-fine grains(19 nm)in the Ni nano-coating could significantly facilitate voids closure.The voids closure mechanisms involved(i)pulsed current strengthened plastic deformation,(ii)pulsed current strengthened surface source diffusion,(iii)pulsed current strengthened bonding interface diffusion,(iv)grain growth dividing the initial large voids into nano-voids,and(v)massive grain boundaries(GBs),lattice defects,and local high-temperature strengthened GBs diffusion.Furthermore,the GBs migration across the interface was investigated,and the results revealed that the GBs migration and fine grains(350 nm)near the bonding interface together increased the joint strength.展开更多
Introduction: Bracket debonding is a frequent issue that clinicians encounter, leading to increased chair time, lost revenue, and material usage. In addition to patient compliance with their diet recommendations, the ...Introduction: Bracket debonding is a frequent issue that clinicians encounter, leading to increased chair time, lost revenue, and material usage. In addition to patient compliance with their diet recommendations, the preparation and conditioning of teeth for bonding significantly influence bond strength and consequently impact orthodontic treatment success and efficiency. Because of OBA-MCP’s (orthodontic bonding adhesive with modified calcium phosphate) decreased shear bond strength (SBS), the purpose of this study was to evaluate the effects of conditioning with 5.25% sodium hypochlorite (NaOCl) before etching in the bonding protocol. Materials and Methods: 90 extracted teeth were divided into 3 groups to be bonded with orthodontic brackets with different bonding protocols: 1) Transbond XT with regular bonding protocol (etch + prime + adhesive);2) OBA-MCP with regular bonding protocol;and 3) OBA-MCP with NaOCl prior to acid etching in the regular bonding protocol. SBS (in Newtons) were measured using an MTS universal testing machine with a custom jig to apply a vertical force onto the bracket and ARI (adhesive remnant index) scores were recorded for each sample after de-bond to rate the amount of adhesive remaining. Results: The addition of NaOCl to the bonding protocol statistically significantly increased the SBS of OBA-MCP to comparable levels to Transbond XT. The ARI scores showed that when NaOCl was added, more adhesive remained. Conclusion: The addition of NaOCl to the bonding protocol can increase the SBS of adhesives with historically weaker bond strengths. However, the increased amount of adhesive remaining and the increased time spent during bonding must be considered. Further testing can be done in vivo to demonstrate the practicality of this new procedure.展开更多
Diffusion bonding(DB)with interlayers is sought-after for manufacturing high-performance turbine disks of powder metallurgy(PM)superalloys with precise and intricate inner cavity structures.Developing novel interlayer...Diffusion bonding(DB)with interlayers is sought-after for manufacturing high-performance turbine disks of powder metallurgy(PM)superalloys with precise and intricate inner cavity structures.Developing novel interlayer materials is challenging but crucial for enhancing bonding quality and joint properties.We designed a multi-interlayer composite bonding(MICB)method,employing sandwich-structured inter-layers of"BNi2/high entropy alloy(HEA)/BNi2",to join a PM superalloy FGH98.The MICB joint exhibited an ultrahigh shear strength of~1132 MPa and exceptional ductility,indicating a typical ductile fracture pattern with numerous dimples.Owing to the introduction of liquid BNi2 interlayer,initial bonding in-terfaces were eliminated and replaced by newborn grain boundaries(GBs),preventing brittle interfacial fracture.Due to the diffusion of Al/Ti/Ta from the base metals(BMs),massive orderedγ'nanoparticles also precipitated in the joint.Moreover,the addition of HEA foil reduced the stacking fault energy(SFE)of the joint and facilitated the formation of deformation twins(DTs).Thus,during the deformation process,theγ'nanoparticles,and multiple substructures like stacking faults(SFs),Lomer-Cottrell(L-C)locks,DTs,and 9R phases enhanced the work-hardening capability and strengthened the joint.Simultaneously,the multiplication and interaction of DTs induced a softening mechanism of dynamic recrystallization(DRX)during the entire deformation process and dominated when the plastic instability occurred,resulting in numerous adiabatic shear bands(ASBs)consisting ofγ/γ'nano-bands,which indicates a significant im-provement of the joint ductility.展开更多
Diffusion-bonded Ti_(2)AlNb-based alloys commonly present a low strength compared with the deformed or aged ones. In this study, the post heat treatment including solution and aging treatments is proposed to optimize ...Diffusion-bonded Ti_(2)AlNb-based alloys commonly present a low strength compared with the deformed or aged ones. In this study, the post heat treatment including solution and aging treatments is proposed to optimize the microstructure, contributing to strength improvement and appropriate ductility sacrifice. An available method by the introduction of fine size (both 20-100 nm) and a high fraction (59.7% and 13.7%) of O and α_(2) phases using both solution at 1000℃ for 1 h and aging at 750℃ for 5 h can result in excellent tensile strength (992 MPa and 858 MPa) at room temperature and 650℃, respectively, which increases 5.3% and 44.5% than that of as-received sample. The aging treatment can contribute to lamellar O and α2 grains precipitated from the B_(2) parent, which results in limited dislocation slip systems and slip spaces to resist plastic deformation. Moreover, the crack propagation and fracture surfaces are also comparatively analyzed to reveal the fracture behaviors in the samples with high and low strength. This study can provide a new method for the mechanical property optimization of the welded Ti_(2)AlNb alloys.展开更多
LiMnxFe1-xPO_(4) is a promising cathode candidate due to its high security and the availability of a high 4.1 V operating voltage and high energy density.However,the poor electrochemical kinetics and structural instab...LiMnxFe1-xPO_(4) is a promising cathode candidate due to its high security and the availability of a high 4.1 V operating voltage and high energy density.However,the poor electrochemical kinetics and structural instability currently hinder its broader application.Herein,inspired by the hydrogen-bonded cross-linking and steric hindrance effect between short-chain polymer molecules(polyethylene glycol-400,PEG-400),the pomegranate-type LiMn_(0.5)Fe_(0.5)PO_(4)-0.5@C(P-LMFP@C)cathode materials with 3D ion/electron dual-conductive network structure were constructed through ball mill-assisted spray-drying method.The intermolecular effects of PEG-400 promote the spheroidization and uniform PEG coating of LMFP precursor,which prevents agglomeration during sintering.The 3D ion/electron dual-conductive network structure in P-LMFP@C accelerates the Li^(+)transport kinetics,improving the rate performance and cycling stability.As a result,the designed P-LMFP@C has remarkable electrochemical behavior,boasting excellent capacity retention(98%after 100 cycles at the 1C rate)and rate capability(91 mAh·g^(-1)at 20C).Such strategy introduces a novel window for designing high-performance olivine cathodes and offers compatibility with a range of energy storage materials for diverse applications.展开更多
The bonding interface characteristic and shear strength of diffusion bonded Ti-17 titanium alloy at different bonding time were investigated. The results show that the average size of voids decreases while the amount ...The bonding interface characteristic and shear strength of diffusion bonded Ti-17 titanium alloy at different bonding time were investigated. The results show that the average size of voids decreases while the amount of voids decreases after increasing to the maximum value with the increasing bonding time. The irregular void with a scraggly edge tends to an ellipse void with smooth surface and then changes to a tiny void with round shape. The grains across bonding interface occur at bonding time of 60 min. The shear strength of bond increases with increasing bonding time, and the highest shear strength of bond is 887.4 MPa at 60 min. The contribution of plastic deformation on the void closure and the increase of shear strength is significant even though the action time of plastic deformation is short.展开更多
The hot-roll bonding was carried out in vacuum between titanium alloy and stainless steel using niobium interlayer. The interfacial structure and mechanical properties were analyzed. The results show that the plastici...The hot-roll bonding was carried out in vacuum between titanium alloy and stainless steel using niobium interlayer. The interfacial structure and mechanical properties were analyzed. The results show that the plasticity of bonded joint is improved significantly. When the bonding temperature is 800 °C or 900 °C, there is not intermetallic layer at the interface between stainless steel and niobium. When the bonding temperature is 1000 °C or 1050 °C, Fe-Nb intermetallic layer forms at the interface. When the bonding temperature is 1050 °C, cracking occurs between stainless steel and intermetallic layer. The maximum strength of -417.5 MPa is obtained at the bonding temperature of 900 °C, the reduction of 25% and the rolling speed of 38 mm/s, and the tensile specimen fractures in the niobium interlayer with plastic fracture characteristics. When the hot-roll bonded transition joints were TIG welded with titanium alloy and stainless steel respectively, the tensile strength of the transition joints after TIG welding is -410.3 MPa, and the specimen fractures in the niobium interlayer.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.22272118,22172111,and 22309134)the Science and Technology Commission of Shanghai Municipality,China(Nos.22ZR1464100,20ZR1460300,and 19DZ2271500)+2 种基金the China Postdoctoral Science Foundation(2022M712402),the Shanghai Rising-Star Program(23YF1449200)the Zhejiang Provincial Science and Technology Project(2022C01182)the Fundamental Research Funds for the Central Universities(2023-3-YB-07)。
文摘Carbon superstructures with multiscale hierarchies and functional attributes represent an appealing cathode candidate for zinc hybrid capacitors,but their tailor-made design to optimize the capacitive activity remains a confusing topic.Here we develop a hydrogen-bond-oriented interfacial super-assembly strategy to custom-tailor nanosheet-intertwined spherical carbon superstructures(SCSs)for Zn-ion storage with double-high capacitive activity and durability.Tetrachlorobenzoquinone(H-bond acceptor)and dimethylbenzidine(H-bond donator)can interact to form organic nanosheet modules,which are sequentially assembled,orientally compacted and densified into well-orchestrated superstructures through multiple H-bonds(N-H···O).Featured with rich surface-active heterodiatomic motifs,more exposed nanoporous channels,and successive charge migration paths,SCSs cathode promises high accessibility of built-in zincophilic sites and rapid ion diffusion with low energy barriers(3.3Ωs-0.5).Consequently,the assembled Zn||SCSs capacitor harvests all-round improvement in Zn-ion storage metrics,including high energy density(166 Wh kg-1),high-rate performance(172 m Ah g^(-1)at 20 A g^(-1)),and long-lasting cycling lifespan(95.5%capacity retention after 500,000 cycles).An opposite chargecarrier storage mechanism is rationalized for SCSs cathode to maximize spatial capacitive charge storage,involving high-kinetics physical Zn^(2+)/CF_(3)SO_(3)-adsorption and chemical Zn^(2+)redox with carbonyl/pyridine groups.This work gives insights into H-bond-guided interfacial superassembly design of superstructural carbons toward advanced energy storage.
基金supported by the National Key R&D Program of China (No. 2018YFA0707300)the National Natural Science Foundation of China (No. 52374376)the Introduction Plan for High end Foreign Experts, China (No. G2023105001L)。
文摘Titanium plates with a Ti−O solid solution surface-hardened layer were cold roll-bonded with 304 stainless steel plates with high work hardening rates.The evolution and mechanisms affecting the interfacial bonding strength in titanium/stainless steel laminated composites were investigated.Results indicate that the hardened layer reduces the interfacial bonding strength from over 261 MPa to less than 204 MPa.During the cold roll-bonding process,the hardened layer fractures,leading to the formation of multi-scale cracks that are difficult for the stainless steel to fill.This not only hinders the development of an interlocking interface but also leads to the presence of numerous microcracks and hardened blocks along the nearly straight interface,consequently weakening the interfacial bonding strength.In metals with high work hardening rates,the conventional approach of enhancing interface interlocking and improving interfacial bonding strength by using a surface-hardened layer becomes less effective.
基金supported by the National Natural Science Foundation of China(Grant Nos.52369019,52004127)the Young Elite Scientists Sponsorship Program by JXAST(Grant No.2023QT06).
文摘The study of the shear behavior of bonded rock-cement interface is important for understanding the strength and stability of grouted rock masses.This research aims to reveal the failure mechanism behind the shear property of bonded rock-cement interfaces.For the study,sandstone and granite joint blocks with specific morphology were fabricated by using a three-dimensional(3D)engraving technique.Bonded rock-cement joints with asperity inclination angles of 15°,30°,and 45°were prepared.Shear tests were performed on these bonded rock-cement joints to investigate the shear response and failure modes considering the effect of applied normal stress and interface morphology.Meanwhile,the two-dimensional particle flow code(PFC2D)was utilized to model the entire shear process of bonded rock-cement interfaces.The macroscopic shear behavior and mesoscopic failure mechanism were comprehensively investigated by the laboratory test and numerical simulation.The results showed that the shear stress-displacement curves of bonded rock-cement joints exhibit two distinct peaks,and the shear stress evolution can be categorized into four stages including elastic growth,rapid stress drop,secondary stress growth,and progressive softening.Significantly,the number of acoustic emission events also exhibits two distinct peaks related to the double peak of the shear stress curves.The failure of bonded rock-cement interfaces is mainly induced by shear fractures,while the failure of rock and cement blocks is primarily caused by tensile fractures.The number of shear cracks in the bonded rock-cement interfaces reaches the peak when the shear stress reaches the primary peak;whereas as the shear stress continuously approaches the residual stage,the fracture of the bonded rock-cement joints is primarily characterized by tensile cracks in the blocks.
基金the financial support from Fundamental Research Funds for the Central Universities,China(No.YWF-23-L-1012)the National Natural Science Foundation of China(No.52005020).
文摘The effects of various hot deformation states on the evolution of microstructures and mechanical properties in diffusion bonded TC4 alloys were investigated using the hot bending of thick plates.Finite element simulations were conducted to characterize the deformation states during bending at 750℃ with angles of 17°and 32°.The microstructures and mechanical properties of the bonding interface were then analyzed.The joint subjected to uniaxial stress exhibited the highest ultimate tensile strength,which was attributed to the significant accumulation of dislocation density and the low-angle grain boundaries within the grains.The texture strengthening in the basal{0001}plane was also observed,along with a relatively low Schmid factor corresponding to the primary slip systems aligned with the deformation direction.In contrast,the joint under stress-free conditions showed a slip direction that was less favorable for deformation,resulting in an ultimate tensile strength higher than that of the joint under biaxial stress conditions.
基金co-supported by the National Natural Science Foundation of China(NSFC)(No.52035011)the Fundamental Research Funds for the Central Universities,and the Research Project of the Ministry of Industry and Information Technology,China(No.MJZ4-4N22)。
文摘The wet-assembly hybrid bonded/bolted(WHBB)joint is increasingly employed in aircraft fuel tank structures owing to its advantageous mechanical strength and sealing performance.However,the integral tank is susceptible to leakage during service,particularly at the joint,which seriously endangers the flight safety of the aircraft.In this paper,a leakage prediction method of WHBB joint based on porous media theory is proposed,in which the shape and characteristic length of the sealant layer are taken into consideration.The model parameters are determined by the analysis and treatment of the defect state of the WHBB joint section.The prediction results agree well with the experimental data,which were acquired by self-designed sealing leakage rate measurement system,and the deviation between the predicted results and the average value of the experimental data is less than 20%.Furthermore,in order to verify the environmental adaptability,the prediction results based on 2D cutting sections of the joints and experimental results under three different loading conditions are compared.The comparison results not only prove the accuracy of the prediction model,but also reveal the important influence of tensile fatigue load on the sealing performance of the structure.The tensile fatigue loads lead to two orders of magnitude increase in leakage rate,and the reason is that the repeated stretching and compression process lead to an increase in interfacial cracks between the adhesive layer and the hole wall,thereby accentuating the defects within the adhesive layer.
基金China Postdoctoral Science Foundation (No. 2020M682337)。
文摘In the Pidgeon process involving a vertical pot,bonded slag pellets occasionally emerge at the bottom of the reduction pot,impeding smooth slag discharge.To reveal the formation mechanism of the bonded slag pellets,thermodynamic calculations,X-ray diffraction(XRD),X-ray fluorescence spectrometry(XRF),electron probe microanalyzer(EPMA),X-ray photoelectron spectroscopy(XPS),and differential scanning calorimetry(DSC)were employed.The bonded slag pellets mainly comprise MgO,CaSi_(2),CaO,and Ca2SiO_(4).CaSi_(2) in the bonded slag pellets is attributed to the reduction reaction between Si and CaO,yielding liquid CaSi_(2).Simultaneously,the reaction between CaSi_(2) and MgO,which will typically produce Mg vapor,is inhibited,resulting in the accumulation of CaSi_(2).Owing to the solid-liquid transition of CaSi_(2),this process culminates in the bonding of slag pellets.This study can guide the Pidgeon process optimization,enabling mitigation of the“dead pot”issue,thereby enhancing efficiency and reducing costs.
基金supported by the National Natural Science Foundation of China(Nos.22371218,21702153,52270070,and 21801194)the Wuhan Science and Technology Bureau(No.whkxjsj009)+1 种基金support of the Core Facility of Wuhan Universitythe Large-scale Instrument and Equipment Sharing Foundation of Wuhan University。
文摘Efficient conversion and synergistic solar energy utilization are critical for advancing low-carbon and sustainable development.In this study,two Pt(Ⅱ)-based metal/halogen-bonded organic frameworks(MXOFBen and MXOF-Anth)were designed to enhance photoconversion efficiency and enable multifunctional integration.The ligand L-terpyr is formed by coupling tripyridine with diphenylamine dipyridine,in which the tripyridine effectively acts as a metal-ligand to lower the band gap and promote nonradiative leaps,thereby enhancing the photoconversion ability.Meanwhile,diphenylamine dipyridine serves as a[N…I^(+)…N]halogen-bonding acceptor,imparting superhydrophilicity to the materials and increasing carrier density,further improving photocatalytic performance.Experimental results demonstrate that these two MXOFs achieve impressive interfacial water evaporation efficiencies of up to87.8%and 94.0%,respectively.Additionally,the materials exhibit excellent performance in photothermal power generation and photocatalysis of H_(2)O_(2).Notably,the MXOFs also deliver strong overall performance in integrated systems combining interfacial water evaporation with photothermal power generation or photocatalysis,underscoring their exceptional photoconversion efficiency and multifunctional potential.This work introduces a novel strategy by incorporating metal-ligand and halogen bonds,offering a pathway to enhance photoconversion efficiency and develop versatile materials for advanced solar energy applications,thereby fostering the progress of high-efficiency solar energy conversion and multifunctional organic materials.
文摘In order to improve the densification of Si_(3)N_(4) bonded SiC refractories and reduce the nitriding temperature of Si powder,Si_(3)N_(4) bonded SiC refractories were produced by reaction sintering at 1350℃ for 5 h under a carbon embedded atmosphere,using SiC particles and fine powder,and Si powder as the main raw materials,and introducing Ti-Si-Fe alloy extracted from high-titanium blast furnace slag to partially replace the Si powder.The effects of the Ti-Si-Fe alloy addition(0,1.8%,3.6%,5.4%,and 7.2%,by mass)on the nitriding behavior of Si powder,as well as on the mechanical properties and microstructure of the material were investigated,and the nitriding reaction sintering mechanism was also explored.The results show that:(1)with the increase of the Ti-Si-Fe alloy addition,the cold mechanical properties and the hot modulus of rupture of the refractories are obviously improved,and the refractoriness under load exceeds 1700℃;the property enhancement slows down with Ti-Si-Fe alloys addition above 3.6%;(2)Ti-Si-Fe alloy promotes the complete nitridation of Si powder and the reaction sintering of the material at a lower temperature;the volume growth during the nitridation process of the Ti-Si-Fe alloys and Si powder can effectively fill pores,nitriding products improve the bonding state between aggregates and matrix,and that inside matrix,thereby increasing the densification and improving the mechanical properties of the material;(3)after the introduction of Ti-Si-Fe alloys,the liquid phase rich in Ti,Si,N,and Fe components is formed in the reaction system;besides the traditional VS and VLS mechanisms,the dissolution-precipitation mechanism plays a leading role in the formation of short columnar β-Si_(3)N_(4) and granular TiN;and the cross-linked α-Si_(3)N_(4) whisker,short columnar β-Si_(3)N_(4) and granular TiN enhance the mechanical properties of the material.
基金The National Natural Science Foundation of China(No.52208195)the Independent Subject of State Key Laboratory of Disaster Reduction in Civil Engineering of Tongji University(No.SLDRCE19-A-10).
文摘To improve the seismic performance of unrein-forced masonry(URM)buildings in the Himalayan re-gions,including Western China,India,Nepal,and Paki-stan,a low-cost bonded scrap tire rubber isolator(BSTRI)is proposed,and a series of vertical compression and horizontal shear tests are conducted.Incremental dynamic analyses are conducted for five types of BSTRI-supported URM buildings subjected to 22 far-field and 28 near-field earthquake ground motions.The resulting fragility curves and probability of damage curves are presented and utilized to evaluate the damage states of these buildings.The results show that in the base-isolated(BI)URM buildings under seismic ground motion at a peak ground acceleration(PGA)of 1.102g,the probability of exceeding the collapse prevention threshold is less than 25%under far-field earthquake ground motions and 31%under near-field earthquake ground motions.Furthermore,the maximum average vulnerability index for the BI-URM buildings,which are designed to withstand rare earthquakes with 9°(PGA=0.632g),is 40.87%for far-field earthquake ground motions and 41.83%for near-field earthquake ground motions.Therefore,the adoption of BSTRIs can significantly reduce the collapse probability of URM buildings.
基金the support of the National Natural Science Foundation of China(Nos.22205207 and 22378369).
文摘With the acceleration of industrialization,the pollution problem of sulfur dioxide(SO_(2))emitted from coal-fired power plants has become increasingly severe.Although wet flue gas desulfurization(FGD)technology can remove about 95%of SO_(2),its high energy consumption and the corrosion risk of downstream equipment caused by residual SO_(2)(500–3000 ppm)still need to be addressed[1].Previous porous materials(such as MOFs)achieve selective adsorption of SO_(2) through open metal sites,M–OH sites or functional organic groups,but the problem of CO_(2) co-adsorption limits their practical application[2].In recent years,hydrogen-bonded organic frameworks(HOFs)have emerged as a research hotspot due to their reversible hydrogen-bonding networks and flexible structures[3],but their stability under extreme conditions and efficient separation performance still need to be improved[4].
基金the National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.4-Call for tender No. 3138 of 16/12/2021 of Italian Ministry of University and Research funded by the European Union-Next Generation EU. Award Number: Project code CN00000023Concession Decree No. 1033 of 17/06/2022 adopted by the Italian Ministry of University and Research, CUP D93C22000400001, “Sustainable Mobility Center” (CNMS). Spoke 4-Rail Transportation
文摘Predictive maintenance is essential for the implementation of an innovative and efficient structural health monitoring strategy.Models capable of accurately interpreting new data automatically collected by suitably placed sensors to assess the state of the infrastructure represent a fundamental step,particularly for the railway sector,whose safe and continuous operation plays a strategic role in the well-being and development of nations.In this scenario,the benefits of a digital twin of a bonded insu-lated rail joint(IRJ)with the predictive capabilities of advanced classification algorithms based on artificial intelligence have been explored.The digital model provides an accurate mechanical response of the infrastructure as a pair of wheels passes over the joint.As bolt preload conditions vary,four structural health classes were identified for the joint.Two parameters,i.e.gap value and vertical displacement,which are strongly correlated with bolt preload,are used in different combinations to train and test five predictive classifiers.Their classification effectiveness was assessed using several performance indica-tors.Finally,we compared the IRJ condition predictions of two trained classifiers with the available data,confirming their high accuracy.The approach presented provides an interesting solution for future predictive tools in SHM especially in the case of complex systems such as railways where the vehicle-infrastructure interaction is complex and always time varying.
基金supported by the National Natural Science Foundation of China(Nos.22172011,22088102,and 22301248)the National Key R&D Program of China(2022YFA0911900)the Fundamental Research Funds for the Central Universities(DUT23LAB611).
文摘Acidic-stable oxygen evolution reaction(OER)catalysts based on earth-abundant materials are important but rare for the proton exchange membrane-based water electrolysis.In this study,a metal-containing hydrogen-bonded organic framework(HOF)of manganese coordinated with 2,2'-bipyridine-6,6'-dicarboxylate ligands,Mn(bda),interconnected through hydrogen bonding and π-π stacking is used as a heterogeneous OER catalyst(Mn(bda)-HOF)for acidic water oxidation and exhibits a considerable OER performance.Electrochemical results show that Mn(bda)-HOF displays a turn of frequency of 1 s^(-1) at an overpotential of 870 mV.Meanwhile,this Mn(bda)-HOF shows an unusual pH dependence on performance,where the reaction rate increases with the decrease of pH.A comprehensive mechanistic study reveals that the charge transfer triggered coupling of two metal-oxo species Mn^(5+)(O)is the rate-determining step,which leads to this unusual pH dependence on the OER performance.
基金National Natural Science Foundation of China(52075449,5197052086)。
文摘The transient liquid-phase(TLP)diffusion bonding of GH5188 with a BNi-5 interlayer was focused on.Parameters were chosen and optimized for GH5188 alloy according to the TLP joining mechanism.The microstructure evolution and mechanical properties of the joints were studied.Results show that the relatively complete isothermal solidification zone(ISZ)ensures a reliable connection of the base metal(BM).Within the temperature range of 1110–1190°C,higher bonding temperatures can widen ISZ and promote joint composition homogenization,thus improving mechanical properties.However,the increase in precipitated phase has an adverse effect on the mechanical properties of the joint.The maximum shear strength,reaching 482 MPa,is achieved at 1130°C,representing 84.6%of BM strength.Within the pressure range of 5–15 MPa,both precipitated phases in adiabatic solidification zone(ASZ)and voids generated by partial melting increase.On the contrary,their sizes decrease significantly under higher bonding pressure,resulting in an upward trend in alloy mechanical properties.The maximum shear strength of 490 MPa is attained at a bonding pressure of 15 MPa.The joint exhibits a typical mixed fracture pattern,with the small brittle M_(23)C_(6) phase and voids significantly impacting mechanical properties.Nano-indentation tests indicate that ASZ is a potential source of cracks.
基金financially supported by the National Nat-ural Science Foundation of China(Nos.U22A20185,52175302,and U21A20128)the National MCF Energy R&D Program(No.2019YFE03100100)the Fundamental Research Funds for the Central Universities(No.2022FRFK060009).
文摘The challenge of low temperature and rapid diffusion bonding of a Ni-based superalloy was hereby addressed by using a Ni nano-coating and a spark plasma sintering(SPS).It successfully produced a Nibased superalloy joint with 337 MPa shear strength at 500℃ for 30 min,which is approximately 400℃ lower than the traditional hot pressure diffusion bonding(HPDB)temperature.The microstructure and mechanical properties of the joints were systematically investigated.It is revealed that the pulsed current and ultra-fine grains(19 nm)in the Ni nano-coating could significantly facilitate voids closure.The voids closure mechanisms involved(i)pulsed current strengthened plastic deformation,(ii)pulsed current strengthened surface source diffusion,(iii)pulsed current strengthened bonding interface diffusion,(iv)grain growth dividing the initial large voids into nano-voids,and(v)massive grain boundaries(GBs),lattice defects,and local high-temperature strengthened GBs diffusion.Furthermore,the GBs migration across the interface was investigated,and the results revealed that the GBs migration and fine grains(350 nm)near the bonding interface together increased the joint strength.
文摘Introduction: Bracket debonding is a frequent issue that clinicians encounter, leading to increased chair time, lost revenue, and material usage. In addition to patient compliance with their diet recommendations, the preparation and conditioning of teeth for bonding significantly influence bond strength and consequently impact orthodontic treatment success and efficiency. Because of OBA-MCP’s (orthodontic bonding adhesive with modified calcium phosphate) decreased shear bond strength (SBS), the purpose of this study was to evaluate the effects of conditioning with 5.25% sodium hypochlorite (NaOCl) before etching in the bonding protocol. Materials and Methods: 90 extracted teeth were divided into 3 groups to be bonded with orthodontic brackets with different bonding protocols: 1) Transbond XT with regular bonding protocol (etch + prime + adhesive);2) OBA-MCP with regular bonding protocol;and 3) OBA-MCP with NaOCl prior to acid etching in the regular bonding protocol. SBS (in Newtons) were measured using an MTS universal testing machine with a custom jig to apply a vertical force onto the bracket and ARI (adhesive remnant index) scores were recorded for each sample after de-bond to rate the amount of adhesive remaining. Results: The addition of NaOCl to the bonding protocol statistically significantly increased the SBS of OBA-MCP to comparable levels to Transbond XT. The ARI scores showed that when NaOCl was added, more adhesive remained. Conclusion: The addition of NaOCl to the bonding protocol can increase the SBS of adhesives with historically weaker bond strengths. However, the increased amount of adhesive remaining and the increased time spent during bonding must be considered. Further testing can be done in vivo to demonstrate the practicality of this new procedure.
基金support from the National Natural Science Foundation of China(Grant Nos.52075449,51975480,and 52222112)the Hong Kong Research Grant Council(RGC)(Grant No.21205621).
文摘Diffusion bonding(DB)with interlayers is sought-after for manufacturing high-performance turbine disks of powder metallurgy(PM)superalloys with precise and intricate inner cavity structures.Developing novel interlayer materials is challenging but crucial for enhancing bonding quality and joint properties.We designed a multi-interlayer composite bonding(MICB)method,employing sandwich-structured inter-layers of"BNi2/high entropy alloy(HEA)/BNi2",to join a PM superalloy FGH98.The MICB joint exhibited an ultrahigh shear strength of~1132 MPa and exceptional ductility,indicating a typical ductile fracture pattern with numerous dimples.Owing to the introduction of liquid BNi2 interlayer,initial bonding in-terfaces were eliminated and replaced by newborn grain boundaries(GBs),preventing brittle interfacial fracture.Due to the diffusion of Al/Ti/Ta from the base metals(BMs),massive orderedγ'nanoparticles also precipitated in the joint.Moreover,the addition of HEA foil reduced the stacking fault energy(SFE)of the joint and facilitated the formation of deformation twins(DTs).Thus,during the deformation process,theγ'nanoparticles,and multiple substructures like stacking faults(SFs),Lomer-Cottrell(L-C)locks,DTs,and 9R phases enhanced the work-hardening capability and strengthened the joint.Simultaneously,the multiplication and interaction of DTs induced a softening mechanism of dynamic recrystallization(DRX)during the entire deformation process and dominated when the plastic instability occurred,resulting in numerous adiabatic shear bands(ASBs)consisting ofγ/γ'nano-bands,which indicates a significant im-provement of the joint ductility.
基金support by the National Key R&D Program of China(No.2022YFB3402200)the Program of Shanghai Academic Research Leader(No.22XD1421600).
文摘Diffusion-bonded Ti_(2)AlNb-based alloys commonly present a low strength compared with the deformed or aged ones. In this study, the post heat treatment including solution and aging treatments is proposed to optimize the microstructure, contributing to strength improvement and appropriate ductility sacrifice. An available method by the introduction of fine size (both 20-100 nm) and a high fraction (59.7% and 13.7%) of O and α_(2) phases using both solution at 1000℃ for 1 h and aging at 750℃ for 5 h can result in excellent tensile strength (992 MPa and 858 MPa) at room temperature and 650℃, respectively, which increases 5.3% and 44.5% than that of as-received sample. The aging treatment can contribute to lamellar O and α2 grains precipitated from the B_(2) parent, which results in limited dislocation slip systems and slip spaces to resist plastic deformation. Moreover, the crack propagation and fracture surfaces are also comparatively analyzed to reveal the fracture behaviors in the samples with high and low strength. This study can provide a new method for the mechanical property optimization of the welded Ti_(2)AlNb alloys.
基金supported by the Key Technologies R&D Program of Xiamen(No.3502Z20231057)Industry Leading Key Projects of Fujian Province(No.2022H0057)+2 种基金the National Natural Science Foundation of China(No.21975212)High-Level Talent Start-Up Foundation of Xiamen Institute of Technology for financial support(No.YKJ23017R)Graduate Science and Technology Innovation Program of Xiamen University of Technology(No.YKJCX2023194).
文摘LiMnxFe1-xPO_(4) is a promising cathode candidate due to its high security and the availability of a high 4.1 V operating voltage and high energy density.However,the poor electrochemical kinetics and structural instability currently hinder its broader application.Herein,inspired by the hydrogen-bonded cross-linking and steric hindrance effect between short-chain polymer molecules(polyethylene glycol-400,PEG-400),the pomegranate-type LiMn_(0.5)Fe_(0.5)PO_(4)-0.5@C(P-LMFP@C)cathode materials with 3D ion/electron dual-conductive network structure were constructed through ball mill-assisted spray-drying method.The intermolecular effects of PEG-400 promote the spheroidization and uniform PEG coating of LMFP precursor,which prevents agglomeration during sintering.The 3D ion/electron dual-conductive network structure in P-LMFP@C accelerates the Li^(+)transport kinetics,improving the rate performance and cycling stability.As a result,the designed P-LMFP@C has remarkable electrochemical behavior,boasting excellent capacity retention(98%after 100 cycles at the 1C rate)and rate capability(91 mAh·g^(-1)at 20C).Such strategy introduces a novel window for designing high-performance olivine cathodes and offers compatibility with a range of energy storage materials for diverse applications.
基金Project(51275416)supported by the National Natural Science Foundation of China
文摘The bonding interface characteristic and shear strength of diffusion bonded Ti-17 titanium alloy at different bonding time were investigated. The results show that the average size of voids decreases while the amount of voids decreases after increasing to the maximum value with the increasing bonding time. The irregular void with a scraggly edge tends to an ellipse void with smooth surface and then changes to a tiny void with round shape. The grains across bonding interface occur at bonding time of 60 min. The shear strength of bond increases with increasing bonding time, and the highest shear strength of bond is 887.4 MPa at 60 min. The contribution of plastic deformation on the void closure and the increase of shear strength is significant even though the action time of plastic deformation is short.
基金Project(AWPT-M07)supported by State Key Laboratory of Advanced Welding and Joining,ChinaProject(20120041120015)supported by Specialized Research Fund for the Doctoral Program of Higher Education,China
文摘The hot-roll bonding was carried out in vacuum between titanium alloy and stainless steel using niobium interlayer. The interfacial structure and mechanical properties were analyzed. The results show that the plasticity of bonded joint is improved significantly. When the bonding temperature is 800 °C or 900 °C, there is not intermetallic layer at the interface between stainless steel and niobium. When the bonding temperature is 1000 °C or 1050 °C, Fe-Nb intermetallic layer forms at the interface. When the bonding temperature is 1050 °C, cracking occurs between stainless steel and intermetallic layer. The maximum strength of -417.5 MPa is obtained at the bonding temperature of 900 °C, the reduction of 25% and the rolling speed of 38 mm/s, and the tensile specimen fractures in the niobium interlayer with plastic fracture characteristics. When the hot-roll bonded transition joints were TIG welded with titanium alloy and stainless steel respectively, the tensile strength of the transition joints after TIG welding is -410.3 MPa, and the specimen fractures in the niobium interlayer.