The main reaction products were investigated by analysis of microstructure of alkali-activated ground granulated blast furnace slag (GGBFS) paste. An experimental research was performed on bond performance of alkali...The main reaction products were investigated by analysis of microstructure of alkali-activated ground granulated blast furnace slag (GGBFS) paste. An experimental research was performed on bond performance of alkali-activated GGBFS paste as a construction adhesive after exposure to 20-500℃. Through XRD analysis, a few calcium silicate hydrate, hydrotalcite and tetracalcium aluminate hydrate were determined as end products, and they were filled and packed each other at room temperature. In addition, akermanite dramatically increased at 800 ~C and above. The two key parameters, the ultimate load Pu.T and effective bond length Le, were determined using test data of carbon fiber-reinforced polymer (CFRP)-to-concrete bonded joints at elevated temperature. The experimental results indicate that the ultimate load Pu.T remains relatively stable initially and then decreases with increasing temperature. The effective bond length Le increases with increasing temperature except at 300℃. The proposed temperature-dependent effective bond length formula is shown to closely represent the test data.展开更多
Time-dependent density functional theory (TDDFT) and femtosecond transient absorption spectroscopy were used to investigate the photophysical properties of 2,3-dihydro-3-keto-lH- pyrido[3,2,1-kl]phenothiazine (PTZ4...Time-dependent density functional theory (TDDFT) and femtosecond transient absorption spectroscopy were used to investigate the photophysical properties of 2,3-dihydro-3-keto-lH- pyrido[3,2,1-kl]phenothiazine (PTZ4) and 3-keto-lH-pyrido[3,2,1-kl]phenothiazine (PTZ5). The calculated results obtained from TDDFT suggest that the red-shifts of the absorption spectra of these two fluorophores in methanol are due to the formation of hydrogen-bonded complexes at the ground state. Four conformers of PTZ4 were obtained by TDDFT. The two fluorescence peaks of PTZ4 in tetrahydrofuran (THF) came from the ICT states of the four conformers. The fluorescence of PTZ4 in THF showed a dependence on the excitation wavelength because of butterfly bending. The excited state dynamics of PTZ4 in THF and methanol were obtained by transient absorption spectroscopy. The lifetime of the excited PTZ4 in methanol was 53.8 ps, and its relaxation from the LE state to the ICT state was completed within several picoseconds. The short lifetime of excited PTZ4 in methanol was due to the formation of out-of-plane model hydrogen bonds between PTZ4 and methanol at the excited state.展开更多
The channeling phenomenon of carbon ions in single-wall carbon nanotubes (SWCNTs) is investigated by using the molecular dynamics simulation with analytical potentials.The relationship between the channeling critical ...The channeling phenomenon of carbon ions in single-wall carbon nanotubes (SWCNTs) is investigated by using the molecular dynamics simulation with analytical potentials.The relationship between the channeling critical angles in the SWCNT and the bonding interaction is analyzed.It was found that,at 200-5000 eV and 10°-20° of incident angle,the ions with the bonding interaction or chemical effect,have decreased dechanneling probabilities and increased critical angles,compared to that of non-bonding ions.So the bonding effect cannot be ignored in the channeling mechanism of carbon ions through a SWCNT.展开更多
The bond length of ^4HeH^+ resulting from collision-induced destruction is measured at 1.4420 MeV using the Coulomb Explosion Technique. The measured bond length of ^4HeH^+ is 0.094±0.003nm. The bond length of ...The bond length of ^4HeH^+ resulting from collision-induced destruction is measured at 1.4420 MeV using the Coulomb Explosion Technique. The measured bond length of ^4HeH^+ is 0.094±0.003nm. The bond length of ^4HeH^+ obtained with our radio frequency (RF) ion source is larger than that obtained with a duoplasmatron ion source at Argonne National Laboratory (ANL), but the bond lengths of H^+2 and H^+3obtained separately by ANL and by us with the two different ion sources are consistent with each other, which implies that there exists an ion source effect on the bond length of ^4HeH^+. The main reason why the 4^4HeH^+ bond lengths obtained by the two different ion sources are different is also discussed.展开更多
The EPR parameters of trivalent Er(3+) ions doped in hexagonal Ga N crystal have been studied by diagonalizing the 364×364 complete energy matrices. The results indicate that the resonance ground states may be...The EPR parameters of trivalent Er(3+) ions doped in hexagonal Ga N crystal have been studied by diagonalizing the 364×364 complete energy matrices. The results indicate that the resonance ground states may be derived from the Kramers doublet Γ6. The EPR g-factors may be ascribed to the stronger covalent bonding and nephelauxetic effects compared with other rare-earth doped complexes, as a result of the mismatch of ionic radii of the impurity Er(3+)ion and the replaced Ga(3+) ion apart from the intrinsic covalency of host Ga N. Furthermore, the J–J mixing effects on the EPR parameters from the high-lying manifolds have been evaluated. It is found that the dominant J–J mixing contribution is from the manifold 2K(15/2), which accounts for about 2.5%. The next important J–J contribution arises from the crystal–field mixture between the ground state 4I(15/2) and the first excited state4I(13/2), and is usually less than 0.2%. The contributions from the rest states may be ignored.展开更多
The chemical bond parameters and ionic polarizabilities in complex crystals are calculated.The mechanism of host influence on the nephelauxetic effect and hypersensitive transition is discussed.
B3LYP/6 31+g( d ) calculations were performed on the hydrogen bonded complexes between substituted phenolates and HF, H 2O as well as NH 3. It was found that some properties of the non covalent complexes, inclu...B3LYP/6 31+g( d ) calculations were performed on the hydrogen bonded complexes between substituted phenolates and HF, H 2O as well as NH 3. It was found that some properties of the non covalent complexes, including the interaction energies, donor acceptor (host vip) distances, bond lengths, and vibration frequencies, could show well defined substituent effects. Thus, from the substituent studies we can not only understand the mechanism of a particular non covalent interaction better, but also easily predict the interaction energies and structures of a particular non covalent complex, which might otherwise be very hard or resource consuming to be known. This means that substituent effect is indeed a useful tool to be used in supramolecular chemistry and therefore, many valuable studies remain to be carried out.展开更多
Studies of direction of photoisomerization of retinal,retinonitrile,a- retinonitrile and a trienenitrile analog in different solvents with varying wave- lengths of excitation and reaction temperature led to the conclu...Studies of direction of photoisomerization of retinal,retinonitrile,a- retinonitrile and a trienenitrile analog in different solvents with varying wave- lengths of excitation and reaction temperature led to the conclusion that the well known solvent dependent photochemistry of retinoids is due to selective excitation of the hydrogen bonded species.展开更多
The main Iimitation to the toughening of the α-Al2O3/Ni composite is the poor bonding atthe interface. which causes the nickel particles to be pulled-out during crack propagation with-out obvious plastic deformation....The main Iimitation to the toughening of the α-Al2O3/Ni composite is the poor bonding atthe interface. which causes the nickel particles to be pulled-out during crack propagation with-out obvious plastic deformation. A proper control of oxygen content at the Al2O3-Ni interfacecan promote wetting at the intedece, and produce a mechanically interlocked and chemically strengthened intedece, causing most of the nickel particles to be stretched to failure and to expe-rience severe plastic deformation during crack propagation in the composite. Fracture toughnesstesting using a modified double cantilever beam method with in situ observation of crack prop-agation in a scanning electron microscope shows that the composite with the strengthenedinterface has a more desirable R-curve behaviour and a higher fracture toughness value than thenormal composite.展开更多
The effects of the protic and aprotic polar solvents on the emission spectrum of the naphthalene-triethyl-amine system in THF were studied under conditions of steady-state illumination. The fluorescence spectrum of th...The effects of the protic and aprotic polar solvents on the emission spectrum of the naphthalene-triethyl-amine system in THF were studied under conditions of steady-state illumination. The fluorescence spectrum of the naphthalene-triethylamine system consists of two emission bands, the fluorescence band of naphthalene(band A, 329 nm) and the emission band of the exciplex(band B, 468 nm). The intensities of both the emission bands decrease with increasing the solvent polarity. The intensity of band B also decreases due to the hydrogen-bonding interaction between triethylamine and protic solvent, while that of band A increases. It is thus suggested that the quenching of naphthalene fluorescence by triethylamine in THF occurs through the charge transfer and electron transfer reactions. The spectral changes upon the increase of solvent polarity can be explained by the dependences of the equilibrium constant between exciplex and ion-pair and the rate constant for the electron transfer reaction from triethylamine to the excited naphthalene on the relative permittivity of solvent. It is shown that the formation of intermolecular hydrogen-bonding between triethylamine and protic solvent suppresses the quenching reaction by the decrease in free amine. Acetonitrile has only a polar effect and trichloroacetic acid only a hydrogen-bonding(or protonation) effect, while alcohols have both the effects. The effects of alcohols could be separated into the effects of solvent polarity and intermolecular hydrogen-bonding interaction quantitatively.展开更多
基金Funded by the National Natural Science Foundation of China(50178026)the Cheung Kong Scholars Program Foundation of Chinese Ministry of Education(2009-37)
文摘The main reaction products were investigated by analysis of microstructure of alkali-activated ground granulated blast furnace slag (GGBFS) paste. An experimental research was performed on bond performance of alkali-activated GGBFS paste as a construction adhesive after exposure to 20-500℃. Through XRD analysis, a few calcium silicate hydrate, hydrotalcite and tetracalcium aluminate hydrate were determined as end products, and they were filled and packed each other at room temperature. In addition, akermanite dramatically increased at 800 ~C and above. The two key parameters, the ultimate load Pu.T and effective bond length Le, were determined using test data of carbon fiber-reinforced polymer (CFRP)-to-concrete bonded joints at elevated temperature. The experimental results indicate that the ultimate load Pu.T remains relatively stable initially and then decreases with increasing temperature. The effective bond length Le increases with increasing temperature except at 300℃. The proposed temperature-dependent effective bond length formula is shown to closely represent the test data.
文摘Time-dependent density functional theory (TDDFT) and femtosecond transient absorption spectroscopy were used to investigate the photophysical properties of 2,3-dihydro-3-keto-lH- pyrido[3,2,1-kl]phenothiazine (PTZ4) and 3-keto-lH-pyrido[3,2,1-kl]phenothiazine (PTZ5). The calculated results obtained from TDDFT suggest that the red-shifts of the absorption spectra of these two fluorophores in methanol are due to the formation of hydrogen-bonded complexes at the ground state. Four conformers of PTZ4 were obtained by TDDFT. The two fluorescence peaks of PTZ4 in tetrahydrofuran (THF) came from the ICT states of the four conformers. The fluorescence of PTZ4 in THF showed a dependence on the excitation wavelength because of butterfly bending. The excited state dynamics of PTZ4 in THF and methanol were obtained by transient absorption spectroscopy. The lifetime of the excited PTZ4 in methanol was 53.8 ps, and its relaxation from the LE state to the ICT state was completed within several picoseconds. The short lifetime of excited PTZ4 in methanol was due to the formation of out-of-plane model hydrogen bonds between PTZ4 and methanol at the excited state.
文摘The channeling phenomenon of carbon ions in single-wall carbon nanotubes (SWCNTs) is investigated by using the molecular dynamics simulation with analytical potentials.The relationship between the channeling critical angles in the SWCNT and the bonding interaction is analyzed.It was found that,at 200-5000 eV and 10°-20° of incident angle,the ions with the bonding interaction or chemical effect,have decreased dechanneling probabilities and increased critical angles,compared to that of non-bonding ions.So the bonding effect cannot be ignored in the channeling mechanism of carbon ions through a SWCNT.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10175041 and 10375040).
文摘The bond length of ^4HeH^+ resulting from collision-induced destruction is measured at 1.4420 MeV using the Coulomb Explosion Technique. The measured bond length of ^4HeH^+ is 0.094±0.003nm. The bond length of ^4HeH^+ obtained with our radio frequency (RF) ion source is larger than that obtained with a duoplasmatron ion source at Argonne National Laboratory (ANL), but the bond lengths of H^+2 and H^+3obtained separately by ANL and by us with the two different ion sources are consistent with each other, which implies that there exists an ion source effect on the bond length of ^4HeH^+. The main reason why the 4^4HeH^+ bond lengths obtained by the two different ion sources are different is also discussed.
基金Project supported by the Foundation of Education Department of Shaanxi Province,China(Grant No.16JK1402)
文摘The EPR parameters of trivalent Er(3+) ions doped in hexagonal Ga N crystal have been studied by diagonalizing the 364×364 complete energy matrices. The results indicate that the resonance ground states may be derived from the Kramers doublet Γ6. The EPR g-factors may be ascribed to the stronger covalent bonding and nephelauxetic effects compared with other rare-earth doped complexes, as a result of the mismatch of ionic radii of the impurity Er(3+)ion and the replaced Ga(3+) ion apart from the intrinsic covalency of host Ga N. Furthermore, the J–J mixing effects on the EPR parameters from the high-lying manifolds have been evaluated. It is found that the dominant J–J mixing contribution is from the manifold 2K(15/2), which accounts for about 2.5%. The next important J–J contribution arises from the crystal–field mixture between the ground state 4I(15/2) and the first excited state4I(13/2), and is usually less than 0.2%. The contributions from the rest states may be ignored.
基金This Project is supported by the National Natural Science Foundation of Chinathe Laboratory of Rare Earth Physics and Chemistry,Changchun Institute of Applied Chemistry,Academia Sinica
文摘The chemical bond parameters and ionic polarizabilities in complex crystals are calculated.The mechanism of host influence on the nephelauxetic effect and hypersensitive transition is discussed.
基金Supported by the National Natural Science Foundation of China(No. 2 9972 0 38)
文摘B3LYP/6 31+g( d ) calculations were performed on the hydrogen bonded complexes between substituted phenolates and HF, H 2O as well as NH 3. It was found that some properties of the non covalent complexes, including the interaction energies, donor acceptor (host vip) distances, bond lengths, and vibration frequencies, could show well defined substituent effects. Thus, from the substituent studies we can not only understand the mechanism of a particular non covalent interaction better, but also easily predict the interaction energies and structures of a particular non covalent complex, which might otherwise be very hard or resource consuming to be known. This means that substituent effect is indeed a useful tool to be used in supramolecular chemistry and therefore, many valuable studies remain to be carried out.
文摘Studies of direction of photoisomerization of retinal,retinonitrile,a- retinonitrile and a trienenitrile analog in different solvents with varying wave- lengths of excitation and reaction temperature led to the conclusion that the well known solvent dependent photochemistry of retinoids is due to selective excitation of the hydrogen bonded species.
文摘The main Iimitation to the toughening of the α-Al2O3/Ni composite is the poor bonding atthe interface. which causes the nickel particles to be pulled-out during crack propagation with-out obvious plastic deformation. A proper control of oxygen content at the Al2O3-Ni interfacecan promote wetting at the intedece, and produce a mechanically interlocked and chemically strengthened intedece, causing most of the nickel particles to be stretched to failure and to expe-rience severe plastic deformation during crack propagation in the composite. Fracture toughnesstesting using a modified double cantilever beam method with in situ observation of crack prop-agation in a scanning electron microscope shows that the composite with the strengthenedinterface has a more desirable R-curve behaviour and a higher fracture toughness value than thenormal composite.
文摘The effects of the protic and aprotic polar solvents on the emission spectrum of the naphthalene-triethyl-amine system in THF were studied under conditions of steady-state illumination. The fluorescence spectrum of the naphthalene-triethylamine system consists of two emission bands, the fluorescence band of naphthalene(band A, 329 nm) and the emission band of the exciplex(band B, 468 nm). The intensities of both the emission bands decrease with increasing the solvent polarity. The intensity of band B also decreases due to the hydrogen-bonding interaction between triethylamine and protic solvent, while that of band A increases. It is thus suggested that the quenching of naphthalene fluorescence by triethylamine in THF occurs through the charge transfer and electron transfer reactions. The spectral changes upon the increase of solvent polarity can be explained by the dependences of the equilibrium constant between exciplex and ion-pair and the rate constant for the electron transfer reaction from triethylamine to the excited naphthalene on the relative permittivity of solvent. It is shown that the formation of intermolecular hydrogen-bonding between triethylamine and protic solvent suppresses the quenching reaction by the decrease in free amine. Acetonitrile has only a polar effect and trichloroacetic acid only a hydrogen-bonding(or protonation) effect, while alcohols have both the effects. The effects of alcohols could be separated into the effects of solvent polarity and intermolecular hydrogen-bonding interaction quantitatively.