This work presents a numerical study on the dynamic high velocity compaction of the metal powder. The analysis of the process is based on a mesoscopic approach using multi-speed lattice Boltzmann method. The boundary ...This work presents a numerical study on the dynamic high velocity compaction of the metal powder. The analysis of the process is based on a mesoscopic approach using multi-speed lattice Boltzmann method. The boundary condition and the relaxation time are tailored to the situation. The dynamic compaction process is vividly presented and the shock wave can be easily found in the simulation. The density is analyzed in order to explore the mechanism of the high velocity compaction.展开更多
基金supported by the National Natural Science Foundation of China(Nos. 50874123 and 51174236)National Basic Research Program of China(No. 2011CB606306)
文摘This work presents a numerical study on the dynamic high velocity compaction of the metal powder. The analysis of the process is based on a mesoscopic approach using multi-speed lattice Boltzmann method. The boundary condition and the relaxation time are tailored to the situation. The dynamic compaction process is vividly presented and the shock wave can be easily found in the simulation. The density is analyzed in order to explore the mechanism of the high velocity compaction.