Let p is an element of (n/(n + 1), 1]. The authors investigate the (H-b(p)(R-n), L-p(R-n))-type and (H-b(p,infinity)(R-n), L-p,L-infinity(R-n))-type continuities for the maximal operators associated with the commutato...Let p is an element of (n/(n + 1), 1]. The authors investigate the (H-b(p)(R-n), L-p(R-n))-type and (H-b(p,infinity)(R-n), L-p,L-infinity(R-n))-type continuities for the maximal operators associated with the commutators of Bochner-Riesz operators with BMO(R-n) functions, where H-b(p)(R-n) and H-b(p,infinity)(R-n) are, respectively, the variants of the standard Hardy spaces and the standard weak Hardy spaces.展开更多
In this article, we prove the boundedness of commutators generated by BochnerRiesz operators below the critical index and BMO functions on the class of radial functions in Lp(Rn) with |1/p-1/2|〈(1+2α)/(2n).
In this paper, we will use a method of sharp maximal function approach to show the boundedness of commutator [b,TR^δ] by Bochner-Riesz operators and the function b on weighted Morrey spaces L^p,k (ω) under appro...In this paper, we will use a method of sharp maximal function approach to show the boundedness of commutator [b,TR^δ] by Bochner-Riesz operators and the function b on weighted Morrey spaces L^p,k (ω) under appropriate conditions on the weight w, where b belongs to Lipschitz space or weighted Lipschitz space.展开更多
The aim of the present paper is to study 2-complex symmetric bounded weighted composition operators on the Fock space of C^(N) with the conjugations J and J_(t,A,b) defined by ■ respectively,where k(z_(1),...,z_N)=(...The aim of the present paper is to study 2-complex symmetric bounded weighted composition operators on the Fock space of C^(N) with the conjugations J and J_(t,A,b) defined by ■ respectively,where k(z_(1),...,z_N)=(■,...,■),t∈C,b∈C^(N) and A is a linear operator on C^(N).An example of 2-complex symmetric bounded weighted composition operator with the conjugation J_(t,A,b) is given.展开更多
In this paper,we give a complete characterization of all self-adjoint domains of odd order differential operators on two intervals.These two intervals with all four endpoints are singular(one endpoint of each interval...In this paper,we give a complete characterization of all self-adjoint domains of odd order differential operators on two intervals.These two intervals with all four endpoints are singular(one endpoint of each interval is singular or all four endpoints are regulars are the special cases).And these extensions yield"new"self-adjoint operators,which involve interactions between the two intervals.展开更多
Let Ω be homogeneous of degree zero,integrable on S^(n−1) and have mean value zero,T_(Ω) be the homogeneous singular integral operator with kernel Ω(x)/|x|^(n) and[b,T_(Ω)]be the commutator of T_(Ω)with symbol b∈BMO(...Let Ω be homogeneous of degree zero,integrable on S^(n−1) and have mean value zero,T_(Ω) be the homogeneous singular integral operator with kernel Ω(x)/|x|^(n) and[b,T_(Ω)]be the commutator of T_(Ω)with symbol b∈BMO(R^(n)).In this paper,the authors prove that if sup ζ∈S^(n−1)∫Sn−1^(|Ω(θ)|log^(β)(1/|θ·ζ|)dθ<∞ with β>2,then[b,T_(Ω)]is bounded on Triebel–Lizorkin space F^(0,q)p(R^(n))provided that 1+1/β−1<p,q<β.展开更多
Accurate medical diagnosis,which involves identifying diseases based on patient symptoms,is often hindered by uncertainties in data interpretation and retrieval.Advanced fuzzy set theories have emerged as effective to...Accurate medical diagnosis,which involves identifying diseases based on patient symptoms,is often hindered by uncertainties in data interpretation and retrieval.Advanced fuzzy set theories have emerged as effective tools to address these challenges.In this paper,new mathematical approaches for handling uncertainty in medical diagnosis are introduced using q-rung orthopair fuzzy sets(q-ROFS)and interval-valued q-rung orthopair fuzzy sets(IVq-ROFS).Three aggregation operators are proposed in our methodologies:the q-ROF weighted averaging(q-ROFWA),the q-ROF weighted geometric(q-ROFWG),and the q-ROF weighted neutrality averaging(qROFWNA),which enhance decision-making under uncertainty.These operators are paired with ranking methods such as the similarity measure,score function,and inverse score function to improve the accuracy of disease identification.Additionally,the impact of varying q-rung values is explored through a sensitivity analysis,extending the analysis beyond the typical maximum value of 3.The Basic Uncertain Information(BUI)method is employed to simulate expert opinions,and aggregation operators are used to combine these opinions in a group decisionmaking context.Our results provide a comprehensive comparison of methodologies,highlighting their strengths and limitations in diagnosing diseases based on uncertain patient data.展开更多
Recently,Choe-Koo-Wang(J Funct Anal,2020,278)demonstrated the rigid phenomenon:The compact linear combination of composition operators under the Coefficient Non-cancellation Condition(CNC),implies that each difference...Recently,Choe-Koo-Wang(J Funct Anal,2020,278)demonstrated the rigid phenomenon:The compact linear combination of composition operators under the Coefficient Non-cancellation Condition(CNC),implies that each difference is compact on the weighted Bergman space in the unit disk.Motivated by the subtle connection of composition operator theory on the weighted Bergman spaces,Korenblum spaces and bounded holomorphic function spaces,we first explore the rigid phenomenon which also holds on the Korenblum space over the unit ball.Furthermore,we discuss which difference of composition operators is compact when the compact combination of composition operators does not satisfy the condition(CNC)on Korenblum spaces and bounded holomorphic function spaces over the unit ball setting.展开更多
In this paper,we provide an alternative proof of the weak type(1,n/n-a)inequality for the fractional maximal operators.By using the discretization technique,we can get the main result,which shows that the weak type(1,...In this paper,we provide an alternative proof of the weak type(1,n/n-a)inequality for the fractional maximal operators.By using the discretization technique,we can get the main result,which shows that the weak type(1,n/n-a)bound of M_(α)is at worst 2^(n-a).The weak type(1,n/n-a)bound of M_(α)can be estimated more directly and easily in this method,which is different from the usual ways.展开更多
In the present paper,the modified Durrmeyer type Jakimovski-Leviatan operators are presented and their approximation properties are examined.It has shown that the new operators are the Gamma transform of the Jakimovsk...In the present paper,the modified Durrmeyer type Jakimovski-Leviatan operators are presented and their approximation properties are examined.It has shown that the new operators are the Gamma transform of the Jakimovski-Leviatan operators.The degree of approximation is given by the modulus of continuity.It has been stressed that,there are other operators having the same error estimation with the operators,arising from the Sz´asz-Durrmeyer operators.Then the degree of global approximation is obtained in a special Lipschitz type function space.Further,a Voronovskaja type asymptotic formula and Gr¨uss-Voronovskaja type theorem are given.The approximation with these operators is visualized with the help of error tables and graphical examples.展开更多
Given an open bounded subset Ω of ℝ^(n) we consider the eigenvalue problem{Δu-(■u,■V)=-λvu,u>0inΩ,u=0 onδΩ,where V is a given function defined inΩandλV is the relevant eigenvalue.We determine sufficient c...Given an open bounded subset Ω of ℝ^(n) we consider the eigenvalue problem{Δu-(■u,■V)=-λvu,u>0inΩ,u=0 onδΩ,where V is a given function defined inΩandλV is the relevant eigenvalue.We determine sufficient conditions on V such that ifΩis convex,the solution u is log-concave.We also determine sufficient conditions ensuring that λ_(V),as a function of the setΩ,verifies a convexity inequality with respect to the Minkowski addition of sets.展开更多
In this paper,we first introduce the notion of relative Rota-Baxter operators of nonzero weight on 3-Hom-Lie algebras and define a cohomology of relative Rota-Baxter operators of nonzero weight on 3-Hom-Lie algebras w...In this paper,we first introduce the notion of relative Rota-Baxter operators of nonzero weight on 3-Hom-Lie algebras and define a cohomology of relative Rota-Baxter operators of nonzero weight on 3-Hom-Lie algebras with coefficients in a suitable representation.Next,we introduce and study 3-Hom-post-Lie-algebras as the underlying structure of relative Rota-Baxter operators of nonzero weight on 3-Hom-Lie algebras.Finally,we investigate relative Rota-Baxter operators of nonzero weight on 3-Hom-Lie algebras induced by Hom-Lie algebras.展开更多
Nonlinear science is a fundamental area of physics research that investigates complex dynamical systems which are often characterized by high sensitivity and nonlinear behaviors.Numerical simulations play a pivotal ro...Nonlinear science is a fundamental area of physics research that investigates complex dynamical systems which are often characterized by high sensitivity and nonlinear behaviors.Numerical simulations play a pivotal role in nonlinear science,serving as a critical tool for revealing the underlying principles governing these systems.In addition,they play a crucial role in accelerating progress across various fields,such as climate modeling,weather forecasting,and fluid dynamics.However,their high computational cost limits their application in high-precision or long-duration simulations.In this study,we propose a novel data-driven approach for simulating complex physical systems,particularly turbulent phenomena.Specifically,we develop an efficient surrogate model based on the wavelet neural operator(WNO).Experimental results demonstrate that the enhanced WNO model can accurately simulate small-scale turbulent flows while using lower computational costs.In simulations of complex physical fields,the improved WNO model outperforms established deep learning models,such as U-Net,Res Net,and the Fourier neural operator(FNO),in terms of accuracy.Notably,the improved WNO model exhibits exceptional generalization capabilities,maintaining stable performance across a wide range of initial conditions and high-resolution scenarios without retraining.This study highlights the significant potential of the enhanced WNO model for simulating complex physical systems,providing strong evidence to support the development of more efficient,scalable,and high-precision simulation techniques.展开更多
In this paper,using the property of uniform Fredholm non-positive index of bounded linear operators,we give criteria for operators and their functions to possess property(ω),and several equivalent conditions for the ...In this paper,using the property of uniform Fredholm non-positive index of bounded linear operators,we give criteria for operators and their functions to possess property(ω),and several equivalent conditions for the stability of property(ω),and investigate the relationship between the stability of property(ω)and the(ω)-property of operator functions.展开更多
In the present paper,we obtain the converse results of approximation of a newly introduced genuine Bernstein-Durrmeyer operators in movable interval.We also get the moments properties of an auxiliary operator which ha...In the present paper,we obtain the converse results of approximation of a newly introduced genuine Bernstein-Durrmeyer operators in movable interval.We also get the moments properties of an auxiliary operator which has its own independent values.The moments of the auxiliary operators play important roles in establishing the main result(Theorem 4).展开更多
We prove the boundedness of the parametric Lusin's S functionμ_(S)^(?)(f)and Littlewood-Paley's g_(λ)^(*)-funtionμ_(λ),^(*,?)(f)on grand Herz-Morrey spaces with variable exponents.Additionally,we establish...We prove the boundedness of the parametric Lusin's S functionμ_(S)^(?)(f)and Littlewood-Paley's g_(λ)^(*)-funtionμ_(λ),^(*,?)(f)on grand Herz-Morrey spaces with variable exponents.Additionally,we establish the boundedness of higher-order commutators ofμ_(S)^(?)andμ_(λ),^(*,?)with BMO functions applying some properties of variable exponents and generalized BMO norms.展开更多
In this paper,it is shown that the harmonic Bergman projection P_(ω)^(h),induced by a radial,induced by a radial weightω,is bounded and onto from L^(∞)(D)to the harmonic Bloch space B_(h)if and only ifω∈D,,which ...In this paper,it is shown that the harmonic Bergman projection P_(ω)^(h),induced by a radial,induced by a radial weightω,is bounded and onto from L^(∞)(D)to the harmonic Bloch space B_(h)if and only ifω∈D,,which is a class of radial weights satisfying the two-sided doubling conditions.As an application,the bounded and compact positive Toeplitz operators T_(μ,ω)on the endpoint case weighted harmonic Bergman space L_(h,ω)^(1)(D)are characterized.展开更多
We explore some necessary and sufficient conditions for the boundedness of the Forelli-Rudin type operator T on the weighted Lebesgue space associated with tubular domains over the forward light cone.Our approach invo...We explore some necessary and sufficient conditions for the boundedness of the Forelli-Rudin type operator T on the weighted Lebesgue space associated with tubular domains over the forward light cone.Our approach involves conducting precise computations for a series of complex integrals to identify appropriate test functions,and through a detailed analysis of these test functions,we derive the boundedness properties of the operator T.This work is significant in the study of the Bergman projection operators.展开更多
Letϕbe a smooth radial weight that decays faster than the class Gaussian ones.We obtain certain estimates for the reproducing kernels and the Lp-estimates for solutions of theδ-equation on the weighted Fock spaces F_...Letϕbe a smooth radial weight that decays faster than the class Gaussian ones.We obtain certain estimates for the reproducing kernels and the Lp-estimates for solutions of theδ-equation on the weighted Fock spaces F_(ϕ)^(p)(1≤p≤∞),which extends the classical Hörmander Theorem.Furthermore,for a suitable f,we completely characterize the boundedness and compactness of the Hankel operator H_(f):F_(ϕ)^(p)→L^(q)(C,e^(qϕ(·))dm)for all possible 1≤p,q<∞and also characterize the Schatten-p class Hankel operator Hf from F_(ϕ)^(2)to L^(2)(C,E^(-2ϕ)dm) for all 0<p<∞. As an application, we give a complete characterization of the simultaneously bounded, compact and Schatten-p classes Hankel operators H_(f) and h_(f)^(-) on F_(ϕ)^(2).展开更多
In this paper,we study composition operators on weighted Bergman spaces of Dirichlet series.We first establish some Littlewood-type inequalities for generalized mean counting functions.Then we give sufficient conditio...In this paper,we study composition operators on weighted Bergman spaces of Dirichlet series.We first establish some Littlewood-type inequalities for generalized mean counting functions.Then we give sufficient conditions for a composition operator with zero characteristic to be bounded or compact on weighted Bergman spaces of Dirichlet series.The corresponding sufficient condition for compactness in the case of positive characteristics is also obtained.展开更多
基金Tang Lin and Yang Dachun are supported in part by the NNSF and the SEDF of China.
文摘Let p is an element of (n/(n + 1), 1]. The authors investigate the (H-b(p)(R-n), L-p(R-n))-type and (H-b(p,infinity)(R-n), L-p,L-infinity(R-n))-type continuities for the maximal operators associated with the commutators of Bochner-Riesz operators with BMO(R-n) functions, where H-b(p)(R-n) and H-b(p,infinity)(R-n) are, respectively, the variants of the standard Hardy spaces and the standard weak Hardy spaces.
基金supported by National Natural Science Foundation of China (10871024, 10931001, and 10971141)the Beijing Natural Science Foundation (1092004)+1 种基金Introduces Talent Fund Projects of Tianjin Normal University (5RL067)the Key Laboratory of Mathematics and Complex System (Beijing Normal University), Ministry of Education, China
文摘In this article, we prove the boundedness of commutators generated by BochnerRiesz operators below the critical index and BMO functions on the class of radial functions in Lp(Rn) with |1/p-1/2|〈(1+2α)/(2n).
基金supported by NSFC (NO. 11201003)Education Committee of Anhui Province (NO. KJ2011A138 and NO. KJ2012A133)
文摘In this paper, we will use a method of sharp maximal function approach to show the boundedness of commutator [b,TR^δ] by Bochner-Riesz operators and the function b on weighted Morrey spaces L^p,k (ω) under appropriate conditions on the weight w, where b belongs to Lipschitz space or weighted Lipschitz space.
基金Supported by Sichuan Science and Technology Program (No.2022ZYD0010)。
文摘The aim of the present paper is to study 2-complex symmetric bounded weighted composition operators on the Fock space of C^(N) with the conjugations J and J_(t,A,b) defined by ■ respectively,where k(z_(1),...,z_N)=(■,...,■),t∈C,b∈C^(N) and A is a linear operator on C^(N).An example of 2-complex symmetric bounded weighted composition operator with the conjugation J_(t,A,b) is given.
基金Supported by NSFC (No.12361027)NSF of Inner Mongolia (No.2018MS01021)+1 种基金NSF of Shandong Province (No.ZR2020QA009)Science and Technology Innovation Program for Higher Education Institutions of Shanxi Province (No.2024L533)。
文摘In this paper,we give a complete characterization of all self-adjoint domains of odd order differential operators on two intervals.These two intervals with all four endpoints are singular(one endpoint of each interval is singular or all four endpoints are regulars are the special cases).And these extensions yield"new"self-adjoint operators,which involve interactions between the two intervals.
基金Supported by NSFC(No.11971295)Guangdong Higher Education Teaching Reform Project(No.2023307)。
文摘Let Ω be homogeneous of degree zero,integrable on S^(n−1) and have mean value zero,T_(Ω) be the homogeneous singular integral operator with kernel Ω(x)/|x|^(n) and[b,T_(Ω)]be the commutator of T_(Ω)with symbol b∈BMO(R^(n)).In this paper,the authors prove that if sup ζ∈S^(n−1)∫Sn−1^(|Ω(θ)|log^(β)(1/|θ·ζ|)dθ<∞ with β>2,then[b,T_(Ω)]is bounded on Triebel–Lizorkin space F^(0,q)p(R^(n))provided that 1+1/β−1<p,q<β.
文摘Accurate medical diagnosis,which involves identifying diseases based on patient symptoms,is often hindered by uncertainties in data interpretation and retrieval.Advanced fuzzy set theories have emerged as effective tools to address these challenges.In this paper,new mathematical approaches for handling uncertainty in medical diagnosis are introduced using q-rung orthopair fuzzy sets(q-ROFS)and interval-valued q-rung orthopair fuzzy sets(IVq-ROFS).Three aggregation operators are proposed in our methodologies:the q-ROF weighted averaging(q-ROFWA),the q-ROF weighted geometric(q-ROFWG),and the q-ROF weighted neutrality averaging(qROFWNA),which enhance decision-making under uncertainty.These operators are paired with ranking methods such as the similarity measure,score function,and inverse score function to improve the accuracy of disease identification.Additionally,the impact of varying q-rung values is explored through a sensitivity analysis,extending the analysis beyond the typical maximum value of 3.The Basic Uncertain Information(BUI)method is employed to simulate expert opinions,and aggregation operators are used to combine these opinions in a group decisionmaking context.Our results provide a comprehensive comparison of methodologies,highlighting their strengths and limitations in diagnosing diseases based on uncertain patient data.
基金supported by National Science Foundations of China(Grant No.11771340,12171373).
文摘Recently,Choe-Koo-Wang(J Funct Anal,2020,278)demonstrated the rigid phenomenon:The compact linear combination of composition operators under the Coefficient Non-cancellation Condition(CNC),implies that each difference is compact on the weighted Bergman space in the unit disk.Motivated by the subtle connection of composition operator theory on the weighted Bergman spaces,Korenblum spaces and bounded holomorphic function spaces,we first explore the rigid phenomenon which also holds on the Korenblum space over the unit ball.Furthermore,we discuss which difference of composition operators is compact when the compact combination of composition operators does not satisfy the condition(CNC)on Korenblum spaces and bounded holomorphic function spaces over the unit ball setting.
基金Supported by by Natural Science Foundation of Henan(202300410184 and242300421387)。
文摘In this paper,we provide an alternative proof of the weak type(1,n/n-a)inequality for the fractional maximal operators.By using the discretization technique,we can get the main result,which shows that the weak type(1,n/n-a)bound of M_(α)is at worst 2^(n-a).The weak type(1,n/n-a)bound of M_(α)can be estimated more directly and easily in this method,which is different from the usual ways.
基金Supported by Fujian Provincial Natural Science Foundation of China(2024J01792)。
文摘In the present paper,the modified Durrmeyer type Jakimovski-Leviatan operators are presented and their approximation properties are examined.It has shown that the new operators are the Gamma transform of the Jakimovski-Leviatan operators.The degree of approximation is given by the modulus of continuity.It has been stressed that,there are other operators having the same error estimation with the operators,arising from the Sz´asz-Durrmeyer operators.Then the degree of global approximation is obtained in a special Lipschitz type function space.Further,a Voronovskaja type asymptotic formula and Gr¨uss-Voronovskaja type theorem are given.The approximation with these operators is visualized with the help of error tables and graphical examples.
基金supported by the project Disuguaglianze analitiche e geometriche,funded by the Gruppo per Analisi Matematica la Probabilitàe le loro Applicazioni.
文摘Given an open bounded subset Ω of ℝ^(n) we consider the eigenvalue problem{Δu-(■u,■V)=-λvu,u>0inΩ,u=0 onδΩ,where V is a given function defined inΩandλV is the relevant eigenvalue.We determine sufficient conditions on V such that ifΩis convex,the solution u is log-concave.We also determine sufficient conditions ensuring that λ_(V),as a function of the setΩ,verifies a convexity inequality with respect to the Minkowski addition of sets.
基金Supported by the National Natural Science Foundation of China(Grant No.12161013)the School-Level Student Research Project of Guizhou University of Finance and Economics(Grant No.2024ZXSY231)。
文摘In this paper,we first introduce the notion of relative Rota-Baxter operators of nonzero weight on 3-Hom-Lie algebras and define a cohomology of relative Rota-Baxter operators of nonzero weight on 3-Hom-Lie algebras with coefficients in a suitable representation.Next,we introduce and study 3-Hom-post-Lie-algebras as the underlying structure of relative Rota-Baxter operators of nonzero weight on 3-Hom-Lie algebras.Finally,we investigate relative Rota-Baxter operators of nonzero weight on 3-Hom-Lie algebras induced by Hom-Lie algebras.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.42005003 and 41475094)。
文摘Nonlinear science is a fundamental area of physics research that investigates complex dynamical systems which are often characterized by high sensitivity and nonlinear behaviors.Numerical simulations play a pivotal role in nonlinear science,serving as a critical tool for revealing the underlying principles governing these systems.In addition,they play a crucial role in accelerating progress across various fields,such as climate modeling,weather forecasting,and fluid dynamics.However,their high computational cost limits their application in high-precision or long-duration simulations.In this study,we propose a novel data-driven approach for simulating complex physical systems,particularly turbulent phenomena.Specifically,we develop an efficient surrogate model based on the wavelet neural operator(WNO).Experimental results demonstrate that the enhanced WNO model can accurately simulate small-scale turbulent flows while using lower computational costs.In simulations of complex physical fields,the improved WNO model outperforms established deep learning models,such as U-Net,Res Net,and the Fourier neural operator(FNO),in terms of accuracy.Notably,the improved WNO model exhibits exceptional generalization capabilities,maintaining stable performance across a wide range of initial conditions and high-resolution scenarios without retraining.This study highlights the significant potential of the enhanced WNO model for simulating complex physical systems,providing strong evidence to support the development of more efficient,scalable,and high-precision simulation techniques.
基金supported by the National Natural Science Foundation of China(No.11501419)the Nature Science Basic Research Plan in Shaanxi Province of China(No.2021JM-519)。
文摘In this paper,using the property of uniform Fredholm non-positive index of bounded linear operators,we give criteria for operators and their functions to possess property(ω),and several equivalent conditions for the stability of property(ω),and investigate the relationship between the stability of property(ω)and the(ω)-property of operator functions.
文摘In the present paper,we obtain the converse results of approximation of a newly introduced genuine Bernstein-Durrmeyer operators in movable interval.We also get the moments properties of an auxiliary operator which has its own independent values.The moments of the auxiliary operators play important roles in establishing the main result(Theorem 4).
基金Supported by the Natural Science Research Project of Anhui Educational Committee(Grant No.2024AH050129)。
文摘We prove the boundedness of the parametric Lusin's S functionμ_(S)^(?)(f)and Littlewood-Paley's g_(λ)^(*)-funtionμ_(λ),^(*,?)(f)on grand Herz-Morrey spaces with variable exponents.Additionally,we establish the boundedness of higher-order commutators ofμ_(S)^(?)andμ_(λ),^(*,?)with BMO functions applying some properties of variable exponents and generalized BMO norms.
基金supported by the National Natural Science Foundation of China(12171075)the Science and Technology Research Project of Education Department of Jilin Province(JJKH20241406KJ)Zhan’s research was supported by the Doctoral Startup Fund of Liaoning University of Technology(XB2024029).
文摘In this paper,it is shown that the harmonic Bergman projection P_(ω)^(h),induced by a radial,induced by a radial weightω,is bounded and onto from L^(∞)(D)to the harmonic Bloch space B_(h)if and only ifω∈D,,which is a class of radial weights satisfying the two-sided doubling conditions.As an application,the bounded and compact positive Toeplitz operators T_(μ,ω)on the endpoint case weighted harmonic Bergman space L_(h,ω)^(1)(D)are characterized.
基金Liu’s research was supported by the Fundamental Research Funds for the Central Universities,Sun Yat-sen University(31610030)Deng’s research was supported by the NSFC(11971042,12071035)the National Key R&D Program of China(2021YFA1002600).
文摘We explore some necessary and sufficient conditions for the boundedness of the Forelli-Rudin type operator T on the weighted Lebesgue space associated with tubular domains over the forward light cone.Our approach involves conducting precise computations for a series of complex integrals to identify appropriate test functions,and through a detailed analysis of these test functions,we derive the boundedness properties of the operator T.This work is significant in the study of the Bergman projection operators.
文摘Letϕbe a smooth radial weight that decays faster than the class Gaussian ones.We obtain certain estimates for the reproducing kernels and the Lp-estimates for solutions of theδ-equation on the weighted Fock spaces F_(ϕ)^(p)(1≤p≤∞),which extends the classical Hörmander Theorem.Furthermore,for a suitable f,we completely characterize the boundedness and compactness of the Hankel operator H_(f):F_(ϕ)^(p)→L^(q)(C,e^(qϕ(·))dm)for all possible 1≤p,q<∞and also characterize the Schatten-p class Hankel operator Hf from F_(ϕ)^(2)to L^(2)(C,E^(-2ϕ)dm) for all 0<p<∞. As an application, we give a complete characterization of the simultaneously bounded, compact and Schatten-p classes Hankel operators H_(f) and h_(f)^(-) on F_(ϕ)^(2).
基金supported by the National Natural Science Foundation of China(12171373)Chen's work also supported by the Fundamental Research Funds for the Central Universities of China(GK202207018).
文摘In this paper,we study composition operators on weighted Bergman spaces of Dirichlet series.We first establish some Littlewood-type inequalities for generalized mean counting functions.Then we give sufficient conditions for a composition operator with zero characteristic to be bounded or compact on weighted Bergman spaces of Dirichlet series.The corresponding sufficient condition for compactness in the case of positive characteristics is also obtained.